3.8平面束
- 格式:ppt
- 大小:273.50 KB
- 文档页数:7
第一章矢量与坐标§1.1 矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点;(3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点.解:2. 设点O是正六边形ABCDEF的中心,在矢量OA、OB、OC、OD、OE、OF、AB、BC、CD、DE、EF和FA中,哪些矢量是相等的?[解]:图1-13. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=NM. 当ABCD是空间四边形时,这等式是否也成立?[证明]:.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) AB、CD; (2) AE、CG; (3) AC、EG;(4) AD、GF; (5) BE、CH.解:§1.2 矢量的加法1.要使下列各式成立,矢量b a ,应满足什么条件? (1=+ (2+=+ (3-=+ (4+=- (5= 解:§1.3 数量乘矢量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从矢量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出矢量→x ,→y .解:2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF . 解:3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 解:4 在四边形ABCD中,→→→+=baAB2,→→→--=baBC4,→→→--=baCD35,证明ABCD为梯形.解:6. 设L、M、N分别是ΔABC的三边BC、CA、AB的中点,证明:三中线矢量AL, BM, CN可以构成一个三角形.7. 设L、M、N是△ABC的三边的中点,O是任意一点,证明OBOA++OC=OL+OM+ON.解:8. 如图1-5,设M是平行四边形ABCD的中心,O是任意一点,证明OA+OB+OC+OD=4OM.解:9在平行六面体ABCDEFGH(参看第一节第4题图)中,证明→→→→=++AGAHAFAC2.证明:.10.用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.解11. 用矢量法证明,平行四边行的对角线互相平分.解12. 设点O 是平面上正多边形A 1A 2…A n 的中心,证明: 1OA +2OA +…+n OA =0.解,13.在12题的条件下,设P 是任意点,证明 证明:§1.4 矢量的线性关系与矢量的分解1.在平行四边形ABCD 中,(1)设对角线,,b BD a AZ ==求.,,,DA CD BC AB 解(2)设边BC 和CD 的中点M 和N ,且q AN P AM ==,求CD BC ,。
对称式方程的平面束方程怎么求对称式方程是指方程中的各项次数相等或者各项的次数之和相等。
这样的方程具有一定的对称性,因此我们可以通过对称性来求出它的平面束方程。
以二次对称式方程为例,平面束方程的求解步骤如下:第一步:将二次对称式方程中的常数项移项,使得方程的形式为:Ax^2 + By^2 + Cxy + Dx + Ey = 0第二步:将方程化为以 x 为自变量的函数形式 y = f(x)。
通过将 y 移项来消去 y 的系数,得到:y = - (Ax^2 + Dx)/(By + E) - Cx/2第三步:求出 f(x) 的导函数 f'(x)。
f'(x) = - [2Ax(D + By + E) + D(Cx + E)] / [(By + E)^2]第四步:将 f'(x) 代入旋转方程中,求出旋转角度和旋转中心。
旋转方程:tan(2θ) = 2C / (A - B)旋转角度:θ = 0.5 * atan(2C / (A - B))旋转中心: (x0, y0) = (-D / (2A), -E / (2B))第五步:将 f(x) 代入椭圆方程中,求出椭圆的半长轴 a 和半短轴 b。
椭圆方程: [x - x0]^2 / a^2 + [y - y0]^2 / b^2 = 1半长轴: a = sqrt(-f(xmin) / A)半短轴: b = sqrt(-f(xmax) / B)第六步:将得到的数据代入平面束方程中,即可得到所求平面束方程。
平面束方程: [(x - x0) cos(θ) + (y - y0) sin(θ))^2 / a^2 + (- (x - x0) sin(θ) + (y - y0) cos(θ))^2 / b^2 = 1以上就是对称式方程的平面束方程的求解步骤。
需要指出的是,这种方法只适用于二次对称式方程。
对于高次对称式方程,求解就会更加复杂,需要使用更高级的数学工具。
第三章平⾯与空间直线第三章平⾯与空间直线本章以⽮量为⼯具推导平⾯和空间直线各种形式的⽅程,讨论两平⾯,直线与平⾯,两直线的相互位置关系,并以⽮量为⼯具推导两平⾯,直线与平⾯,两直线间的夹⾓公式以及点到平⾯,点到直线,两异⾯直线间的距离公式,最后⼜讨论了平⾯束⽅程及其应⽤。
本章的基本要求如下:A.掌握1.基本概念:平⾯的⽅位⽮量和法⽮量,量,⽅向⾓,⽅向余弦,⽅向数。
有轴平⾯束和平⾏⾯束。
点与平⾯间的离差,直线的⽅向⽮量2.平⾯⽅程⽮量形式的⽅程:点位式,⼀般式,参数式,点法式。
坐标形式的⽅程:点位式,三点式,截距式,⼀般式,参数式,点法式,法线式。
根据平⾯的⽅程画出平⾯的图形。
3.直线⽅程⽮量形式的⽅程:点向式,参数式。
坐标形式的⽅程:对称式,两点式,参数式,⼀般式,射影式。
4.点,直线,平⾯的相关位置①⽤⽮量⽅法讨论两平⾯的位置关系(相交,平⾏,重合),并求两平⾯间的夹⾓。
②点和平⾯的位置关系(点在或点不在平⾯上),利⽤平⾯的法线式⽅程求点与平⾯的离差和距离。
③⽤⽮量⽅法讨论直线和平⾯的位置关系(相交,平⾏,直线在平⾯上),并求直线和平⾯间的夹⾓。
④点和直线的位置关系(点在直线上或点不在直线上),利⽤⽮量⽅法求点到直线的距离。
⑤⽤⽮量⽅法讨论两直线的位置关系(异⾯,相交,平⾏,重合)并求两直线间的夹⾓。
⑥平⾯束⽅程,利⽤平⾯束⽅程求空间直线在任⼀平⾯上的射影。
⑦空间圆的⽅程,圆⼼和半经的求法。
5.基本理论平⾯基本定理及其证明(定理3,1,1)有轴平⾯束⽅程及其证明(定理3,8,1)B.理解利⽤⽮量⽅法求两异⾯直线的公垂线和两异⾯直线间的距离。
知识要求:1.知道决定平⾯的⼏何条件及⽮量条件,会根据⼏何条件求出平⾯⽅程;2.掌握平⾯的参数⽅程、⼀般⽅程、法式⽅程、截距式⽅程;3.会求点到平⾯的距离;4.会⽤⽮量条件判断平⾯与平⾯的位置关系;5.知道决定空间直线的⼏何条件及⽮量条件,会根据⼏何条件求出直线⽅程;6.掌握空间直线的参数⽅程、两点式⽅程、⼀般⽅程、标准⽅程,会将参数⽅程、⼀般⽅程转化成标准⽅程;7.会⽤⽮量条件判断直线与直线、平⾯与直线的的位置关系;8.会求两直线之间的夹⾓;9.会求两异⾯直线之间的距离与公垂线⽅程;10.了解平⾯束的概念。
绪论第一篇解析几何第一章行列式及线性方程组§1.1 二阶行列式和二元线性方程组§1.2 三阶行列式§1.3 三阶行列式的主要性质§1.4 行列式的按行按列展开§1.5 三元线性方程组§1.6 齐次线性方程组§1.7 高阶行列式概念:第二章平面上的直角坐标、曲线及其方程§2.1 轴和轴上的线段:§2.2 直线上点的坐标·数轴:§2.3 平面上的点的笛卡儿直角坐标:§2.4 坐标变换问题:§2.5 两点间的距离:§2.6 线段的定比分点:§2.7 平面上曲线方程的概念:§2.8 两曲线的交点第三章直线与二元一次方程§3.1 过定点有定斜率的直线方程§3.2 直线的斜截式方程§3.3 直线的两点式方程§3.4 直线的截距式方程§3.5 直线的一般方程§3.6 两直线的交角§3.7 两直线平行及两直线垂直的条件§3.8 点到直线的距离§3.9 直线柬第四章圆锥曲线与二元二次方程§4.1 圆的一般方程§4.2 椭圆及其标准方程§4.3 椭圆形状的讨论§4.4 双曲线及其标准方程§4.5 双曲线形状的讨论§4.6 抛物线及其标准方程§4.7 抛物线形状的讨论§4.8 椭圆及双曲线的准线§4.9 利用轴的平移简化二次方程§4.1 0利用轴的旋转简化二次方程§4.1 1一般二元二次方程的简化第五章极坐标§5.1 极坐标的概念§5.2 极坐标与直角坐标的关系§5.3 曲线的极坐标方程§5.4 圆锥曲线的极坐标方程第六章参数方程§6.1 参数方程的概念§6.2 曲线的参数方程§6.3 参数方程的作图法第七章空间直角坐标与矢量代数§7.1 空间点的直角坐标§7.2 基本问题§7.3 矢量的概念·矢径§7.4 矢量的加减法§7.5 矢量与数量的乘法§7.6 矢量在轴上的投影·投影定理§7.7 矢量的分解与矢量的坐标§7.8 矢量的模·矢量的方向余弦与方向数§7.9 两矢量的数量积:§7.1 0两矢量间的夹角§7.1 1两矢量的矢量积§7.1 2矢量的混合积第八章曲面方程与曲线方程§8.1 曲面方程的概念§8.2 球面方程§8.3 母线平行于坐标轴的柱面方程·二次柱面§8.4 空间曲线作为两曲面的交线§8.5 空间曲线的参数方程§8.6 空间曲线在坐标面上的投影第九章空间的平面与直线§9.1 过一点并已知一法线矢量的平面方程§9.2 平面的一般方程的研究§9.3 平面的截距式方程§9.4 点到平面的距离§9.5 两平面的夹角§9.6 直线作为两平面的交线§9.7 直线的方程§9.8 两直线的夹角§9.9 直线与平面的夹角§9.10 直线与平面的交点§9.11 杂例§9.12 平面束的方程第十章二次曲面§10.1 旋转曲面§10.2 椭球面§10.3 单叶双曲面§10.4 双叶双曲面§10.5 椭圆抛物面§10.6 双曲抛物面§10.7 二次锥面第二篇数学分析第一章函数及其图形§1.1 实数与数轴§1.2 区间§1.3 实数的绝对值·邻域§1.4 常量与变量§1.5 函数概念§1.6 函数的表示法§1.7 函数的几种特性§1.8 反函数概念§1.9 基本初等函数的图形§1.10 复合函数·初等函数第二章数列的极限及函数的极限§2.1 数列及其简单性质§2.2 数列的极限§2.3 函数的极限§2.4 无穷大·无穷小§2.5 关于无穷小的定理§2.6 极限的四则运算§2.7 极限存在的准则·两个重要极限§2.8 双曲函数§2.9 无穷小的比较第三章函数的连续性§3.1 函数连续性的定义§3.2 函数的间断点§3.3 闭区间上连续函数的基本性质§3.4 连续函数的和、积及商的连续性§3.5 反函数与复合函数的连续性§3.6 初等函数的连续性第四章导数及微分§4.1 几个物理学上的概念§4.2 导数概念§4.3 导数的几何意义§4.4 求导数的例题·导数基本公式表§4.5 函数的和、积、商的导数§4.6 反函数的导数§4.7 复合函数的导数§4.8 高阶导数§4.9 参数方程所确定的函数的导数§4.10 微分概念§4.11 微分的求法·微分形式不变性§4.12 微分应用于近似计算及误差的估计第五章中值定理§5.1 中值定理§5.2 罗必塔法则§5.3 泰勒公式第六章导数的应用§6.1 函数的单调增减性的判定§6.2 函数的极值及其求法§6.3 最大值及最小值的求法§6.4 曲线的凹性及其判定法§6.5 曲线的拐点及其求法§6.6 曲线的渐近线§6.7 函数图形的描绘方法§6.8 弧微分·曲率§6.9 曲率半径·曲率中心§6.10 方程的近似解第七章不定积分§7.1 原函数与不定积分的概念§7.2 不定积分的性质§7.3 基本积分表§7.4 换元积分法§7.5 分部积分法§7.6 有理函数的分解§7.7 有理函数的积分§7.8 三角函数的有理式的积分§7.9 简单无理函数的积分§7.10 二项微分式的积分§7.11 关于积分问题的一些补充说明第八章定积分§8.1 曲边梯形的面积·变力所作的功§8.2 定积分的概念§8.3 定积分的简单性质·中值定理§8.4 牛顿一莱布尼兹公式§8.5 用换元法计算定积分§8.6 用分部积分法计算定积分§8.7 定积分的近似公式§8.8 广义积分第九章定积分的应用§9.1 平面图形的面积§9.2 体积§9.3 曲线的弧长§9.4 定积分在物理、力学上的应用第二篇数学分析(续)第十章级数Ⅰ常数项级数10.1 无穷级数概念10.2 无穷级数的基本性质收敛的必要条件10.3 正项级数收敛性的充分判定法10.4 任意项级数绝对收敛10.5 广义积分的收敛性Ⅱ函数项级数10.7 函数项级数的一般概念10.8 一致收敛及一致收敛级数的基本性质Ⅲ幂级数10.9 幂级数的收敛半径10.10 幂级数的运算10.11 泰勒级数10.12 初等函数的展开式10.13 泰勒级数在近似计算上的应用10.14 复变量的指数函数尤拉公式第十一章富里哀级数11.1 三角级数三角函数系的正交性11.2 尤拉-富里哀公式11.3 富里哀级数11.4 偶函数及奇函数的富里哀级数11.5 函数展开成正弦或余弦级数11.6 任意区间上的富里哀级数第十二章多元函数的微分法及其应用12.1 一般概念12.2 二元函数的极限及连续性12.3 偏导数12.4 全增量及全微分12.5 方向导数12.6 复合函数的微分法12.7 隐函数及其微分法12.8 空间曲线的切线及法平面12.9 曲面的切平面及法线12.10 高阶偏导数12.11 二元函数的泰勒公式12.12 多元函数的极值12.13 条件极值—拉格朗日乘数法则第十三章重积分13.1 体积问题二重积分13.2 二重积分的简单性质中值定理13.3 二重积分计算法13.4 利用极坐标计算二重积分13.5 三重积分及其计算法13.6 柱面坐标和球面坐标13.7 曲面的面积13.8 重积分在静力学中的应用第十四章曲线积分及曲面积分14.1 对坐标的曲线积分14.2 对弧长的曲线积分14.3 格林(Green)公式14.4 曲线积分与路线无关的条件14.5 曲面积分14.6 奥斯特罗格拉特斯基公式第十五章微分方程15.1 一般概念15.2 变量可分离的微分方程15.3 齐次微分方程15.4 一阶线性方程15.5 全微分方程15.6 高阶微分方程的几个特殊类型15.7 线性微分方程解的结构15.8 常系数齐次线性方程15.9 常系数非齐次线性方程15.10 尤拉方程15.11 幂级数解法举例15.12 常系数线性微分方程组。
第三章 平面与空间直线版权所有,侵权必究§3.1 平面的方程1.平面的点位式方程在空间给定了一点M 0与两个不共线的向量a ,b 后,通过点M 0且与a ,b 平行的平面π 就惟一被确定. 向量a ,b 叫平面π 的方位向量. 任意两个与π 平行的不共线的向量都可作为平面π 的方位向量.取标架{}321,,;e e e O ,设点M 0的向径0r =0OM ={}000,,z y x ,平面π 上任意一点M 的向径为r =OM = {x ,y ,z }(如图). 点M 在平面π上的充要条件为向量M M 0与向量a ,b 共面. 由于a ,b 不共线,这个共面的条件可以写成M M 0= u a +v b而M M 0= r -r 0,所以上式可写成r = r 0+u a +v b(3.1-1)此方程叫做平面π 的点位式向量参数方程,其中u ,v 为参数.若令a = {1X ,1Y ,1Z },b = {2X ,2Y ,2Z },则由(3.1-1)可得⎪⎩⎪⎨⎧++=++=++=vZ u Z z z v Y u Y y y vX u X x x 210210210 (3.1-2)此方程叫做平面π 的点位式坐标参数方程,其中u ,v 为参数.(3.1-1)式两边与a ×b 作内积,消去参数u ,v 得(r -r 0,a ,b ) = 0(3.1-3)此即222111000Z Y X Z Y X z z y y x x ---=0 (3.1-4)这是π 的点位式普通方程.已知平面π上三非共线点i M (i = 1,2,3). 建立坐标系{O ;e 1, e 2, e 3},设r i = i OM ={i x ,i y ,i z },i = 1,2,3. 对动点M ,设r =OM ={x ,y ,z },取21M M 和31M M 为方位向量,M 1为定点,则平面π的向量参数方程,坐标参数方程和一般方程依次为r = 1r +u(2r -1r )+v(3r -r 1)(3.1-5) ⎪⎩⎪⎨⎧-+-+=-+-+=-+-+=)()()()()()(131211312113121z z v z z u z z y y v y y u y y x x v x x u x x(3.1-6)131313121212111z z y y x x z z y y x x z z y y x x ---------= 0(3.1-7)(3.1-5),(3.1-6)和(3.1-7)统称为平面的三点式方程.特别地,若i M 是π 与三坐标轴的交点,即1M (a ,0,0),2M (0,b ,0),3M (0,0,c ),其中abc ≠0,则平面π 的方程就是caba z y a x 00---=0 (3.1-8)即1=++czb y a x (3.1-9)此方程叫平面π的截距式方程,其中a ,b ,c 称为π 在三坐标轴上的截距.2.平面的一般方程在空间任一平面都可用其上一点M 0(x 0,y 0,z 0)和两个方位向量a = {1X ,1Y ,1Z },b = {2X ,2Y ,2Z }确定,因而任一平面都可用方程将其方程(3.1-4)表示. 将(3.1-4)展开就可写成Ax +By +Cz +D = 0(3.1-10)其中A =2211Z Y Z Y ,B =2211X Z X Z ,C =2211Y X Y X由于a = {1X ,1Y ,1Z }与b = {2X ,2Y ,2Z }不共线,所以A ,B ,C 不全为零,这说明空间任一平面都可用关于a ,b ,c 的一三元一次方程来表示.反之,任给一三元一次方程(3.1-10),不妨设A ≠0,则(3.1-10)可改写成02=++⎪⎭⎫ ⎝⎛+ACz ABy A D x A即000=--+ACA B zy AD x 它显然表示由点M 0 (-D / A ,0,0)和两个不共线的向量{B ,-A ,0}和{C ,0,-A }所决定的平面. 于是有定理3.1.1 空间中任一平面的方程都可表为一个关于变数x ,y ,z 的三元一次方程;反过来,任一关于变数x ,y ,z 的三元一次方程都表示一个平面.方程(3.1-10) 称为平面π 的一般方程. 3.平面的法式方程若给定一点M 0和一个非零向量n ,则过M 0且与n 垂直的平面π也被惟一地确定. 称n 为π的法向量. 在空间坐标系{O ;i ,j ,k }下,设0r = 0OM ={x 0,y 0,z 0},n = {A ,B ,C },且平面上任一点M 的向径r =OM ={x ,y ,z },则因总有M M 0⊥n ,有n (r -r 0) = 0(3.1-11) 也就是A (x -x 0)+B (y -y 0)+C (z -z 0) = 0(3.1-12)方程(3.1-11)和(3.1-12)叫平面π 的点法式方程. (3.1-12)中的系数A ,B ,C 有简明的几何意义,它们就是平面π 的一个法向量的分量.特别地,取M 0为自O 向π 所作垂线的垂足,而n 为单位向量. 当平面不过原点时,取n 为与OP 同向的单位向量n 0,当平面过原点时取n 0的正向为垂直与平面的两个方向中的任一个.设|OP | = p ,则OP = p n 0,由点P 和n 0确定的平面的方程为 n 0(r -p n 0) = 0式中r 是平面的动向径. 由于1)(20=n ,上式可写成n 0r -p = 0(3.1-13)此方程叫平面的向量式法式方程.若设r = {x ,y ,z },n 0 = {cos α,cos β,cos γ},则由(3.1-13)得x cos α+y cos β+z cos γ-p = 0(3.1-14)此为平面的坐标法式方程,简称法式方程.平面的坐标法式方程有如下特征:1°一次项系数是单位向量的分量,其平方和等于1; 2°常数项-p ≤0(意味着p ≥ 0). 3°p 是原点到平面的距离. 4.化一般方程为法式方程在直角坐标系下,若已知π的一般方程为Ax +By +Cz +D = 0,则n = {A ,B ,C }是π的法向量,Ax +By +Cz +D = 0可写为nr +D = 0(3.1-15)与(3.1-13)比较可知,只要以2221||1CB A ++±=±=n λ 去乘(3.1-15)就可得法式方程λAx +λBy +λCz +λD = 0 (3.1-16)其中正负号的选取,当D ≠0时应使(3.1-16)的常数项为负,D =0时可任意选.以上过程称为平面方程的法式化,而将2221CB A ++±=λ叫做法化因子.§3.2 平面与点的相关位置平面与点的位置关系,有两种情形,就是点在平面上和点不在平面上. 前者的条件是点的坐标满足平面方程. 点不在平面上时,一般要求点到平面的距离,并用离差反映点在曲面的哪一侧.1.点与平面间的距离定义3.2.1 自点M 0向平面π 引垂线,垂足为Q . 向量0QM 在平面π的单位法向量n 0上的射影叫做M 0与平面π之间的离差,记作δ = 射影n 00QM(3.2-1)显然δ = 射影n 00QM = 0QM ·n 0 =∣0QM ∣cos ∠(0QM ,n 0) =±∣0QM ∣当0QM 与n 0同向时,离差δ > 0;当0QM 与n 0反向时,离差δ < 0. 当且仅当M 0在平面上时,离差δ = 0.显然,离差的绝对值|δ |就是点M 0到平面π 的距离. 定理3.2.1 点M 0与平面(3.1-13)之间的离差为δ = n 0r 0-p (3.2-2)推论1 若平面π 的法式方程为 0cos cos cos =-++p z y x γβα,则),,(0000z y x M 与π间的离差=δp z y x -++γβαcos cos cos 000(3.2-3)推论2 点),,(0000z y x M 与平面Ax +By +Cz +D = 0间的距离为()2220000,CB A DCz By Ax M d +++++=π (3.2-4)2.平面划分空间问题,三元一次不等式的几何意义 设平面π的一般方程为Ax +By +Cz +D = 0那么,空间任何一点M (x ,y ,z )与平面间的离差为=δp z y x -++γβαcos cos cos = λ (Ax +By +Cz +D )式中λ为平面π的法化因子,由此有Ax +By +Cz +D =δλ1(3.2-5)对于平面π同侧的点,δ 的符号相同;对于在平面π的异侧的点,δ 有不同的符号,而λ一经取定,符号就是固定的. 因此,平面π:Ax +By +Cz +D = 0把空间划分为两部分,对于某一部分的点M (x ,y ,z ) Ax +By +Cz +D > 0;而对于另一部分的点,则有Ax +By +Cz +D < 0,在平面π上的点有Ax +By +Cz +D = 0.§3.3 两平面的相关位置空间两平面的相关位置有3种情形,即相交、平行和重合. 设两平面π1与π2的方程分别是π1: 11110A x B y C z D +++=(1)π2: 22220A x B y C z D +++=(2)则两平面π1与π2相交、平行或是重合,就决定于由方程(1)与(2)构成的方程组是有解还是无解,或无数个解,从而我们可得下面的定理.定理3.3.1 两平面(1)与(2)相交的充要条件是111222::::A B C A B C ≠(3.3-1)平行的充要条件是11112222A B C D A B C D ==≠(3.3-2)重合的充要条件是11112222A B C D A B C D ===(3.3-3)由于两平面π1与π2的法向量分别为11112222{,,},{,,}n A B C n A B C ==,当且仅当n 1不平行于n 2时π1与π2相交,当且仅当n 1∥n 2时π1与π2平行或重合,由此我们同样能得到上面3个条件.下面定义两平面间的夹角.设两平面的法向量间的夹角为θ,称π1与π2的二面角∠(π1,π2) =θ 或π-θ为两平面间的夹角.显然有12cos (,)ππ∠=±cos θ =(3.3-4)定理3.3.2 两平面(1)与(2)垂直的充要条件是0212121=++C C B B A A(3.3-5)例 一平面过两点 1(1,1,1)M 和2(0,1,1)M -且垂直于平面x +y +z = 0,求它的方程.解 设所求平面的法向量为n = {A ,B ,C },由于12{01,11,11}{1,0,2}M M =----=--在所求平面上,有12M M n ⊥, 120M M n ⋅=,即20A C --= .又n 垂直于平面x +y +z = 0的法线向量{1,1,1},故有 A +B +C = 0 解方程组20,0,A C A B C --=⎧⎨++=⎩得2,,A CBC =-⎧⎨=⎩ 所求平面的方程为2(1)(1)(1)0C x C y C z --+-+-=,约去非零因子C 得2(1)(1)(1)0x y z --+-+-=,即2x -y -z =0§3.4 空间直线的方程1.由直线上一点与直线的方向所决定的直线方程在空间给定了一点0000(,,)M x y z 与一个非零向量v = {X ,Y ,Z },则过点M 0且平行于向量v 的直线l 就惟一地被确定. 向量v 叫直线l 的方向向量. 显然,任一与直线l 上平行的飞零向量均可作为直线l 的方向向量.下面建立直线l 的方程.如图,设M (x ,y ,z ) 是直线l 上任意一点,其对应的向径是r = { x ,y ,z },而0000(,,)M x y z 对应的向径是r 0,则因M M 0//v ,有t ∈R ,M M 0= t v . 即有r -r 0= t v所以得直线l 的点向式向量参数方程r = r 0+t v (3.4-1)以诸相关向量的分量代入上式,得⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛Z Y X t z y x z y x 000根据向量加法的性质就得直线l 的点向式坐标参数方程为⎪⎩⎪⎨⎧+=+=+=Ztz z Yt y y Xtx x 000 (3.4-2)消去参数t ,就得直线l 的点向式对称方程为Zz z Y y y X x x 000-=-=- (3.4-3)此方程也叫直线l 的标准方程.今后如无特别说明,在作业和考试时所求得的直线方程的结果都应写成对称式.例1 设直线L 通过空间两点M 1(x 1,y 1,z 1)和M 2(x 2,y 2,z 2),则取M 1为定点,21M M 为方位向量,就得到直线的两点式方程为121121121z z z z y y y y x x x x --=--=-- (3.4-4)根据前面的分析和直线的方程(3.4-1),可得到||||||||||00v M M v t =-=r r 这个式子清楚地给出了直线的参数方程(3.4-1)或(3.4-2)中参数的几何意义:参数t 的绝对值等于定点M 0到动点M 之间的距离与方向向量的模的比值,表明线段M 0M 的长度是方向向量v 的长度的 |t | 倍.特别地,若取方向向量为单位向量v 0 = {cos α,cos β,cos γ}则(3.4-1)、(3.4-2)和(3.4-3)就依次变为r = r 0+t v 0(3.4-5)⎪⎩⎪⎨⎧+=+=+=γβαcos cos cos 000t z z t y y t x x (3.4-6)和γβαcos cos cos 000z z y y x x -=-=- (3.4-7)此时因 |v | = 1,t 的绝对值恰好等于l 上两点M 0与M 之间的距离.直线l 的方向向量的方向角α,β,γ cos α,cos β,cos γ 分别叫做直线l 的方向角和方向余弦.由于任意一个与v 平行的非零向量v'都可作为直线l 的方向向量,而二者的分量是成比例的,我们一般称X :Y :Z 为直线l 的方向数,用来表示直线l 的方向.2.直线的一般方程空间直线l 可看成两平面π1和π2的交线. 事实上,若两个相交的平面π1和π2的方程分别为π1: 11110A x B y C z D +++= π2: 22220A x B y C z D +++=那么空间直线l 上的任何一点的坐标同时满足这两个平面方程,即应满足方程组111122220,0.A x B y C z D A x B y C z D +++=⎧⎨+++=⎩ (3.4-8)反过来,如果点不在直线l 上,那么它不可能同时在平面π1和π2上,所以它的坐标不满足方程组(3.4-8).因此,l 可用方程组(3.4-8)表示,方程组(3.4-8)叫做空间直线的一般方程.一般说来,过空间一直线的平面有无限多个,所以只要在无限多个平面中任选其中的两个,将它们的方程联立起来,就可得到空间直线的方程.直线的标准方程(3.4-3)是一般方程的特殊形式. 将标准方程化为一般式,得到的是直线的射影式方程.将直线的一般方程化为标准式,只需在直线上任取一点,然后取构成直线的两个平面的两个法向量的向量积为直线的方向向量即可.例1将直线的一般方程10,2340.x y z x y z +++=⎧⎨-++=⎩ 化为对称式和参数方程.解 令y = 0,得这直线上的一点(1,0,-2).两平面的法向量为a = {1,1,1},b = {2,-1,3}因a ×b = {4,-1,-3},取为直线的法向量,即得直线的对称式方程为12413x y z -+==--令t z y x =-+=-=-32141,则得所求的参数方程为 14,,23.x t y t z t =+⎧⎪=-⎨⎪=--⎩§3.5 直线与平面的相关位置直线与平面的相关位置有直线与平面相交,直线与平面平行和直线在平面上3种情形. 设直线l 与平面π 的方程分别为L :000x x y y z z X Y Z ---== (1) π :Ax +By +Cz +D = 0(2)将直线l 的方程改写为参数式⎪⎩⎪⎨⎧+=+=+=tZz z tY y y tX x x 000. (3)将(3)代入(2),整理可得(AX +BY +CZ )t = -(Ax 0+By 0+Cz 0+D )(4)当且仅当AX +BY +CZ ≠0时,(4)有惟一解CZBY AX DCz By t +++++-=000Ax这时直线l 与平面π 有惟一公共点;当且仅当AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D ≠0时,方程(4)无解,直线l 与平面π 没有公共点;当且仅当AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D = 0时,(4)有无数多解,直线l 在平面π 上. 于是有定理3.5.1 关于直线(1)与平面(2)的相互位置,有下面的充要条件: 1)相交: AX +BY +CZ ≠02)平行:AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D ≠03)直线在平面上: AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D = 0以上条件的几何解释:就是直线l 的方向向量v 与平面π 的法向量n 之间关系. 1)表示v 与n 不垂直;2)表示v 与n 垂直且直线l 上的点(x 0,y 0,z 0)不在平面π 上; 3)表示v 与n 垂直且直线l 上的点(x 0,y 0,z 0)在平面π 上. 当直线l 与平面π 相交时,可求它们的交角. 当直线不与平面垂直时,直线与平面的交角ϕ 是指直线和它在平面上的射影所构成的锐角;垂直时规定是直角.设v = {X ,Y ,Z }是直线l 的方向向量,n = {A ,B ,C }是平面π 的法向量,则令∠(l ,π ) =ϕ,∠(v ,n ) = θ ,就有ϕ=-2πθ 或 ϕ= θ-2π(θ 为锐角) 因而sin ϕ =∣cos θ∣=vn v n ⋅⋅=222222ZY X CB A CZ BY AX ++++++ (3.5-1)§3.6 空间直线与点的相关位置任给一条直线l 的方程和一点M 0,则l 和M 0的位置关系只有两种:点在直线上和点不在直线上。
有轴平面束定理的应用介绍如下:
有轴平面束定理,也叫等相位束定理,是光学中一个十分重要的定理。
它是指一束平面波通过一轴对称的系统时,该系统会将该平面波聚焦成发散角度为0度的点才能满足系统的轴对称性。
这个定理在实际应用中有着广泛的应用。
首先,有轴平面束定理对于显微镜的应用是至关重要的。
在显微镜的调焦过程中,我们需要将样品与镜头的距离调整到最合适的位置,这时候就可以利用有轴平面束定理来实现。
如果我们将一束光聚焦到物镜的焦平面上,那么在这个焦平面上就会形成一抹明亮的像。
当物镜与样品距离过远或者过近时,这个像就会显得模糊不清,此时我们就可以利用有轴平面束定理来调整距离,以使聚焦的像清晰可见。
其次,有轴平面束定理对于光刻技术的应用也是非常重要的。
在微电子制造过程中,需要通过光刻技术在硅片上制造微小的模式,这些模式需要高分辨率且精确。
而光刻技术就是通过利用有轴平面束定理来控制光线聚焦到样片表面,从而实现微观结构的制造。
此外,有轴平面束定理也可以用来研究光学系统的畸变问题。
在实际应用中,光学系统往往存在畸变,从而影响成像质量。
而利用有轴平面束定理,我们可以将畸变问题转化为聚焦问题,从而找到畸变产生的原因,并针对性地进行改进。
总之,有轴平面束定理在实际应用中有着广泛的应用。
无论是在光学、显微镜、光学成像或者微电子制造等领域中,都需要利用这个定理来实现高分辨率、精确的成像效果,从而推动现代科技的不断发展。
对称式方程的平面束方程 -回复
对称式方程是指其图像相对于某一直线、平面或点具有对称性质的方程。
在平面几何中,对称式方程的平面束方程可以表示如下:设对称中心为点P(x0, y0)(也可以是直线或平面),则平面束方程可以表示为:(x - x0)^2 + (y - y0)^2 = r^2。
其中,r表示任意实数,表示待求点的半径,表示到对称中心的距离。
方程的图像为以点P为中心的圆或球。
当对称中心为直线时,平面束方程的形式略有不同。
设直线L的方程为ax + by + c = 0,且对称中心为直线上的一点P(x0, y0)。
那么平面束方程可以表示为:a(x - x0) + b(y - y0) = 0。
此平面束方程表示的图像为直线L的所有平行线。
总而言之,对称式方程的平面束方程描述了方程图像的对称性质,并可以帮助我们更好地理解和分析几何问题。
第 1 页共 1 页。