人教版数学 有理数乘法教学设计
- 格式:doc
- 大小:24.50 KB
- 文档页数:2
2024新人教版七年级上册数学教案——《有理数的乘法》一、教学目标1.理解有理数的乘法法则,掌握有理数乘法的运算规律。
2.能够熟练运用有理数乘法法则进行计算。
3.培养学生的逻辑思维能力和解决问题的能力。
二、教学重难点1.教学重点:有理数乘法法则的理解和运用。
2.教学难点:符号法则的应用。
三、教学过程1.导入新课师:同学们,我们之前学习了有理数的加法和减法,那么大家思考一下,有理数的乘法应该怎么进行呢?生1:我觉得可以参考加法的规则,但是乘法可能会有一些不同。
生2:我觉得乘法可能和符号有关,正数乘以正数,负数乘以负数,可能会有不同的结果。
师:很好,大家提到了符号,这正是我们要学习的重点。
那么今天我们就来学习有理数的乘法。
2.学习有理数乘法法则师:我们来看一下有理数乘法的法则。
当两个有理数相乘时,它们的积的符号由这两个有理数的符号决定。
(1)正数乘以正数,积为正数。
(2)负数乘以负数,积为正数。
(3)正数乘以负数,积为负数。
(4)0乘以任何数,积为0。
师:请大家注意,这里的“符号”指的是正负号,而不是数字本身。
3.练习有理数乘法(1)3×4(2)(-2)×(-3)(3)(-5)×2(4)0×7师:大家完成后,可以相互检查一下答案。
我来选取一位同学来讲解一下自己的解题过程。
生3:我完成了题目,第一题是3×4,因为都是正数,所以积也是正数,答案是12。
师:很好,你的理解很正确。
其他同学的呢?生4:我做了第二题,(-2)×(-3)。
因为两个负数相乘,所以积是正数,答案是6。
师:很好,大家都掌握了有理数乘法的法则。
我们再来做一些更复杂的题目。
4.解决实际问题(1)小华向东走了3米,然后又向西走了4米,求小华现在离起点的距离。
(2)小王从地面开始,每上升1米,他的高度增加1米;每下降1米,他的高度减少2米。
如果小王上升了3米,然后下降了4米,求小王现在的高度。
有理数的乘法教案(精选多篇)第一篇:有理数的乘法1教案1.4.1有理数的乘法一、教学内容人教版七年级数学〔上〕第一章第四节《有理数的乘除法》,见课本p28.二、学情分析^p在此之前,本班学生已有探究有理数加法法那么的经历,多数学生能在老师指导下探究问题。
由于学生已理解利用数轴表示加法运算过程,我们仍用数轴表示乘法运算过程。
三、教学目的1、知识与技能目的掌握有理数乘法法那么,能利用乘法法那么正确进展有理数乘法运算。
2、才能与过程目的经历探究、归纳有理数乘法法那么的过程,开展学生观察、归纳、猜测、验证等才能。
3、情感与态度目的通过学生自己探究出法那么,让学生获得成功的喜悦。
四、教学重点、难点重点:运用有理数乘法法那么正确进展计算。
难点:有理数乘法法那么的探究过程,符号法那么及对法那么的理解。
五、教学手段制作幻灯片,采用多媒体的现代课堂教学手段.六、教学方法注意创设问题情景,选择“情景---探究---发现”的教学形式,通过直观教学,借助多媒体吸引学生的注意力,激发学习兴趣。
在整个学习过程中,以“自主参与,勇于探究,合作交流”的探究式学法为主,从而到达进步学习才能的目的。
七、教学过程1、创设问题情景,激发学生的求知欲望,导入新课。
前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题〔出示蜗牛爬的动画幻灯片〕老师:这涉及有理数乘法运算法那么,正是我们今天需要讨论的问题.2、学生探究、归纳法那么学生分为四个小组活动,进展乘法法那么的探究。
〔1〕老师出示蜗牛在数轴上运动的问题,让学生理解。
蜗牛如今的位置在点o,规定向右的方向为正,向左的方向为负;如今时间后为正,如今时间前为负.a.+ 2 ×〔+3〕+2看作向右运动的速度,×〔+3〕看作运动3分钟后。
结果:3分钟后的位置+2 ×〔+3〕=b. -2 ×〔+3〕-2看作向左运动的速度,×(+3)看作运动3分钟后。
有理数的乘法【第一课时】【教学目标】1.理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算2.经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力。
3.培养语言表达能力。
调动学习积极性,培养学习数学的兴趣。
【教学重点】有理数乘法【教学难点】法则推导【教学方法】引导、探究、归纳与练习相结合【教学过程】一、学前准备一只蜗牛沿直线L爬行,它现在的位置恰好在点O上。
我们规定:向左为负,向右为正,现在前为负,现在后为正看看它以相同速度沿不同方向运动后的情况吧二、探究新知1.接上问题(1)如果它以每分2cm的速度向右爬行,3分钟后它在什么位置?可以表示为(2)如果它以每分2cm的速度向左爬行,3分钟后它在什么位置?可以表示为(3)如果它以每分2cm的速度向右爬行,3分钟前它在什么位置?可以表示为(4)如果它以每分2cm 的速度向左爬行,3分钟前它在什么位置? 表示为 由上可知:(1) 2×3 = ; (2)(-2)×3 = ; (3)(+2)×(-3)= ; (4)(-2)×(-3)= ; (5)两个数相乘,一个数是0时,结果为0观察上面的式子,你有什么发现?能说出有理数乘法法则吗? 两数相乘,同号,异号,并把相乘。
任何数与0相乘,都得。
三、新知应用1.直接说出下列两数相乘所得积的符号1)5×(—3) 2)(—4)×6 3)(—7)×(—9) 4)0.9×8 2.例1 计算:(1)(-3)×(-9); (2)(-21)×31。
请同学们自己完成 3.练习 (1)计算1)6×(—9)= 2)(—4)×6=3)(—6)×(—1)= 4)(—6)×0=5)29×(-)34= 6)11()34-⨯= 7)(—1)×(—2)×3 8)(—4)×(—0.5)×(—3)= == =(2)商店降价销售某种商品,每件降5元,售出60件后,与按原价销售同样数量的商品相比,销售额有什么变化?(3)写出下列各数的倒数1,—1,1,31,3- 5,—5,23,23-有理数的乘法【第二课时】【教学目标】1.经历探索多个有理数相乘的符号确定法则。
七年级上册《有理数的乘法》优秀教案人教版七年级上册《有理数的乘法》优秀教案作为一名优秀的教育工作者,时常要开展教案准备工作,教案是教学活动的总的组织纲领和行动方案。
那要怎么写好教案呢?以下是店铺精心整理的人教版七年级上册《有理数的乘法》优秀教案,希望对大家有所帮助。
七年级上册《有理数的乘法》优秀教案篇1一、学情分析:在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。
由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。
二、课前准备把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。
三、教学目标1、知识与技能目标掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标通过学生自己探索出法则,让学生获得成功的喜悦。
四、教学重点、难点重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
五、教学过程1、创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。
每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?学生:26米。
教师:能写出算式吗?学生:……教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)七年级上册《有理数的乘法》优秀教案篇2教学目的:1、要求学生会进行有理数的加法运算;2、使学生更多经历有关知识发生、规律发现过程。
教学分析:重点:对乘法运算法则的运用,对积的确定。
难点:如何在该知识中注重知识体系的延续。
教学过程:一、知识导向:有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的`过程,多让学生经历知识、规律发现的过程。
有理数的乘法教案人教版有理数乘法运算是继加法和减法运算后的又一种运算,也是有理数除法运算和乘方运算的基础,学好有理数乘法运算是学好有理数运算的关键,接下来店铺为你整理了有理数的乘法教案人教版,一起来看看吧。
有理数的乘法教案人教版【教学目标】(一)知识技能1.使学生掌握多个有理数相乘的积的符号法则;2.掌握有理数乘法的交换律和结合律,并利用运算律简化乘法运算;(二)过程方法在师生互动、生生互动的系列活动中,学会与老师及与其他同学交流、沟通和合作,准确表达自己的思维过程。
培养学生观察、归纳、概括能力及运算能力.(三)情感态度通过例题与练习,体验“简便运算”带来的愉悦,懂得运算的每一步都必须有依据。
通过新知的导入和运用过程,感受到人们认识事物的一般规律是“实践、认识、再实践、再认识”。
培养学生的观察和分析能力,渗透转化的教学思想。
教学重点乘法的符号法则和乘法的运算律.教学难点几个有理数相乘的积的符号的确定.【复习引入】1.有理数乘法法则是什么?2.计算(五分钟训练):(1)(-2)×3; (2)(-2)×(-3); (3)4×(-1.5); (4)(-5)×(-2.4);(5)-2×3×(-4); (6) 97×0×(-6);(7)1×2×3×4×(-5); (8)1×2×3×(-4)×(-5);(9)1×2×(-3)×(-4)×(-5); (10)1×(-2)×(-3)×(-4)×(-5);(11)(-1)×(-2)×(-3)×(-4)×(-5).有理数的乘法教学过程1.几个有理数相乘的积的符号法则引导学生观察上面各题的计算结果,找一找积的符号与什么有关?(7),(9),(11)等题积为负数,负因数的个数是奇数个;(18),(20)等题积为正数,负因数个数是偶数个.是不是规律?再做几题试试:(1)3× (-5); (2)3×(-5)×(-2); (3)3×(-5)×(-2)×(-4);(4)3×(-5)×(-2)×(-4)×(-3);(5)3×(-5)×(-2)×(-4)×(-3)×(-6).同样的结论:当负因数个数是奇数时,积为负;当负因数个数是偶数时,积为正.再看两题:(1)(-2)×(-3)×0×(-4); (2)2×0×(-3)×(-4).结果都是0.引导学生由以上计算归纳出几个有理数相乘时积的符号法则:几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个有理数相乘,有一个因数为0,积就为0.说明:(1)这样以后进行有理数乘法运算时必须先根据负因数个数确定积的符号后,再把绝对值相乘,即先定符号后定值.(2)第一个因数是负数时,可省略括号.2.乘法运算律在做练习时我们看到如果像小学一样能利用乘法的交换律和结合律计算:(1)5×(-6); (2)(-6)×5;(3)[3×(-4)]×(-5); (4)3×[(-4)×(-5)];由上面计算结果,可以说明有理数乘法也同样有交换律,结合律,(1)乘法交换律文字叙述:两个数相乘,交换因数的位置,积不变.代数式表达:ab=ba.(2)乘法结合律文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.代数式表达:(ab)c=a(bc).例2,用简便方法计算:(1)(-5)×89.2×(-2)(2)(-8)×(-7.2)×(-2.5)×解:(1)原式=5×2×89.2……交换因数位置,决定积的符号=892………………按顺序依次运算(2)原式=-(8×2.5)×(7.2× )……交换因数位置,决定积的符号=-60………………按顺序依次运算有理数的乘法课堂作业1.确定积的符号:积的符号 ;积的符号 ;积的符号。
【有理数的乘法教案人教版】有理数的乘法教案优秀6篇初中数学《有理数的乘法》教学设计篇一掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性一、重点:熟练进行有理数的乘除运算二、难点:正确进行有理数的乘除运算预习导学通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律一、创设情景,谈话导入我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律二、精讲点拨质疑问难根据预习内容,同学们回答以下问题:1、有理数的乘法法则:(1)同号两数相乘___________________________________(2)异号两数相乘___________________________________(3)0与任何自然数相乘,得____2、有理数的乘法运算律:(1)乘法交换律:ab=_________(2)乘法结合律:(ab)c=_______(3)乘法分配律:(a+b)c=________3、有理数的除法法则:除以一个不等于0的数,等于乘这个数的__________比较有理数的乘法,除法法则,发现_________可能转化为__________初中数学《有理数的乘法》教学设计篇二1、知识与技能使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便。
2、过程与方法通过对问题的探索,培养观察、分析和概括的能力。
3、情感、态度与价值观能面对数学活动中的困难,有学好数学的自信心。
重点:熟练运用运算律进行计算。
难点:灵活运用运算律。
(一)创设情境,导入新课想一想上一节课大家一起学习了有理数的乘法运算法则,掌握得较好。
2024有理数的乘法教案人教版数学七年级上册教案一、教学目标1.理解有理数的乘法法则,能够正确计算两个有理数的乘积。
2.能够运用有理数乘法解决实际问题,提高数学应用能力。
3.培养学生的逻辑思维能力和推理能力。
二、教学重点与难点1.教学重点:有理数乘法法则的理解和运用。
2.教学难点:异号有理数相乘的计算。
三、教学过程1.导入新课同学们,我们之前学习了有理数的加法和减法,那么有理数的乘法又是怎样的呢?今天我们就来学习有理数的乘法。
2.知识讲解我们来看一下有理数乘法的基本法则。
当两个数同号时,它们的乘积为正;当两个数异号时,它们的乘积为负。
举个例子,2乘以3等于6,-2乘以-3也等于6,而2乘以-3则等于-6。
这个规律大家要牢记。
3.案例分析下面我们来看一些具体的例子,加深对有理数乘法的理解。
例1:计算3乘以4。
答案:3乘以4等于12。
例2:计算-5乘以-6。
答案:-5乘以-6等于30。
例3:计算-2乘以3。
答案:-2乘以3等于-6。
4.练习环节请大家拿出练习本,我们来做一些练习题,巩固一下有理数乘法的知识。
练习1:计算2乘以5。
生1回答:2乘以5等于10。
练习2:计算-4乘以-6。
生2回答:-4乘以-6等于24。
练习3:计算-3乘以4。
生3回答:-3乘以4等于-12。
5.小组讨论现在,请大家分成小组,一起讨论一下有理数乘法在实际生活中的应用。
每个小组可以举一个例子,分享一下你们的应用案例。
6.小组分享经过讨论,每个小组都分享了自己的应用案例。
比如:小组1:在购物时,如果一件商品原价是20元,打8折,我们可以用有理数乘法来计算折后价格,即20乘以0.8等于16元。
小组2:在计算家庭用电费用时,如果一度电的价格是0.5元,家庭一个月用电100度,那么用电费用就是100乘以0.5等于50元。
两个有理数相乘,同号得正,异号得负。
乘法运算中,先计算绝对值,再根据符号确定最终结果。
8.作业布置请大家完成课后作业,巩固今天学习的有理数乘法知识。
2.2.1有理数的乘法第1课时【教学目标】1.理解有理数的乘法法则.2.能利用乘法法则熟练进行有理数的乘法运算.3.理解倒数的意义,会求一个有理数的倒数.4.在经历探究有理数乘法法则的过程中,通过观察、分析、归纳、概括,得出有理数乘法的规律,建立数感和符号感;体验数形结合思想、分类讨论思想、归纳法在数学中的应用.【教学重点难点】重点:有理数的符号法则.难点:利用法则熟练进行有理数的乘法运算.【教学过程】一、创设情境前面学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题:1.2×3等于多少?表示什么?答案:2×3=6,表示3个2相加,即2×3=2+2+2.2.请将(-2)+(-2)+(-2)写成乘法算式.答案:(-2)+(-2)+(-2)=(-2)×3.我们已经熟悉正数和0的乘法运算,但是在实际问题中还会遇到超出正数范围的乘法运算,它怎么计算呢?这就是我们今天要研究的有理数的乘法.二、探究归纳探究点1:有理数的乘法运算问题1:一只蜗牛,沿一条东西方向的跑道,以每分钟3分米的速度一直向东爬行.记蜗牛原来的位置为点O,那么在3分钟后、2分钟后、1分钟后、0分钟、1分钟前、2分钟前、3分钟前,它位于这一点的哪个方向?相距多少米?分别用算式表示.填一填:(1)如果这只蜗牛向右爬行2厘米记为+2厘米,那么向左爬行2厘米应记为.(2)如果3分钟后记为+3分钟,那么3分钟前应记为.追问1:观察下面的四个乘法算式,你能发现什么规律吗?3×3=9,3×2=6,3×1=3,3×0=0.规律:随着后一乘数逐次递减1,积逐次递减3.追问2:观察下面的三个乘法算式,说明以上规律在引入负数后是否仍然成立?(结合蜗牛1分钟前、2分钟前、3分钟前的位置思考) 3×(-1)=-3;3×(-2)=-6;3×(-3)=-9.问题2:两只小虫,在同一地点O处,它们沿一条东西方向的跑道爬行.若一只分别以每分钟3米、2米、1米、0米的速度向东爬行3分钟,另一只分别以每分钟1米、2米、3米的速度向西爬行3分钟,那么它们爬行后的位置分别在这一点的哪个方向?相距多少米?追问1:观察下面的算式,你又能发现什么规律吗?3×3=9,2×3=6,1×3=3,0×3=0.师生活动:规律是随着前一乘数逐次递减1,积逐次递减3.追问2:要使这个规律在引入负数后仍成立,那么应有(-1)×3=-3;(-2)×3=-6;(-3)×3=-9.追问3:从符号和绝对值两个角度观察上述算式,你发现有什么规律?【归纳总结】①从符号角度观察,可归纳积的特点是:正数乘正数,积为正数;正数乘负数,积为负数;负数乘正数,积为负数.②从绝对值角度观察,可归纳积的特点是:积的绝对值等于各乘数绝对值的积.问题3:一只小虫,沿一条东西方向的跑道,以每分钟3米的速度一直向西爬行.记小虫原来的位置为点O,那么在3分钟后、2分钟后、1分钟后、0分钟、1分钟前、2分钟前、3分钟前,它分别位于这一点的哪个方向?相距多少米?追问1:利用上面归纳的结论计算下面的算式,你发现什么规律?(-3)×3=-9,(-3)×2=-6,(-3)×1=-3,(-3)×0=0.师生活动:规律:随着后一乘数逐次递减1,积逐次增加3.追问2:按照上述规律,下面的空格可以各填什么数,从中可以归纳出什么结论?(-3)×(-1)=;(-3)×(-2)=;(-3)×(-3)=.【归纳总结】负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积.问题4:你能从中归纳有理数乘法的法则吗?(也就是结果的符号怎么定?绝对值怎么算?)有理数乘法法则:两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.任何数与0相乘,都得0.符号表示如下:设a,b为正有理数,c为任意有理数,则(+a)×(+b)=a×b,(-a)×(-b)=a×b,(-a)×(+b)=-(a×b),(+a)×(-b)=-(a×b),c×0=0,0×c=0.显然,两个有理数相乘,积是一个有理数.问题5:讨论,进一步深化理解有理数乘法的符号法则.(1)若a<0,b>0,则ab0.(2)若a<0,b<0,则ab0.(3)若ab>0,则a,b应满足什么条件?(4)若ab<0,则a,b应满足什么条件?【典例剖析】例1:教材P39【例1】归纳:有理数乘法的求解步骤:先确定积的符号,再确定积的绝对值.【解题反思】观察T(1)8×(-1)=-8.你有什么发现?结论:一个数同-1相乘,得原数的相反数.【针对性训练】教材P40练习T1探究点2:倒数问题1:观察例1T(2),有什么特点?要点归纳:有理数中仍然有:乘积是1的两个数互为倒数.问题2:数a(a≠0)的倒数是什么?在这里为什么规定a≠0?【针对训练】教材P40练习T3.【典例剖析】例2:用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每登高1 km气温的变化量为-6 ℃,攀登3 km后,气温有什么变化?【针对性训练】教材P40练习T2【解题反思】利用有理数乘法解决实际问题,先要把实际问题转化为数学问题,建立有理数乘法算式,再根据有理数乘法的法则进行计算得出结论.三、检测反馈1.一个有理数与其相反数的积()A.符号必定为正B.符号必定为负C.一定不大于零D.一定不小于零2.下列说法错误的是()A.任何有理数都有倒数B.互为倒数的两个数的积为1C.互为倒数的两个数同号D.1和-1互为负倒数3.填空:(1)-7的倒数是,它的相反数是,它的绝对值是 .(2)-225的倒数是 ,-2.5的倒数是 . (3)倒数等于它本身的有理数是 .4.计算:(1)212×(-4).(2)(-710)×(-521). (3)(-10.8)×(-527).(4)(-312)×0. 四、交流反思1.有理数乘法法则:两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.任何数与0相乘,都得0.2.有理数乘法的求解步骤:有理数相乘,先确定积的符号,再确定积的绝对值.3.乘积是1的两个数互为倒数.五、布置作业P47T1,2,3六、板书设计七、教学反思本节课通过比较数字算式蕴含的规律性,类比发现有理数乘法法则,教学中,应该让学生推敲与比较这些算式,发现其中存在的规律,并会从符号、绝对值两个方面描述这种规律,体会有理数乘法法则的合理性.有理数乘法法则涉及运算结果的符号与绝对值两个方面,因此,学生在初期进行有理数乘法运算时,要求他们从这两个方面分层次、有步骤地思考,即先考虑两个乘数的符号,然后决定积的符号,再考虑两个乘数的绝对值,进而决定积的绝对值大小.第2课时【教学目标】1.掌握乘法的分配律,并能灵活地运用.2.掌握有理数乘法的运算律,并利用运算律简化乘法运算.3.经历探索积的符号的过程,锻炼学生观察、分析、总结的能力.【教学重点难点】重点:熟练进行多个有理数的乘法运算,探索有理数的乘法运算律并熟练运用运算律进行计算.难点:有理数的乘法运算律的正确、灵活运用.【教学过程】一、创设情境温故而知新你会计算下列各题吗?试试看!(1)5×(-6).(2)(-6)×5.(3)[3×(-4)]×(-5).(4)3×[(-4)×(-5)].师:那么多个有理数相乘应如何进行?【通过简单的旧知识复习,让学生快速进入学习情境,引出课题,激发学生的学习兴趣】二、探究归纳探究点1:乘法的运算律问题1:比较创设情境中的结果,你有什么发现?追问:请再举几个例子验证你的发现.问题2:计算过程能够使用简便方法,这样做有没有依据?小学里数的运算律在有理数中是否适用?【归纳总结】乘法交换律:两个数相乘,交换乘数的位置,积不变.ab=ba.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.(ab)c=a(bc).(推广:abc=(ab)c=a(bc)=(ac)b)师生活动:教师解释用公式表示的形式中:这里的a,b可以取任意的有理数,讲解“a×b→a•b→ab”的过程.这也是培养学生的符号意识、抽象思维的机会.问题3:计算:(1)5×[3+(-7)];(2)5×3+5×(-7).追问:你有什么发现?请再举几个例子验证你的发现.从上述的计算中,你能得出什么结论?【归纳总结】分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(b+c)=ab+ac.【典例剖析】例1:教材P41【例3】比较T(2)两种解法,它们在运算顺序上有什么区别?解法二运用了什么运算律?哪种解法运算简便?找出错误,并改正.特别提醒:1.不要漏掉符号.2.不要漏乘.注意:1.乘法的交换律、结合律只涉及一种运算,而分配律要涉及两种运算.2.分配律还可写成:a×b+a×c=a×(b+c),利用它有时也可以简化计算.3.字母a ,b ,c 可以表示正数、负数,也可以表示零,即a ,b ,c 可以表示任意有理数.【针对性训练】教材P43练习T1探究点2:多个有理数相乘问题4:改变例3(1)的乘积式子中某些乘数的符号,得到下列的一些式子.它们的积是正的还是负的?2×3×(-0.5)×(-7);2×(-3)×(-0.5)×(-7);(-2)×(-3)×(-0.5)×(-7);师:请注意观察这3个式子,积的符号与哪种因数的个数有关系?积的绝对值与各因数的绝对值的积有什么关系?要点归纳:1.几个不是0的数相乘,负的乘数的个数是偶数时,积为正数;负的乘数的个数是奇数时,积为负数.积的绝对值是各个乘数的绝对值的积.2.几个数相乘,如果其中有乘数为0,那么积等于0.【典例剖析】例2:计算:(1)(-2)×6×(-2)×(-7).(2) (-313)×(-0.12)×(-214)×3313. (3)2 0112 012×(-0.359 8)×793×(-14)×0×(-2 0137964). 【思路点拨】观察乘数中有无0→有0则积为0,无0则先确定积的符号→再计算绝对值.【自主解答】(1)(-2)×6×(-2)×(-7)=-2×6×2×7=-168.(2) (-313)×(-0.12)×(-214)×3313. =-103×325×94×1003=-30.(3)原式=0.【总结提升】多个有理数乘法的运算步骤1.观察乘数中有没有0,若有,则积等于0.2.若乘数中没有0,观察负的乘数的个数,确定积的符号.3.各乘数的绝对值的积即为积的绝对值.【针对性训练】教材P43练习T2三、检测反馈1.4个有理数相乘,积的符号是负号,则这四个有理数中,正数有( )A.1个或3个B.1个或2个C.2个或4个D.3个或4个2.若两个有理数的和与它们的积都是正数,则这两个数 ( )A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数3.计算(-2)×(3-12),用分配律计算过程正确的是 ( )A.(-2)×3+(-2)×(-12) B.(-2)×3-(-2)×(-12)C.2×3-(-2)×(-12) D.(-2)×3+2×(-12) 4.计算:(1)(-85)×(-25)×(-4).(2)(910-115)×30. (3)(-78)×15×(-117). (4)(-65)×(-23)+(-65)×(+173). 5.(1)(-100)×(310-12+15-0.1). (2)(-78)×15×(-117). (3)(910-115)×30. (4)992425×(-25). (5)(-7)×(42.07)+(-2.07)×(-7).四、本课小结项目内容 乘法的运算律 (1)乘法交换律: . (2)乘法结合律: .(3)乘法对加法的分配律: .多个有 理数 相乘几个不为0的数相乘,积的符号由 决定.当负因数有 个时,积为 .当负因数有 个时,积为 .几个数相乘,其中有一个因数为0,积就为 . 五、布置作业P48T4,5六、板书设计七、教学反思1.在使用有理数乘法的三条运算律时,与加法的运算律一样,一定要注意将有理数的符号进行整体的移动,不能将符号丢掉或弄错.两个或三个有理数相乘的运算律,可以推广到三个以上有理数相乘的情况,通过编制若干个具体的非零有理数相乘的练习题,引导学生加深对多个有理数相乘时可以使用交换律、结合律、分配律的理解.2.有理数乘法的三条运算律,通常需要综合和同时使用,还可以从正、反两个方向应用,进而可以使有理数乘法运算更快捷、更准确.特别是乘法的分配律,涉及有理数的乘法、加法两种运算.正向运用去掉了括号,逆向运用提取了公因数,因此,乘法的分配律有着广泛的应用.教材例3就是乘法分配律正向运用提高运算速度和准确率的例子.乘法分配律逆向运用可以变和为积,使得运算简便,可以应用于以后要学习的合并同类项、代数式化简等问题.因此,要通过编制一些正、反向使用的练习题,让学生体会学习乘法运算律的必要性,争取让学生能够熟练、灵活地应用乘法的运算律.。
2.2.1有理数的乘法第1课时有理数乘法法则课时目标1.经历探究有理数乘法法则的过程,认识有理数乘法法则的合理性,发展观察、归纳、猜想、验证的能力.2.掌握有理数乘法的运算法则,会求一个数的倒数.3.能利用有理数的乘法解决简单的实际问题,体会数学与现实世界的联系,增强数学的应用意识.学习重点理解有理数的乘法法则以及倒数的概念.学习难点有理数乘法法则的探究过程以及对法则的理解.课时活动设计情境引入如图,有甲、乙两座水库,甲水库的水位每天升高3cm,乙水库的水位每天下降3cm.如果用“+”号表示水位的上升,用“-”号表示水位的下降,请用算式表示,4天后甲、乙两座水库水位的总变化量分别是多少?4天后,甲水库水位的总变化量:3×4=12(cm);乙水库水位的总变化量:(-3)×4=?议一议:(-3)×4=(-3)+(-3)+(-3)+(-3)=-12.那么4×(-3)=?(-4)×(-3)=?(-4)×0=?设计意图:通过实际问题,引出本节课要解决的问题,给出有理数相乘的几种情况,为下面的学习作铺垫.探究新知探究有理数乘法法则观察下面的乘法算式,你能发现什么规律?(1)3×3=9,3×2=6,3×1=3,3×0=0;(2)3×3=9,2×3=6,1×3=3,0×3=0.学生自主探究,请两名同学代表回答.对于(1)中的算式,随着后一个乘数逐次递减1,积逐次递减3.对于(2)中的算式,随着前一乘数逐次递减1,积逐次递减3.问题1:对于(1)中算式,要使这个规律在引入负数后仍然成立,那么当后一个乘数从0减小为-1时,积应该怎样变化?填空并说一说它的变化规律: 3×(-1)=-3,3×(-2)=-6,3×(-3)=-9.问题2:对于(2)中算式,要使这个规律在引入负数后仍然成立,那么当前一个乘数从0减小为-1时,积应该怎样变化?填空并说一说它的变化规律: (-1)×3=-3,(-2)×3=-6,(-3)×3=-9.学生分小组交流讨论,从符号和绝对值两个角度分别观察上述所有等式,你能发现什么规律?师生总结:正数乘正数,积为正数;正数乘负数,积为负数;负数乘正数,积也为负数.积的绝对值等于乘数的绝对值的积.根据上面总结出的规律,计算下面的算式.(-3)×3=-9,(-3)×2=-6,(-3)×1=-3,(-3)×0=0.观察上面的算式,随着后一个乘数的变化,积是怎样变化的?解:随着后一个乘数逐次递减1,积逐次增加3.根据发现的规律计算下面算式,从积的符号和算式的符号观察,可以得到什么结论?(-3)×(-1)=3,(-3)×(-2)=6,(-3)×(-3)=9.教师引导学生归纳出如下结论:负数乘负数,积为正数,且积的绝对值等于乘数的绝对值的积.与有理数加法类似,有理数相乘,也既要确定积的符号,又要确定积的绝对值.即①先判断是同号、异号或是同0相乘;②再确定积的符号;③最后将绝对值相乘.一般地,我们有如下的有理数乘法法则:两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.任何数与0相乘,都得0.有理数乘法法则也可以表示如下:设a,b为正有理数,c为任意有理数,则(+a)×(+b)=a×b,(-a)×(-b)=+(a×b);(-a)×(+b)=-(a×b),(+a)×(-b)=-(a×b);c×0=0,0×c=0.显然,两个有理数相乘,积是一个有理数.设计意图:类比非负数的乘法法则,引导学生自己发现有理数乘法法则并总结,提高学生的思维能力和归纳总结能力.典例精讲例1计算:(1)8×(-1);(2)-(3)-解:(1)8×(-1)=-(8×1)=-8.(2)-=1.(3)-×=1021.总结:在例1(2)中,-我们说-12和-2互为倒数,一般地,在有理数中仍然有:乘积是1的两个数互为倒数.例2用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每登高1km气温的变化量为-6℃.登高3km后,气温有什么变化?解:(-6)×3=-18.答:登高3km后,气温下降18℃.设计意图:通过例题讲解,从中归纳出倒数的概念,培养学生灵活应用的能力和总结归纳的能力.通过练习获取学生掌握知识的反馈信息,对于存在的问题及时解决.巩固训练1.计算(-1)×4的结果为(A)A.-4B.4C.-3D.32.-12020的倒数是(A)A.-2020B.-12020C.2021D.120203.有理数12,0,1,-3,任取两个数相乘,所得的积中最小是-3.4.计算:(1)-5×(+3);(2)-4×(-8);(3)(-3)×56;(4)-1解:(1)-5×(+3)=-(5×3)=-15.(2)-4×(-8)=+(4×8)=32.(3)(-3)×5=-3×=-52.(4)-1×=920.学生自主完成,教师订正并给予评价.设计意图:通过设置不同层次的练习,不仅能使学生的新知得到及时巩固,也使学生的思维能力得到有效提高,能更好地将知识学以致用.最后针对练习结果进行统一订正,并对同学们的表现作出及时评价,体现课程评价在课堂中的合理应用.课堂小结1.有理数乘法法则:(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.乘积是1的两个数互为倒数.设计意图:回顾本节课内容,加深学生对本节课知识的理解,提高学生归纳总结及表达的能力.课堂8分钟.1.教材第40页练习第1,2,3题,第47页习题2.2第1,2,3题.2.七彩作业.教学反思第2课时有理数的乘法运算律课时目标1.经历有理数乘法运算律的归纳、概括的过程,能用乘法运算律进行简化运算,培养学生的抽象能力与运算能力.2.在探究和交流的过程中,发展学生观察、猜想、归纳、概括的能力.学习重点有理数的乘法运算律.学习难点熟练利用乘法运算律进行简化运算.课时活动设计回顾引入思考:(1)有理数的乘法法则是什么?(2)进行有理数乘法运算的运算步骤是什么?(3)小学学过哪些乘法的运算律?(4)小学学过的乘法运算律,在有理数范围内仍然适用吗?设计意图:通过复习乘法法则及乘法的运算步骤,为本节课的学习作铺垫;复习小学学过的运算律,并提出问题“有理数范围内是否仍然适用”,激发学生的探究欲望.探究新知探究有理数乘法运算律师生活动:小组谈论,设计研究思路.问题1:计算下列各式,并观察比较各组算式所得的积相同吗?(1)(-4)×8=-32,8×(-4)=-32.(2)(-5)×(-7)=35,(-7)×(-5)=35.换几组乘数再试一试,结果仍是这样吗?思考:你能得到什么结论?你能用语言表达这一结论吗?结论:一般地,在有理数乘法中,两个数相乘,交换乘数的位置,积不变.乘法交换律:ab=ba.问题2:计算下列各式,并观察比较各组算式所得的积相同吗?(1)[(-3)×2]×(-5)=(-6)×(-5)=30,(-3)×[2×(-5)]=(-3)×(-10)=30;(2)(-4)×-×(-6)=2×(-6)=-12,(-4)××(−6)=(-4)×3=-12.换几组乘数再试一试,结果仍是这样吗?思考:你能得到什么结论?你能用语言表达这一结论吗?结论:在有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.乘法结合律:(ab)c=a(bc).根据乘法交换律和结合律,多个有理数相乘,可以任意交换乘数的位置,也可以先把其中的几个数相乘.问题3:计算下列各式,并观察比较各组算式所得的积相同吗?+-=-1,(-6)×12+(-6)×=-1.换几组乘数再试一试,结果仍是这样吗?思考:你能得到什么结论?你能用语言表达这一结论吗?结论:一般地,在有理数中,一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.乘法对加法的分配律(简称分配律):a(b+c)=ab+ac.设计意图:类比非负数的乘法运算律和有理数加法运算律,通过举例验证,引导学生掌握有理数的乘法运算律,培养学生的抽象概括能力,发展学生的数学思维.典例精讲例(1)计算2×3×0.5×(-7);(2)14+1612.解:(1)2×3×0.5×(-7)=(2×0.5)×[3×(-7)]=1×(-21)=-21.(2)解法14+16-12312+212-612×12=-112×12=-1.解法14+1612×12=14×12+16×12-12×12=3+2-6=-1.设计意图:通过引导学生运用乘法运算律进行乘法运算,感受乘法运算律为运算带来的便捷,体会数学学习的一致性,培养学生的计算能力,发展学生的数学思维.巩固训练1.算式78×25×87=25×78×87,运用了(A)A.乘法交换律和乘法结合律B.分配律C.乘法交换律和分配律D.乘法结合律和分配律2.计算:(1)(-10)×-13118+73-0.75;(3)(+16)×(-72.8)×0×-823解:(1)原式=(-10)×13×6=-10×(-2)=20.(2)原式=(-24)×118+(-24)×73+(-24)×-34.(3)原式=0.学生自主完成,教师订正并给予评价.设计意图:通过设置不同层次的练习,不仅能使学生的新知得到及时巩固,也能使学生的思维能力得到有效提高,能更好地将知识学以致用.最后针对练习结果进行统一订正,并对同学们的表现作出及时评价,体现课程评价在课堂中的合理应用.课堂小结有理数乘法法则:1.乘法交换律:ab=ba.2.乘法结合律:(ab)c=a(bc).3.乘法对加法的分配律:a(b+c)=ab+ac.设计意图:回顾本节课内容,加深学生对本节课知识的理解,提高学生归纳总结及表达的能力.课堂8分钟.1.教材第43页练习第1题,第47页习题2.2第4题.2.七彩作业.第2课时有理数的乘法运算律有理数的乘法运算律:(1)交换律:ab=ba.(2)结合律:(ab)c=a(bc).(3)乘法对加法的分配律:a(b+c)=ab+ac.教学反思第3课时多个有理数的乘法课时目标1.掌握多个有理数乘法运算的方法.2.掌握多个有理数相乘的符号法则.学习重点熟练计算多个有理数相乘.学习难点多个有理数相乘结果的符号确定.课时活动设计复习回顾有理数乘法的运算法则和运算律有哪些?设计意图:回顾上节课的内容,为本节课的学习作铺垫.探究新知探究多个有理数的乘法计算并观察下面各式的积,它们的积是正的还是负的?(1)1×2×3×4=24;(2)(-1)×2×3×4=-24;(3)(-1)×(-2)×3×4=24;(4)(-1)×(-2)×(-3)×4=-24;(5)(-1)×(-2)×(-3)×(-4)=24.通过上面的计算,请填写下表:思考:多个不为0的有理数相乘,那么积的符号与负的乘数的个数之间有什么关系?学生先独立思考,然后小组讨论,并发表见解.结论:几个不为0的数相乘,负的乘数的个数是偶数时,积为正数;负的乘数的个数是奇数时,积为负数.如果有乘数为0,那么积有什么特点?几个数相乘,如果其中有乘数为0,那么积为0.这样,遇到多个不为0的数相乘,可以先用上面的结论确定积的符号,再把乘数的绝对值相乘作为积的绝对值.设计意图:通过类比,让学生发现、总结多个有理数相乘积的符号规律,培养学生的推理能力和运算能力.典例精讲例1不计算,说出下列各式积的符号.(1)-6×(-4)×(-9)×(-8)×(+7);(2)6×(-4)×9×(-8)×(-7);(3)-5×(-4)×(-9)×(-3)×(-7).解:(1)正.(2)负.(3)负.例2计算:(1)(-3)×56×(2)(-5)×6×5×1.解:(1)(-3)×56×-3×56×95×=-98.(2)(-5)×6××14=5×6×45×14=6.设计意图:通过例题,练习学生多个有理数的乘法运算,理解并掌握多个有理数乘法运算的方法.培养学生的计算能力,发展学生的数学思维.巩固训练计算:(1)-×87×13×-(3)(-1)×-×512×32×0×(-9).解:(1)原式=712×87×13×32=13.(2)原式=78×24-34×24=21-18=3.(3)原式=0.设计意图:通过练习,不仅能使学生的新知得到巩固,也能使学生的思维能力得到有效提高.课堂小结1.几个不为0的数相乘,负的乘数的个数是偶数时,积为正数;负的乘数的个数是奇数时,积为负数;几个数相乘,如果其中有乘数为0,那么积为0.2.遇到多个不为0的数相乘,可以先用上面的结论确定积的符号,再把乘数的绝对值相乘作为积的绝对值.设计意图:回顾本节课内容,加深学生对本节课的知识的理解,提高学生归纳总结及表达的能力.课堂8分钟.1.教材第43页练习第2题,第47页习题2.2第5题.2.七彩作业.第3课时多个有理数的乘法多个不为0的有理数相乘,积的符号与负的乘数的个数的关系:当负的乘数有奇数个时,积为负;当负的乘数有偶数个时,积为正.几个数相乘,如果其中有乘数为0,那么积为0.教学反思2.2.2有理数的除法第1课时有理数除法法则课时目标1.经历探究有理数除法法则的过程,体会归纳、类比的数学思想方法,培养学生的数学抽象能力.2.掌握有理数除法的运算法则,会进行有理数的除法运算,培养学生的运算能力.学习重点有理数的除法运算,理解除法与乘法的互逆关系.学习难点有理数除法法则的探究过程以及熟练运算.课时活动设计回顾引入1.你能叙述有理数的乘法法则吗?2.满足什么条件的两个数互为倒数?设计意图:通过回顾有理数的乘法法则和倒数,引入本节课要学习的内容,为进一步学习有理数的除法做准备.探究新知探究有理数除法法则根据除法是乘法的逆运算,完成下列计算:(1)8×9=72,72÷9=8,72×19=8.(2)2×(-3)=-6,(-6)÷2=-3,(-6)×12=-3.(3)(-4)×2=-8,(-8)÷(-4)=2,(-8)×=2.思考:(1)观察上面各组算式的计算结果以及算式的特点,你能得到什么结论?(2)请再举出具有上述特点的两组算式,并检验你的结论.学生回答问题,尝试归纳,教师适时进行点拨.师生总结有理数的除法法则:除以一个(不等于0的数),等于乘这个数的倒数.这个法则也可以表示为两个有理数相除(除数不为0),商是一个有理数.思考:(1)观察上面的式子,结合有理数乘法积的符号规律,谈一谈如何确定商的符号?(2)0除以任何一个不等于0的数,结果等于多少?结论:两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.0除以任何一个不等于0的数,都得0.设计意图:通过让学生观察、对比,让学生感受有理数的乘法与除法之间的联系,并总结除法法则,充分经历由特殊到一般这一归纳概括有理数除法法则的过程,培养学生的抽象能力,发展学生的数学核心素养.典例精讲例1计算:(1)(-36)÷9;(2)-解:(1)(-36)÷9=-(36÷9)=-4.(2)-=--=45.例2化简:(1)-23;(2)-45-12.解:(1)-23=(-2)÷3=-(2÷3)=-23.(2)-45-12=(-45)÷(-12)=45÷12=154.提示:带有分数线的数可以理解为分子除以分母.在例2中,我们得到-23=-23,这表明-23是负分数,因而是有理数;反过来看,-23=-23,又表明-23可以写成-23这样两个整数相除的形式.一般地,根据有理数的除法,形如p,q是整数,q≠0)的数都是有理数;有理数又都可以写成上述形式(整数可以看成分母为1的分数).这样,有理数就是形如(p,q 是整数,q≠0)的数.设计意图:通过例题讲解,引导学生思考有理数除法运算的计算过程,体会有理数的除法法则,明白运算的算理,培养学生的运算能力和说理能力.巩固训练1.计算:(1)-14(2)(-8.7)÷2.9.解:(1)原式=--.(2)原式=-(8.7÷2.9)=-3.2.化简:(1)-364;(2)-45-60.解:(1)原式=(-36)÷4=-(36÷4)=-9.(2)原式=(-45)÷(-60)=45÷60=4560=34.设计意图:通过设置练习,不仅能使学生的新知得到巩固,也能使学生的思维能力得到有效提高.课堂小结有理数除法法则:1.除以一个不等于0的数,等于乘这个数的倒数,也可以表示为a÷b=a·1(b≠0).2.两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.3.0除以任何一个不等于0的数,都得0.设计意图:学生通过归纳总结,可进一步加深对有理数除法法则的理解,提高学生概括总结及表达的能力.课堂8分钟.1.教材第45页练习第1,2题,第47页习题2.2第6,8题.2.七彩作业.教学反思第2课时有理数的加减乘除混合运算课时目标1.理解有理数的减法转化成加法、有理数的除法转化成乘法的意义,能熟练进行有理数的加、减、乘、除混合运算.2.经历把有理数减法转化成加法、有理数的除法转化成乘法运算的过程,体会转化的数学思想方法,培养学生的运算能力.学习重点有理数的加、减、乘、除混合运算.学习难点混合运算中的运算顺序及运用运算律进行简便运算.课时活动设计回顾引入1.请大家说一说小学学过的四则运算顺序.2.有理数的加、减、乘、除运算法则各是什么?设计意图:回顾以前学过的四则运算顺序和有理数的加、减、乘、除法则,为本节课的学习作铺垫.探究新知大家能根据小学学过的混合运算,说一说什么是有理数的混合运算吗?学生自主探讨,教师引导学生进行总结.总结:一个运算中,含有有理数的加、减、乘、除等多种运算,称为有理数的混合运算.问题:式子3+50÷2×中含有哪几种运算?根据小学学过的混合运算说一说先算什么,后算什么?教师按下图进行分析,向学生讲解.有理数的加、减、乘、除混合运算顺序与小学所学的混合运算一样,先算乘除,再算加减,同级运算从左往右依次计算.如有括号,先算括号里面的.请同学们尝试自己计算上面的算式.教师提示:可将除法转化为乘法.解:3+50÷2×--1=3+50×12×.设计意图:通过小学学过的混合运算顺序进行讲解,有利于学生理解.让学生经历探索有理数的混合运算顺序的过程,加深学生对有理数混合运算顺序的理解.典例精讲例1计算:(1)-8+4÷(-2);(2)(-7)×(-5)-90÷(-15).解:(1)-8+4÷(-2)=-8+(-2)=-10.(2)(-7)×(-5)-90÷(-15)=35-(-6)=35+6=41.例2某公司去年1月—3月平均每月亏损1.5万元,4月—6月平均每月盈利32万元,7月—10月平均每月盈利21.7万元,11月—12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?解:记盈利额为正数,亏损额为负数.由(-1.5)×3+32×3+21.7×4+(-2.3)×2=-4.5+96+86.8-4.6=173.7可知,这个公司去年全年盈利173.7万元.计算器是一种方便实用的计算工具,用计算器进行比较复杂的数的计算,比笔算要快捷得多.例如,可以用计算器计算例2中的(-1.5)×3+32×3+21.7×4+(-2.3)×2.如果计算器带符号键,只需按键①⑤③③②③②①⑦④②③②,显示结果为173.7,就可以得到答案173.7.设计意图:通过例题,让学生学会运用有理数的混合运算法则,并会用计算器计算复杂的算式.巩固训练计算:(1)-2.5÷58×4(2)-4×12÷.解:(1)原式=-52×85×.(2)原式=-4×12×(-2)×2=8.学生自主完成,教师订正并给予评价.设计意图:通过设置练习,不仅能使学生的新知得到及时巩固,也能使学生的思维能力得到有效提高,能更好地将知识学以致用.最后针对练习结果进行统一订正,并对同学们的表现作出及时评价,体现课程评价在课堂中的合理运用.课堂小结本节课我们研究了有理数的混合运算,请同学们带着以下问题进行总结:1.有理数的加、减、乘、除混合运算的运算顺序.2.运算过程中符号的确定.3.这节课还有哪些收获呢?设计意图:学生通过自主反思,可以加深对有理数加、减、乘、除混合运算的理解,及时总结反思,感悟知识的获取过程,提高学生归纳总结及表达的能力.课堂8分钟.1.教材第47页练习第1,2,3题,第47页习题2.2第9,10,11题.2.七彩作业.第2课时有理数的加减乘除混合运算有理数加减乘除混合运算顺序与小学所学混合运算一样,先算乘除,再算加减,同级运算从左往右依次计算.如有括号,先算括号里面的.教学反思。
《有理数的乘除法》教案【教学目标】1.掌握有理数的乘除法运算法则,会进行有理数的乘除运算。
2.能理解乘除法运算的算理,能解决一些实际问题。
【教学重点与难点】重点:掌握有理数的乘除法运算法则,会进行有理数的乘除运算。
难点:正确理解乘除法运算的算理,能解决一些实际问题。
【教具和多媒体资源】教具:黑板、粉笔、计算机、投影仪等。
多媒体资源:PPT课件、实物投影仪等。
【教学方法】1.通过实例引入有理数的乘除法运算法则,让学生理解其意义和作用。
2.通过讲解、演示、练习等多种方式,让学生掌握有理数的乘除运算方法。
3.通过小组合作和全班交流,让学生深入理解乘除法运算的算理,提高解题能力。
4.通过实例讲解和练习,让学生掌握用有理数的乘除法解决实际问题的思路和方法。
5.通过反馈与纠正,及时发现和纠正学生在学习过程中的错误和不足,提高学习效果。
【教学过程】1.导入新课:通过实例引入有理数的乘除法运算法则,让学生理解其意义和作用。
2.探究新知:通过讲解、演示、练习等多种方式,让学生掌握有理数的乘除运算方法。
3.巩固练习:通过小组合作和全班交流,让学生深入理解乘除法运算的算理,提高解题能力。
4.拓展延伸:通过实例讲解和练习,让学生掌握用有理数的乘除法解决实际问题的思路和方法。
5.课堂小结:通过回顾本节课所学知识,让学生总结有理数乘除法运算的要点和方法。
6.布置作业:通过布置作业,让学生进一步巩固所学知识。
【教学评价】1.对学生的参与程度进行评价。
2.对学生的学习成果进行评价。
3.对学生的学习态度和学习习惯进行评价。
有理数乘法人教版数学七年级上册教案一、教学目标1.知识与技能1.1理解有理数的乘法法则。
1.2能够熟练运用有理数乘法法则进行计算。
2.过程与方法2.1通过实例分析,探究有理数乘法的规律。
2.2通过练习,提高学生的计算能力和逻辑思维能力。
3.情感态度与价值观3.1培养学生对数学的兴趣,增强学习信心。
3.2培养学生合作学习、积极探究的精神。
二、教学重难点1.教学重点:有理数乘法法则的理解与应用。
2.教学难点:异号有理数相乘的规律。
三、教学过程1.导入新课1.1利用生活中的实例,引导学生思考:当两个数相乘时,它们的关系是什么?2.探究新知2.1分组讨论:让学生举例说明同号有理数相乘和异号有理数相乘的结果。
2.2教师引导学生观察实例,发现规律:同号得正,异号得负;并把绝对值相乘。
3.知识讲解3.1教师详细讲解有理数乘法法则,强调同号得正,异号得负,绝对值相乘。
3.2学生跟随教师一起回顾有理数加法和减法的法则,巩固已有知识。
4.练习巩固4.1学生独立完成课本P33的练习题,教师巡回指导。
4.2学生分享自己的解题过程,教师点评并给出正确答案。
5.拓展延伸5.1教师出示一些综合性的题目,让学生尝试运用有理数乘法法则解决问题。
5.2学生分组讨论,共同完成题目,教师给予指导和鼓励。
6.2教师强调有理数乘法法则的重要性,并提醒学生在日常学习中注意运用。
四、作业布置1.完成课本P33的课后习题。
2.选取一些有理数乘法的题目进行练习,巩固所学知识。
五、课后反思六、教学评价1.课堂表现:观察学生在课堂上的参与程度、发言积极性以及合作学习情况。
2.作业完成情况:检查学生作业的正确率和解题过程,了解学生对有理数乘法法则的掌握程度。
七、教学拓展1.通过课后阅读,让学生了解更多有理数乘法的应用。
2.组织一些有趣的数学活动,让学生在实际操作中感受有理数乘法的魅力。
本节课通过实例分析和知识讲解,让学生掌握了有理数乘法法则,能够熟练运用法则进行计算。
《有理数的乘法》教案一、教学目标1.掌握有理数的乘法法则,会进行有理数的乘法运算。
2.理解乘法运算的交换律、结合律和分配律,会应用这些定律进行一些简便运算。
3.初步培养有理数运算的能力,发展思维能力和推理能力。
4.体会数学知识之间的相互联系,培养初步的数学建模思想。
二、重点难点重点:掌握有理数的乘法法则,会进行有理数的乘法运算。
难点:理解乘法运算的交换律、结合律和分配律,会应用这些定律进行一些简便运算。
三、教学方法本节课采用直观操作和互动式教学方法,通过实际操作和探究活动,帮助学生理解和掌握有理数的乘法法则。
同时,通过小组合作、讨论和交流,引导学生积极参与教学过程,提高学习效果。
四、教学过程1.导入新课:通过复习旧知识,引出新知识。
复习整数乘法的意义和法则,以及有理数的加法法则。
引导学生思考有理数的乘法法则与整数乘法法则的异同点,激发学生的学习热情。
2.探究新知:通过实际操作和探究活动,帮助学生理解和掌握有理数的乘法法则。
首先,让学生通过小组合作的方式,探究不同数相乘的规律,并尝试用自己的语言描述有理数的乘法法则。
然后,通过实例的讲解和练习,让学生深入理解有理数的乘法法则,并掌握如何进行有理数的乘法运算。
3.巩固练习:通过多个实例的练习和讲解,让学生进一步熟悉有理数的乘法法则,并能够运用该法则进行一些简单的计算。
同时,通过小组合作学习和讨论,让学生更好地理解和掌握乘法运算的交换律、结合律和分配律,并能够应用这些定律进行一些简便运算。
4.课堂小结:通过回顾本节课所学内容,让学生再次明确有理数的乘法法则及其应用,并强调乘法运算的交换律、结合律和分配律在计算中的重要性。
同时,让学生思考数学知识之间的相互联系,培养初步的数学建模思想。
5.布置作业:根据学生的学习情况和兴趣爱好,布置不同难度的习题和思考题,让学生进一步巩固所学知识,并培养其独立思考和解决问题的能力。
同时提醒学生注意解题格式规范和计算准确性。
人教版数学有理数乘法教学设计
设计理念1、注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。
教学中要注重让学生通过自己的活动来获取、理解和掌握这些知识。
2、本课注意降低了对运算的要求,尤其是删去了繁难的运算。
注重使学生理解运算的意义,掌握必要的基本的运算技能。
3、数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。
教学目标1、知识与技能:使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性。
2、过程与方法:培养学生观察、归纳、概括及运算能力。
3、情感态度与价值观:让学生感知数学来源于生活,培养学生学习数学的兴趣。
重点有理数乘法的运算。
难点有理数乘法中的符号法则。
方法合作交流课型
教学过程
教学环节教学内容
一、复习引入1.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)
2.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)
3.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?
(负数问题,符号的确定)。