开关电源电压型与电流型控制方式解析
- 格式:doc
- 大小:71.50 KB
- 文档页数:3
开关电源工作原理超详细解析开关电源(Switching Power Supply)是一种先将输入交流电转换为直流电,再通过变换器和开关元件进行调制和控制,最终输出所需电压和电流的电源装置。
它可以高效地进行能量转换,减少功耗,适用于各种电子设备。
下面将详细解析开关电源的工作原理。
1.开关电源的基本组成开关电源由输入滤波器、整流器、脉宽调制器、变压器、输出滤波器和反馈电路组成。
-输入滤波器:用于滤除输入电源中的干扰信号,并平滑输送到整流器。
-整流器:将交流电转换为直流电,常用的整流方式有全波整流和半波整流。
-脉宽调制器:根据反馈信号调整开关管的导通时间,控制开关元件的开关频率和占空比。
-变压器:将输入电压转换为所需的输出电压,并通过与脉宽调制器协调工作来控制输出电压的稳定性。
-输出滤波器:用于平滑输出电压,减少纹波幅度,并滤波输出电流。
-反馈电路:通过采样输出电压并与目标电压进行比较,产生反馈信号控制脉宽调制器的输出。
2.工作原理-输入滤波:交流电经过输入滤波器后,去除干扰信号,并保持电压稳定。
输入滤波器通常由电容和电感组成,它们通过电压和电流的交替变化,将输入电源趋于稳定。
-变压:通过变压器将输入电压进行转换,以获得需要的输出电压。
变压器一般由磁性材料、绕线、磁心等组成,通过众多的绕线匝数比实现输入电压于输出电压的变化。
-输出滤波:经过变压器的输出信号包含较多的纹波幅度,通过输出滤波器将纹波幅度减小到可以忽略不计的程度。
输出滤波器通常包括电感和电容,通过滤除高频杂波和平滑输出电流。
3.脉宽调制脉宽调制器是开关电源中至关重要的一个部件,负责控制开关元件(如晶体管或MOSFET)的开关频率和占空比,以调节输出电压的稳定性。
- 控制开关频率:脉宽调制器根据输出电压的需求,采用不同的控制方式,例如固定频率PWM(Pulse-Width Modulation)、可变频率PWM和电流模式控制。
通过调整开关频率,可以实现对输出电压的精确控制。
开关电源控制模式分析摘要:开关电源高频化、模块化、数字化的实现,标志着开关电源控制技术的成熟,本文分析了开关电源控制模式,在总结了开关电源发展历程的基础上分析了数字化控制及电流型控制模式的优点。
关键词:开关电源控制模式数字化控制模块化开关电源作为一种能够稳定持续输出电压的电源,其主要是由控制开关晶体管控制开通和关断时间的,因此,在开关电源中最重要、最核心的部分就是控制电路,本文进行了开关电源控制模式分析。
1 开关电源概述开关电源是伴随着电力电子技术的进步而发展起来的,由于具有高效节能、轻巧便捷等特点,开关电源得到了越来越广泛的应用。
开关电源的效率可达到85%以上,与普通的线性电源相比其效率提高了近一倍,且其可靠性也较高,采用了体积较小的散热器和滤波元件,具有良好的发展前途。
可将开关电源分为AC/AC和DC/DC电源等类型,其中DC/DC电源变换器已实现了模块化的设计和发展,得到了广大用户的普遍认可。
2 开关电源发展历程开关电源的发展已经经历了40多年,早期开发的开关频率非常低,且价格较高,只能应用于卫星等少数要求电源质量较高的领域。
但自20世纪60年代晶闸管相位控制模式出现后开关电源经历了较快的发展,70年代时制约开关电源发展的瓶颈主要是效率问题,同时由于调试工作困难而难以大规模的推广应用。
70年代后期,随着大规模集成电路技术的出现,各种专用的开关电源芯片进入市场,将控制电路、驱动电路、保护电路和检测电路封装在一起的模式非常有利于开关电源的发展,由于焊点减小提高了开关电源的可靠性,同时也由于集成化的发展是开关电源的体积减小,为应用带来了极大的便利。
如今,集成化的电源已被广泛应用于计算机、航天、彩色电视等各个领域,且随着微电子技术、半导体技术的进一步发展,功能更强大,集成度更高的超大规模集成电路的出现,电子设备的体积和重量仍在不断减小,但与之相匹配的电源体积却大的多,在现代化的电子产品中,电源的体积要比微处理器大10倍以上,因此,如何缩小电源的体积就是一项非常具有意义的研究课题。
电流控制模式原理
电流控制模式(CurrentModeControl)又称电流型控制,是一种常用的电源开关控制方式,主要用于开关电源中的稳压控制和输出电流限制。
与传统的电压控制模式( Voltage Mode Control )不同,电流控制模式的控制对象是电感或电容的电流,而不是输出电压。
其原理是通过对电感或电容的电流进行快速反馈调整,从而控制开关管的导通和断开,实现对输出电流的精准控制。
电流控制模式有多种实现方式,其中比较常见的是平均电流控制( Average Current Control )和峰值电流控制( Peak Current Control )。
平均电流控制是通过对电感或电容的平均电流进行反馈控制,实现对输出电流的控制;峰值电流控制则是通过对电感或电容的峰值电流进行反馈控制,实现对输出电流的控制。
两种方式各有优缺点,需要根据具体情况进行选择。
电流控制模式的优点是响应速度快,稳定性好,输出电流波形平稳,对于负载变化响应迅速,可以有效提高系统的动态响应能力。
同时,电流控制模式能够实现电感或电容的电流保护,避免输出电流过载或瞬间过大对系统带来的损害。
因此,在高精度稳压和大功率开关电源中,电流控制模式被广泛应用。
总之,电流控制模式是一种高效、稳定、可靠的开关电源控制方式,具有广泛的应用前景。
- 1 -。
开关电源原理及各功能电路详解一、 开关电源的电路组成[/b]::开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM 控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、 输入电路的原理及常见电路[/b]::1、AC输入整流滤波电路原理:① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。
② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③ 整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、 DC 输入滤波电路原理:① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4为安规电容,L2、L3为差模电感。
② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
关于电力操作电源两种控制方式的比较doc-关于电力操作电引言开关电源是一个闭环的自动操纵系统,开关电源的操纵环节的设计是其设计的重要组成部分。
其常用的设计步骤是对主电路建立小信号模型,作出开环波特图,然后按照性能指标要求,运用经典自动操纵理论,设计校正系统,使系统具有良好的稳态和暂态性能。
专门多研究者对开关电源的操纵系统进行了分析[1][4]。
应用在电力领域的开关电源一样要求能工作在恒压和恒流两种模式,在操纵上有两种常用的实现方式:一种是采纳并联式双环操纵,在系统中建立两个独立的电压环和电流环。
这种操纵方式简单稳固,容易设计,稳固时只工作在某个单环操纵下,两个操纵环可不能互相干扰,能够保证专门好的恒压和恒流精度。
另一种是采纳串级式双环操纵,当系统工作在恒压模式下时是用双环操纵,工作在恒流模式下是用单环操纵。
电力操作电源一样为并联工作的模块式电源,在这种并联运行的电源中限流特性十分重要,否则当一台模块退出工作时,其它模块会因不能及时限流而引起连锁反应,相继爱护退出工作。
另外,从操纵的角度来讲,减小运行参数对操纵系统稳固性的阻碍,增强系统的鲁棒性是专门重要的。
本文通过对两种操纵方式进行建模分析,对两种操纵方式的限流速度和操纵稳固性进行了比较,并通过实验得到了验证。
2两种操纵方式分析21并联式双环操纵方式这种操纵方式电路原理图如图1所示,使用两个并联的单环分不实现电路的恒压和恒流功能,电压环PI调剂器输出和电流环PI调剂器输出均通过一个二极管接到三角波比较器的正输入端,电路工作时,若电压环PI调剂器输出UV1小于电流环PI调剂器输出UC1,则DV1导通,电路工作在电压环操纵模式;反之DC1导通,电路工作在电流环操纵模式。
这种操纵方式下,在稳固工作时,电压环和电流环只有一个环在工作,可不能互相干扰。
而且单环操纵的设计和分析都相图1并联式双环操纵方式的电路原理图图2电压环单环操纵模式下的电路方框图图3电流环单环操纵模式下的电路方框图图4电压环单环开环波特图图5电流环单环开环波特图对简单。
【很完整】⽜⼈教你开关电源各功能部分原理分析、计算与选型1 开关电源介绍此⽂档是作为张占松⾼级开关电源设计之后的强化培训,基于计划安排,由申⼯讲解了变压器设计之后,在此⽂章中简单带过变压器设计原理,重点讲解电路⼯作原理和设计过程中关键器件计算与选型。
开关电源的⼯作过程相当容易理解,其拥有三个明显特征:开关:电⼒电⼦器件⼯作在开关状态⽽不是线性状态⾼频:电⼒电⼦器件⼯作在⾼频⽽不是接近⼯频的低频直流:开关电源输出的是直流⽽不是交流也可以输出⾼频交流如电⼦变压器1.1 开关电源基本组成部分1.2 开关电源分类:开关电源按照拓扑分很多类型:buck boost 正激反激半桥全桥 LLC 等等,但是从本质上区分,开关电源只有两种⼯作⽅式:正激:是开关管开通时传输能量,反激:开关管关断时传输能量。
下⾯将以反激电源为例进⾏讲解。
1.3 反激开关电源简介反激⼜被称为隔离buck-boost 电路。
基本⼯作原理:开关管打开时变压器存储能量,开关管关断时释放存储的能量反激开关电源根据开关管数⽬可分为双端和单端反激。
根据反激变压器⼯作模式可分为CCM 和DCM 模式反激电源。
根据控制⽅式可分为PFM 和PWM 型反激电源。
根据驱动占空⽐的产⽣⽅式可分为电压型和电流型反激开关电源。
我们所要讲的反激电源精确定义为:电流型PWM 单端反激电源。
1.4 电流型PWM 单端反激电源此类反激电源优点:结构简单价格便宜,适⽤⼩功率电源。
此类反激电源缺点:功率较⼩,⼀般在150w 以下,纹波较⼤,电压负载调整率低,⼀般⼤于5%。
此类反激电源设计难点主要是变压器的设计,特别是宽输⼊电压,多路输出的变压器。
2 举例讲解设计过程为了更清楚了解设计中详细计算过程,我们将以220VAC-380VAC 输⼊,+5V±3%(5A),±15±5%(0.5A)三路共地输出反激电源为例讲解设计过程。
提出上⾯要求,选择思路如下:提出上⾯要求,选择思路如下:电源总输出功率P=5*5W+15*0.5*2=40W 功率较⼩,可以选择反激开关电源。
开关电源中的电流型控制模式摘要:讨论了开关电源中电流反馈控制模式的工作原理、优缺点,以及与之有关的斜波补偿技术。
关键词:开关电源;电流型控制;斜波补偿1引言PWM型开关稳压电源是一个闭环控制系统,其基本工作原理就是在输入电压、内部元器件参数、外接负载等因素发生变化时,通过检测被控制信号与基准信号的差值,利用差值调节主电路功率开关器件的导通脉冲宽度,从而改变输出电压的平均值,使得开关电源的输出电压保持稳定。
以开关电源中的降压型变换为例(其它类型如正激型、推挽型等,均可由降压型派生得到),图1表示了该变换器的主电路的基本拓扑结构。
图1降压型开关电源根据选用不同的PWM控制模式,图1电路中的输入电压Uin、输出电压Uo、开关功率器件电流(可从A点采样)、输出电感电流(可从B或C点采样)均可作为控制信号,用于完成稳压调节过程。
目前在开关电源中广泛使用的控制方式是通过对输出电压或电流(功率开关器件或输出电感上流过的电流)进行采样,即形成2类控制方式:电压控制模式与电流控制模式。
2电流控制模式的工作原理图2为检测输出电感电流的电流型控制的基本原理框图。
它的主要特点是:将采样得到的电感电流直接反馈去控制功率开关的占空比,使功率开关的峰值电流直接跟随电压反馈电路中误差放大器输出的信号。
从图2中可以看出,与单一闭环的电压控制模式相比,电流模式控制是双闭环控制系统,外环由输出电压反馈电路形成,内环由互感器采样输出电感电流形成。
在该双环控制中,由电压外环控制电流内环,即内环电流在每一开关周期内上升,直至达到电压外环设定的误差电压阈值。
电流内环是瞬时快速进行逐个脉冲比较工作的,并且监测输出电感电流的动态变化,电压外环只负责控制输出电压。
因此电流型控制模式具有比起电压型控制模式大得多的带宽。
图2检测输出电感电流的电流型控制原理框图实际电路以单端正激型电源为例,如图3所示。
误差电压信号Ue送至PWM比较器后,并不是像电压模式那样与振荡电路产生的固定三角波状电压斜波比较调宽,而是与一个变化的、峰值代表功率开关上的电流信号(由Rs上采样得到)的三角状波形信号(电感电流不连续)或矩形波上端叠加三角波合成波形信号(电感电流连续)比较,然后得到PWM脉冲关断时刻。
uc3842电流型开关电源中电压反馈电路的设计在传统的电压型控制中,只有一个环路,动态性能差。
当输入电压有扰动时,通过电压环反馈引起占空比的改变速度比较慢。
因此,在要求输出电压的瞬态误差较小的场合,电压型控制模式是不理想的。
为了解决这个问题,可以采用电流型控制模式。
电流型控制既保留了电压型控制的输出电压反馈,又增加了电感电流反馈,而且这个电流反馈就作为PWM控制变换器的斜坡函数,从而不再需要锯齿波发生器,使系统的性能具有明显的优越性。
电流型控制方法的特点如下:1、系统具有快速的输入、输出动态响应和高度的稳定性;2、很高的输出电压精度;3、具有内在对功率开关电流的控制能力;4、良好的并联运行能力。
di直接跟随输入电压和输出电压的变化而变化。
电压反由于反馈电感电流的变化率dt馈回路中,误差放大器的输出作为电流给定信号,与反馈的电感电流比较,直接控制功率开关通断的占空比,所以电压反馈是电流型电源设计中很重要的问题。
本文介绍使用电流型控制芯片uc3842时,电压反馈电路的设计。
一、uc3842简介图1为UC3842PWM控制器的内部结构框图。
其内部基准电路产生+5V基准电压作为UC3842内部电源,经衰减得2.5V电压作为误差放大器基准,并可作为电路输出5V/50mA的电源。
振荡器产生方波振荡,振荡频率取决于外接定时元件,接在4脚与8脚之间的电阻R 与接在4脚与地之间的电容C共同决定了振荡器的振荡频率,f=1.8/RC。
反馈电压由2脚接误差放大器反相端。
1脚外接RC网络以改变误差放大器的闭环增益和频率特性,6脚输出驱动开关管的方波为图腾柱输出。
3脚为电流检测端,用于检测开关管的电流,当3脚电压≥1V 时,UC3842就关闭输出脉冲,保护开关管不至于过流损坏。
UC3842PWM控制器设有欠压锁定电路,其开启阈值为16V,关闭阈值为10V。
正因如此,可有效地防止电路在阈值电压附近工作时的振荡。
图1UC3842的内部结构框图如下:UC3842具有以下特点:1、管脚数量少,外围电路简单,价格低廉;2、电压调整率很好;3、负载调整率明显改善;4、频响特性好,稳定幅度大;5、具有过流限制、过压保护和欠压锁定功能。
开关电源电压型与电流型控制方式比较
河北科技大学电气工程学院 张刚
开关电源主要有两部分组成:控制器和功率级。
功率级采用各种电力电子器件、电阻、电感、电容和变压器等实现期望电压输出。
控制器实现期望输入电压的控制,是电源系统精度和稳定性的核心。
其实质是控制PWM 的占空比实现期望输出,由于具体实现占空比调节的时反馈信号的取样方式不同,PWM 控制有电压型控制方式和电流型控制方式。
网上总有网友对开关电源电压型控制与电流型控制的提问,回答的方式也各式各样,本人发表一下对该概念的理解,希望对同行有所裨益。
一、电压型控制方式
电压型控制方式出现较早, 该控制方式以电源的输出电压为反馈信号,该反馈信号与给
定值的偏差经比较器放大后与锯齿波比较产生控制脉冲。
电压型控制方式的原理图如图1所示:
V V r
图1 电压型PWM 控制原理图
电压型控制将输出电压与V R 参考电压V ref 的偏差信号e 经PI 型误差放大器与振荡器产生
的锯齿波进行比较,产生PWM 控制脉冲,其控制系统框图如图2所示:
图2 电压型PWM 控制系统框图
PWM 的输出占空比正比于控制电压,也就决定了输出电压其输出波形如图3所示。
V V
Q
图3 电压型PWM 控制输出PWM 波形
电压型控制方式的优点是:
1)单闭环控制简化了系统的分析与设计; 2)高增益斜坡输入提高了系统的噪声抑制; 3)低阻抗输出提高了系统的互联能力; 电压型控制的缺点:
1)负载输出电压变化后才进行调节,滞后性较大; 2)输出加入滤波器,增加了系统的复杂性。
二、电流型控制方式
电流型控制方式提出于80年代早期,在电压型控制的基础上,对电感电流增加一个内环,形成电压反馈信号组成外环,电压外环的输出偏差作为电流内环的给定,与电流反馈信号比较产生控制脉冲,控制系统结构框图如图4所示:
图4 电流型PWM 控制系统框图
电流型控制方式的实现原理图如图5所示:
V V r 图5 电流型PWM 控制原理图
电流型控制有两个闭环通道,电压与V R参考电压V ref的偏差信号e经PI型误差放大器得以电压V e,该电压与开关管漏极输出电流进行比较,产生PWM控制脉冲,其输出波形如图6所示。
CLO CK
V e
V s
Q
图6 电流型PWM控制输出PWM波形
电流型控制的优点:
1)电流型控制提高了系统的响应速度;
2)电流型控制减小了电压的波动;
3)电流型控制具有更高的增益带宽;
4)电流型控制实现的逐脉冲限制。
电流型控制的缺点:
1)双环系统结构分析复杂;
2)占空比超过50%时容易不稳定。
三、控制方式的选择
1、电压输入范围宽,负载波动大时选电压型控制;
2、轻载、噪声严重时选电压型控制;
3、大电流、高电压时选电流型控制;
4、动态响应要求快时选电流型控制。
电压型控制的典型芯片如:TL494,TOP系统;
电流型控制的典型芯片如:UC3842。