fe(x), x0,1,2,,M1 he(x), x0,1,2,,M1 其中M , AB1
5.2 图像退化模型 2. 离散退化模型
也即
f (x) 0 x A1
fe(x) 0
A x M 1
h(x) 0 x B 1 he(x) 0 B x M 1
fe(x)、 he(x)均是长度为M的周期性离散函数,其卷积为
因此呵斥图像模糊。 通常把成象系统思索成为 线性位移不变系统,即
g ( x ,y ) f(,) h ( x ,y ) d d f( x ,y ) * h ( x ,y )
(3)退化的另一种景象,噪声污染,假定噪声是加性的, 那么退化模型为
g (x ,y ) f(,)h (x ,y )d d n (x ,y )
a. 运用先验知识: ★ 大气湍流、 ★ 光学系统散焦 、 ★ 照相机与景物相对运动。
根据导致模糊的物理过程〔先验知识〕来确定h(x,y)或H(u,v)。
a).长时间曝光下大气湍流呵斥的转移函数
H (u ,v ) e x cu 2 p v 2[ 5 /6 ]
c是与湍流性质有关的常数。
H ( u ,v ) e x c u 2 p v 2 [ 5 /6 ]
图像退化缘由:
① 摄影胶片冲洗过程,引起非线性退化。摄影胶片的光敏 特性是根据胶片上留下的银密度为曝光量的对数函数来 表示的,光敏特性除中段根本线性外,两端都是曲线。
② 模糊呵斥退化。对许多适用的光学成像系统来说,由于 孔径衍射产生的退化可用这种模型表示。
③ 目的运动呵斥的模糊退化。 ④ 随机噪声的迭加,可看作是一种具有随机性的退化。
5.3 图像复原的频率域方法
逆滤波恢复法
对于线性移不变系统而言