第五章稳恒磁场
- 格式:ppt
- 大小:322.50 KB
- 文档页数:38
第五章 稳恒磁场设0x <的半空间充满磁导率为μ的均匀介质,0x >的半空间为真空,今有线电流沿z 轴方向流动,求磁感应强度和磁化电流分布。
解:如图所示令 110A I H e r = 220A IH e r= 由稳恒磁场的边界条件知,12t t H H = 12n n B B = 又 B μ= 且 n H H =所以 1122H H μμ= (1) 再根据安培环路定律H dl I ⋅=⎰得 12IH H rπ+= (2) 联立(1),(2)两式便解得,21120I I H r rμμμμπμμπ=⋅=⋅++012120I I H r rμμμμπμμπ=⋅=⋅++ 故, 01110IB H e r θμμμμμπ==⋅+ 02220IB H e rθμμμμμπ==⋅+ 212()M a n M M n M =⨯-=⨯ 220()B n H μ=⨯-00()0In e rθμμμμπ-=⋅⋅⨯=+ 222()M M M J M H H χχ=∇⨯=∇⨯=∇⨯0000(0,0,)zJ Ie z μμμμδμμμμ--=⋅=⋅++ 半径为a 的无限长圆柱导体上有恒定电流J 均匀分布于截面上,试解矢势A 的微分方程,设导体的磁导率为0μ,导体外的磁导率为μ。
?解: 由电流分布的对称性可知,导体内矢势1A 和导体外矢势2A 均只有z e 分量,而与φ,z 无关。
由2A ∇的柱坐标系中的表达式可知,只有一个分量,即 210A J μ∇=- 220A ∇= 此即101()A r J r r r μ∂∂=-∂∂21()0A r r r r∂∂=∂∂ 通解为 21121ln 4A Jr b r b μ=-++212ln A c r c =+ 当0r =时,1A 有限,有10b =由于无限长圆柱导体上有恒定电流J 均匀分布于截面上,设r a =时, 120A A ==,得202121ln 04Ja b c a c μ-+=+=)又r a =时,12011e A e A ρρμμ⨯∇⨯=⨯∇⨯,得 112c Ja a μ-=所以 2221220111,,224c Ja c Ja b Ja μμμ=-=-=所以, 22101()4A J r a μ=--221ln 2a A Ja rμ=写成矢量形式为 22101()4A J r a μ=--221ln 2a A Ja rμ=设无限长圆柱体内电流分布,0()z J a rJ r a =-≤求矢量磁位A 和磁感应B 。
第五章稳恒磁场第一节磁场运动电荷的磁场1. 磁场磁现象的发现要比电现象早得多,公元前300 多年我国就发现了磁石吸铁现象,东汉时期就有了“司南”。
从1820 年开始,科学家逐步发现了磁和电的紧密关系:①磁铁有磁性,即有吸引铁、钻、镍等磁性物质的性质;②磁铁有磁极(磁性最强处),且恒有N 极和S极,磁极间有相互作用力,同性相斥,异性相吸;③运动电荷和电流对磁针有作用;④磁铁对运动电荷和电流也有作用;⑤运动电荷和电流与运动电荷和电流之间都有相互作用等。
由此而得,磁铁周围有磁场,运动电荷和电流周围也有磁场,它们之间的相互作用是通过磁场进行的,而非超距作用,安培磁性起源假设表明:一切磁现象的根源都是运动电荷(电流).2. 磁感应强度为了表征磁场的强弱及分布,引入物理量磁感应强度,用 B 表示,单位是特斯拉(T) , 1T= 1N-A-1•m-1。
关于B的定义有各种不同的方法,有的用电流在磁场中受的力来定义,有的用通电线圈在磁场中受的力矩来定义,为了更好地反映磁场的本质,且与电场强度E的定义相对应,我们定义:磁感应强度B为单位运动正电荷qv 在磁场中受到的最大力 F ,即F=q(v x B)实验证明磁场像电场一样,也满足叠加原理B 二刀B 或B = /dB第二节 电流的磁场 毕-萨定律1.电流的磁场电流周围有磁场,稳恒电流的磁场是稳恒磁场。
由于稳恒电 流总是闭合的,且形状各异,所以要想求得总磁场分布,必须先 研究一小段电流的磁场。
沿电流方向取一小段电流 I dl,称作电流元。
得出电流元产生磁场的规律:2d B =卩 o ldl x r/4 n r称作毕奥-萨伐尔定律,它表明一小段电流元产生的磁感应强度 dB 的大小,与电流元I dl 成正比,与电流元到场点距离r 的平方 成反比,且与I dl 和r 夹角的正弦成正比,其方向由右手螺旋法 则确定。
毕-萨定律可以从运动电荷的磁场公式中推得,而它也是一 个实验定律,虽然电流元不可能单独存在,但大量间接的实验都 证明了它的正确性。
07《大学物理学》第五六章恒定磁场自学练习题(共11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第五章 恒定磁场部分 自学练习题要掌握的典型习题: 1.载流直导线的磁场:已知:真空中I 、1α、2α、x建立坐标系Oxy ,任取电流元I dl ,这里,dl dy =P 点磁感应强度大小:02sin 4Idy dB r μαπ=;方向:垂直纸面向里⊗。
统一积分变量:cot()cot y x x παα=-=-;有:2csc dy x d αα=;sin()r x πα=-。
则: 2022sin sin 4sin x d B I x μαααπα=⎰210sin 4I d x ααμααπ=⎰012(cos cos )4I xμααπ-=。
①无限长载流直导线:παα==210,,02IB xμπ=;(也可用安培环路定理直接求出)②半无限长载流直导线:παπα==212,,04IB xμπ=。
2.圆型电流轴线上的磁场:已知:R 、I ,求轴线上P 点的磁感应强度。
建立坐标系Oxy :任取电流元Idl ,P 204rIdldB πμ=;方向如图。
分析对称性、写出分量式:0B dB ⊥⊥==⎰;⎰⎰==20sin 4r Idl dB B x x απμ。
统一积分变量:r R =αsin∴⎰⎰==20sin 4r Idl dB B x x απμ⎰=dl r IR 304πμR r IR ππμ2430⋅=232220)(2x R IR +=μ。
结论:大小为2022322032()24I R rIR B R x μμππ⋅⋅==+;方向满足右手螺旋法则。
①当x R >>时,220033224IRI R B x xμμππ==⋅⋅; ②当0x =时,(即电流环环心处的磁感应强度):00224IIB RRμμππ==⋅; B⊗RI dlIdlr αOB d RrB③对于载流圆弧,若圆心角为θ,则圆弧圆心处的磁感应强度为:04IRB μθπ=。