脉冲宽度调制电路
- 格式:pptx
- 大小:216.35 KB
- 文档页数:9
什么是脉冲宽度调制及其在电路中的应用脉冲宽度调制(Pulse Width Modulation,简称PWM)是一种调制方式,通过控制脉冲信号的宽度来实现信号的调制。
在电路中,PWM 广泛应用于调光、电机速度控制、音频放大等领域。
本文将详细介绍PWM的原理及其在电路中的应用。
一、PWM原理脉冲宽度调制的原理是利用周期为固定值的脉冲信号来表示模拟信号的幅度大小。
它的关键在于调制器,通过控制调制器输出脉冲的宽度,从而实现对模拟信号的调制。
在PWM信号中,脉冲的宽度代表了信号的幅度,宽度越大表示幅度越高,宽度越小表示幅度越低。
通常,PWM信号的周期是固定的,脉冲的宽度则根据输入模拟信号进行动态调整。
二、PWM在电路中的应用1. 调光控制PWM在LED调光控制中得到了广泛的应用。
通过控制PWM信号的频率和占空比(脉冲高电平与周期之比),可以实现对LED的亮度调节。
当占空比为100%时,LED处于全亮状态;当占空比为0%时,LED关闭。
2. 电机速度控制PWM可以用于电机的速度控制。
通过控制PWM信号的占空比,可以控制电机的平均输出功率,从而调节电机的转速。
一般情况下,占空比越大,电机转速越高;占空比越小,电机转速越低。
3. 音频放大PWM还可以用于音频放大电路中。
通过将音频信号转换为PWM 信号,再通过滤波电路将其转换为模拟信号,可以实现音频的放大。
PWM音频放大具有高效率和低失真的优点,因此在功率放大器中得到了广泛的应用。
4. 电源控制PWM可以用于电源控制电路中,通过控制PWM信号的占空比来调节输出电压的大小。
这种方式在开关电源中特别常见,可以实现高效率的能量转换,并具备较好的稳定性和响应速度。
5. 无线通信PWM在无线通信系统中也有一定的应用。
在数模转换和调制过程中,会使用PWM信号对模拟信号进行抽样和调制,转换成数字信号后再通过调制器进行数据传输。
三、总结脉冲宽度调制是一种通过控制脉冲信号的宽度来实现信号调制的方法。
pwm电路工作原理
PWM(脉宽调制)是一种电子调制技术,通过改变信号的脉
冲宽度来调节输出信号的平均功率。
PWM电路通过控制信号
周期中高电平和低电平的时间比例来实现电压或电流的精确调节。
PWM电路的主要工作原理是通过快速地在高电平和低电平之
间进行切换来模拟出所需的输出信号。
信号周期中,高电平时间被称为占空比,表示信号高电平时间与一个完整周期的比例。
占空比越高,平均功率输出越大;占空比越低,平均功率输出越小。
PWM电路的核心元件是比较器和计时器。
计时器产生一个固
定周期的方波信号,与输入信号进行比较。
如果输入信号的幅值低于比较器输出的方波信号,则输出为低电平;如果输入信号的幅值高于比较器输出的方波信号,则输出为高电平。
通过调整比较器的阈值电压,可以控制输出信号的占空比。
PWM电路的输出信号能够精确地模拟出所需的电压或电流。
由于开关频率很高,输出信号中的高频成分可以通过滤波器去除,从而得到平滑的输出电压或电流。
因此,PWM电路广泛
应用于调节电机速度、灯光亮度调节、电源管理等领域。
总结起来,PWM电路的工作原理是通过调整信号周期中高电
平和低电平的时间比例来实现精确调节输出信号的平均功率。
这种调制技术在电机控制、电源管理等领域具有重要的应用。
基于pwm电流反馈的电源恒流电路基于PWM(脉冲宽度调制)电流反馈的电源恒流电路是一种常见的电路设计,用于控制电源输出的电流。
这种电路通常由一个PWM控制器、电流传感器和功率开关器件组成。
下面我将从不同角度对这种电路进行全面的解释。
首先,让我们来看看这种电路的工作原理。
PWM控制器通过调节开关器件的导通时间来控制输出电流。
电流传感器监测输出电流,并将反馈信号发送给PWM控制器。
PWM控制器根据反馈信号调整开关器件的导通时间,以使输出电流保持恒定。
这种反馈机制可以确保输出电流在不同负载条件下保持恒定,从而提供稳定的电源输出。
其次,让我们讨论一下这种电路的优点。
首先,它能够提供稳定的恒流输出,适用于需要恒定电流的应用,如LED驱动器、电动机控制等。
其次,由于采用PWM控制,这种电路具有高效率和良好的动态响应能力。
此外,电流反馈机制可以实现对输出电流的精确控制,从而提高系统的稳定性和可靠性。
然而,这种电路也存在一些局限性。
首先,设计和调试这种电路需要一定的专业知识和经验,因为需要精确匹配PWM控制器、电流传感器和开关器件。
其次,由于PWM控制器的工作频率较高,可能会产生电磁干扰和噪声问题,需要进行有效的滤波和抑制措施。
最后,让我们看看一些实际应用。
基于PWM电流反馈的电源恒流电路广泛应用于LED照明、电动工具、电动汽车等领域,这些应用对恒定电流的要求较高,同时也需要高效率和稳定性。
在这些应用中,这种电路能够提供稳定可靠的电源输出,满足设备对电流的精确控制和稳定性的要求。
综上所述,基于PWM电流反馈的电源恒流电路是一种重要的电路设计,通过PWM控制和电流反馈机制实现对输出电流的精确控制,具有稳定性高、效率高的优点,适用于多种应用领域。
然而,设计和应用这种电路需要充分考虑到其特点和局限性,以确保系统的稳定性和可靠性。
如何设计一个简单的脉冲宽度调制电路脉冲宽度调制(Pulse Width Modulation, PWM) 是一种常用的调制技术,通过控制信号的脉冲宽度来实现对输出信号的调节。
它在电力电子、通信、自动化控制等领域中得到广泛应用。
本文将介绍如何设计一个简单的脉冲宽度调制电路,方便读者在实践中运用。
一、材料准备为设计一个简单的脉冲宽度调制电路,我们需要准备以下材料:1. 555定时器芯片:555是一种常用的集成电路,具有稳定的性能和易于使用的特点,非常适合用于脉冲宽度调制电路的设计。
2. 电容:根据需要选择适当的电容,一般建议选择10μF的电容。
3. 电阻:选择合适的电阻值来控制脉冲的宽度,建议选择1kΩ的电阻。
4. 开关:用于控制脉冲信号的开关。
二、电路设计以下是一个简单的脉冲宽度调制电路的设计示意图:```+5V||+--|------+----+| | || | |R | || | || C | 555|| | || | || | |+--|------|----+||开关```电路中,R代表电阻,C代表电容,555代表555定时器芯片,开关用于控制脉冲信号的开关。
在正常工作状态下,开关处于关闭状态。
三、电路工作原理该脉冲宽度调制电路的工作原理如下:1. 在初始状态下,555定时器的触发器(TRIG)和复位(RST)端都是高电平。
2. 当开关被打开时,电容开始充电。
由于555定时器的比较器(COMPARATOR)器件的正输入端(CONTH)连接到电容上,负输入端(CONTL)连接到内部基准电压的2/3处。
当电容电压达到2/3时,比较器的输出为低电平,触发器(TRIG)端被拉低,555定时器进入放电状态,输出端开始产生高电平的脉冲信号。
3. 当电容电压小于1/3时,比较器的输出变为高电平,复位(RST)端被拉低,555定时器重新开始充电,输出端停止产生脉冲信号。
这样就完成了一个脉冲的周期。
4. 通过调节电阻的阻值,可以改变电容充电和放电的速度,从而实现脉冲宽度的调制。
脉冲调宽电路工作原理
脉冲调宽电路是一种用于改变脉冲宽度的电路,它通常由一个触发器(如触发器脉冲发生器)和一个可调的延迟线路组成。
当触发器输出脉冲时,延迟线路会延迟脉冲的上升沿或下降沿,从而改变脉冲的宽度。
脉冲调宽电路的工作原理取决于其具体实现方式,例如,可以使用单稳态延迟线路来调节脉冲宽度,也可以使用双稳态延迟线路。
在双稳态延迟线路中,延迟线路由两个可调的延迟环节组成,可以分别调节脉冲的上升沿和下降沿。
脉冲调宽电路的具体实现方式可能会有所不同,但通常会包括以下元件:1.触发器:用于生成脉冲的基础电路元件。
2.延迟线路:用于延迟脉冲上升沿或下降沿的电路元件。
3.可调电阻:用于调节延迟线路的延迟时间的电阻。
4.可调电容:用于调节延迟线路的延迟时间的电容。
5.电流限制电路:用于限制延迟线路中电流的大小的电路。
6.放大器:用于放大脉冲调宽电路输出信号的电路。
脉冲宽度调制(PWM)电路是一种常见的电子电路,其工作原理是将一个连续的信号转化为一个带有固定幅度的脉冲信号,通过调节脉冲的宽度来控制输出信号的幅度,从而实现电路的调节和控制。
脉冲宽度调制电路的工作原理一、前言脉冲宽度调制电路(PWM电路)是一种常见的模拟电路,用于控制电压或电流的大小。
它广泛应用于交流马达速度调节、太阳能光伏发电系统等领域。
本文将详细介绍PWM电路的工作原理。
二、PWM电路的基本原理1. PWM信号的概念PWM信号是指在一个周期内,高电平占空比与低电平占空比之比为一个固定值的方波信号。
2. PWM调制方式PWM调制方式分为两种:单极性和双极性。
单极性PWM信号占空比只有正半周有输出,而双极性PWM信号则在正负半周均有输出。
3. PWM控制方式PWM控制方式分为两种:模拟控制和数字控制。
模拟控制是通过改变输入信号的幅值实现对输出信号的控制;数字控制则是通过数字信号处理器(DSP)等器件实现对输出信号的精确控制。
三、PWM电路的组成及工作原理1. 三角波发生器三角波发生器是产生基准波形的关键部件。
它可以产生一个周期内上升沿和下降沿斜率相等的三角波信号。
2. 比较器比较器将三角波信号和参考电压进行比较,输出一个占空比随输入电压变化而变化的PWM信号。
3. 滤波器PWM信号输出后需要经过滤波器进行平滑处理,以去除高频噪声和杂波。
4. 驱动电路驱动电路将PWM信号转换为适合被控制的电流或电压,并输出到被控制设备上。
四、单极性PWM电路的工作原理1. 三角波发生器工作原理三角波发生器由一个集成运算放大器、几个电阻和一个电容组成。
当输入为正弦波时,运放将其转换为三角波信号输出。
具体实现方式是通过RC积分运算将正弦信号转换为三角波信号。
2. 比较器工作原理比较器由一个集成运算放大器和一个参考电压源组成。
当三角波信号在上升沿与参考电压相等时,比较器输出高电平;当三角波信号在下降沿与参考电压相等时,比较器输出低电平。
因此,PWM信号的占空比随着参考电压的变化而变化。
3. 滤波器工作原理滤波器由一个电感和一个电容组成。
它可以将PWM信号转换为平滑的直流信号,并去除高频噪声和杂波。
PWM模式电路是一种脉冲宽度调制电路,其主要功能是将模拟信号转换为数字信号,并能够调节输出信号的占空比,从而实现对输出信号的精确控制。
具体而言,PWM模式电路的功能包括以下几个方面:
1. 模拟信号转换为数字信号:PWM模式电路可以将输入的模拟信号转换为数字信号,这对于数字信号处理和控制非常有用。
2. 调节输出信号的占空比:PWM模式电路可以通过调节脉冲的宽度来控制输出信号的占空比,从而实现对输出信号的精确控制。
3. 实现脉冲宽度调节和频率调节:PWM模式电路可以通过改变脉冲的宽度和周期来实现脉冲宽度的调节和频率的调节,从而实现对输出信号的多种控制。
4. 实现电压和电流的调节:PWM模式电路可以通过调节输出信号的占空比来实现对输出电压和电流的精确控制,从而实现对电路中的电子元件和设备的精确控制。
综上所述,PWM模式电路具有将模拟信号转换为数字信号、调节输出信号的占空比、实现脉冲宽度调节和频率调节、实现电压和电流的调节等功能,在电子工程、自动化控制、通信等领域有着广泛的应用。
脉冲宽度调制电路的工作原理引言脉冲宽度调制(PWM)电路是一种常用的电子电路,用于调节输出信号的脉冲宽度。
PWM技术在现代电力电子、自动控制、通信等领域有着广泛的应用。
本文将详细介绍脉冲宽度调制电路的工作原理,包括基本概念、原理分析、电路实现以及应用场景。
一、基本概念脉冲宽度调制是一种调制技术,通常用于将模拟信号转换为脉冲信号。
脉冲宽度调制电路通过改变脉冲信号的宽度来表达信号的幅度大小。
在PWM电路中,脉冲的宽度与输入信号的幅度成正比。
二、原理分析脉冲宽度调制电路主要由三个部分组成:比较器、三角波发生器和滤波器。
1. 比较器比较器是脉冲宽度调制电路的核心部件,用于比较输入信号和三角波信号。
比较器将输入信号与三角波信号进行比较,并产生一个脉冲信号作为输出。
2. 三角波发生器三角波发生器用于产生一个周期性变化的三角波信号。
三角波信号的频率和幅度可以根据实际需求进行调整。
3. 滤波器滤波器用于对比较器输出的脉冲信号进行滤波处理,去除高频噪声,得到稳定而平滑的PWM信号。
三、电路实现脉冲宽度调制电路可以采用多种电路实现方式,常见的有基于集成运放的电路和基于微控制器的电路。
1. 基于集成运放的电路基于集成运放的脉冲宽度调制电路使用运放作为比较器,通过调整输入电压和反馈电压的阈值来实现脉冲宽度的调节。
该电路结构简单,成本低,适用于一些简单的PWM应用。
2. 基于微控制器的电路基于微控制器的脉冲宽度调制电路可以实现更复杂的PWM功能。
微控制器可以通过软件来实现脉冲宽度的控制,可以灵活调节脉冲宽度的精度和频率。
这种电路适用于需要高精度、多功能的PWM应用。
四、应用场景脉冲宽度调制电路在众多领域都有着广泛的应用。
1. 电力电子在电力电子领域,脉冲宽度调制技术常用于变频调速、电力因数校正和电力传输等方面。
例如,PWM逆变器可以将直流电源转换为交流电源,用于驱动电动机和变频空调等设备。
2. 自动控制在自动控制系统中,脉冲宽度调制电路常用于控制电机的转速和位置。
脉冲宽度调制————————————————————————————————作者:————————————————————————————————日期:ﻩ脉冲宽度调制脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
目录1简介2背景介绍3基本原理4谐波频谱5具体过程6优点7控制方法8应用领域9具体应用1简介脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。
这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。
PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。
由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。
2背景介绍随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。
可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。
模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。
9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。
与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。
模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V,5V}这一集合中取值。
脉冲宽度调制(PWM)技术在电力电子变流器掌握系统中,对于掌握电路的要求往往是除能够掌握负载的加电与断电外,还应当能够掌握加载到负载上的电压凹凸及功率大小。
在大功率电力电子电路中,掌握加载至负载上电压及功率的有用方法就是脉冲宽度调制(PU1Sewidthmodu1ation,PWM)01.面积等效原理在掌握理论中,有一个重要的原理,即冲量等效原理:大小、波形不相同的窄脉冲变量(冲量)作用在具有惯性的环节上时,只要这些变量对时间的积分相等,其作用的效果将基本相同。
这里所说的效果基本相同是指惯性环节的输出响应波形基本相同。
例如,下图1示出的三个窄脉冲电压波形分别为矩形波、三角波和正弦波,但这二个窄脉冲电压对时间的积分相等,或者说它们的面积相等。
当这三个窄脉冲分别作用在只有惯性的同一环节上时,其输出响应基本相同。
因此,冲量等效原理也可以称为面积等效原理。
S)矩形波(b)」.角波9)正弦波图1面积相等的三种脉冲信号从数学角度进行分析,对上图1所示的三个窄脉冲电压波形进行傅里叶变换,则其低频段的特性特别相近,仅在高频段有所不同,而高频段对于具有惯性负载的电路影响特别小。
由此进一步证明白面积等效原理的正确性。
2.脉冲宽度调制技术依据面积等效原理,在电路中可以采用低端电源开关或高端电源开关,以肯定频率的导通和截止连续切换,使电源电压Ui以一系列等幅脉冲(或称为矩形波)的形式加载到负载上,加载在负载上的电源电压Uo波形如图2所示。
图2所示的矩形波的电压平均值:必=V m D此式表明在一个脉冲周期内,电压的平均值与脉冲的占空比是成正比的,于是,可以通过转变脉冲的占空比来调整加载到负载上的电压大小。
当占空比小时,加载到负载上的平均电压就低,即加载到负载上的功率小;而占空比大时,加载到负载上的平均电压就高,加载到负载上的功率大。
这种通过等幅脉冲调整负载平均电压及功率的方法称为脉冲宽度调制,诩为斩波掌握。
采纳脉冲宽度调制方式为负载供电,由于供电电压是脉动的,势必会产生出各种谐波。
脉冲调宽电路工作原理脉冲调宽电路是一种电子电路,用于改变脉冲信号的占空比,即脉冲的高电平时间与低电平时间之比。
脉冲调宽电路广泛应用于电源管理、信号处理、通信系统等领域,具有重要的实际意义。
本文将详细介绍脉冲调宽电路的工作原理、主要构成元件及其特点,以及常见的应用场景。
一、脉冲调宽电路的工作原理脉冲调宽电路的主要功能是将输入的窄脉冲信号转换为宽脉冲信号,其核心原理是利用控制元件(一般为集成电路或晶体管)对输入脉冲信号进行调制,从而改变脉冲信号的占空比。
最常见的脉冲调宽电路是脉冲宽度调制(PWM)电路。
在脉冲调宽电路中,最常用的控制元件是比较器、集成电路或晶体管。
比较器通常用于比较输入信号和参考信号,根据比较结果确定输出信号的宽度。
集成电路或晶体管则用于根据比较结果控制输出信号的高低电平。
通过合理地设计控制元件和反馈回路,可以实现对脉冲信号的精确调宽。
二、脉冲调宽电路的主要构成元件及特点1. 比较器:比较器是脉冲调宽电路中的核心控制元件之一,其主要功能是对输入脉冲信号和参考信号进行比较,根据比较结果输出相应的控制信号。
比较器一般采用霍尔效应或开关管等原理实现,具有高速、精确度高等特点。
2. 集成电路或晶体管:集成电路或晶体管用于接收比较器输出的控制信号,并加工形成相应的脉冲信号。
集成电路一般采用数字电路设计,具有稳定性高、可靠性好等特点;晶体管则采用模拟电路设计,具有工作速度快、输出功率高等特点。
3. 反馈回路:脉冲调宽电路中的反馈回路起到关键作用,通过反馈回路实现对输出脉冲信号的精确调宽。
反馈回路一般包括比较器的输出信号反馈至输入端,通过比较器内部的控制逻辑实现闭环控制。
4. 时钟电路:时钟电路用于提供时钟信号,控制整个脉冲调宽电路的工作节奏。
时钟电路一般采用振荡电路或计数器等原理设计,具有稳定性好、频率可调等特点。
三、脉冲调宽电路的应用场景1. 电源管理系统:脉冲调宽电路在电源管理系统中广泛应用,通过控制输出脉冲信号的占空比,可以实现对电源输出电压的精确调节,提高电源的稳定性和效率。
TL494脉宽调制控制电路TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。
TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。
其主要特性如下:主要特征集成了全部的脉宽调制电路。
片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。
内置误差放大器。
内止5V参考基准电压源。
可调整死区时间。
内置功率晶体管可提供500mA的驱动能力。
推或拉两种输出方式。
TL494外形图 TL494引脚图工作原理简述TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。
功率输出管Q1和Q2受控于或非门。
当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。
当控制信号增大,输出脉冲的宽度将减小。
参见图2。
TL494脉冲控制波形图控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。
死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。
当把死区时间控制输入端接上固定的电压(范围在0—3.3V之间)即能在输出脉冲上产生附加的死区时间。
脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。
两个误差放大器具有从-0.3V到(Vcc-2.0)的共模输入范围,这可能从电源的输出电压和电流察觉得到。
误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。
NE555PWM脉宽调制电路PWM称之为脉冲宽度调制信号,利用脉冲的宽度来调整亮度,也可用来控制DC马达。
PWM脉冲宽度调制信号的基本频率至少约400HZ-10KHZ,当调整LED的明或暗时,这个基本的频率不可变动,而是改变这个频率上方波的宽度,宽度越宽则越亮、宽度越窄则越暗。
PWM是控制LED的点亮时间,而不是改变输出的电压来控制亮度。
图1-5 PWM脉宽调制图片以下为PWM工作原理:reset接脚被连接到+V,因此它对电路没有作用。
当电路通电时,Pin 2 (触发点)接脚是低电位,因为电容器C1开始放电。
这开始振荡器的周期,造成第3接脚到高电位。
当第3接脚到高电位时,电容器C1开始通过R1和对二极管D2充电。
当在C1的电压到达+V的2/3时启动接脚6,造成输出接脚(Pin3)跟放电接脚(Pin7)成低电位。
当第3接脚到低电位,电容器C1起动通过R1和D1的放电。
当在C1的电压下跌到+V的1/3以下,输出接脚(Pin3)和放电接脚(Pin7)接脚到高电位并使电路周期重复。
Pin 5并没有被外在电压作输入使用,因此它与0.01uF电容器相接。
电容器C1通过R1及二极管,二极管一边为放电一边为充电。
充电和放电电阻总和是相同的,因此输出信号的周期是恒定的。
工作区间仅随R1做变化。
PWM信号的整体频率在这电路上取决于R1和C1的数值。
公式:频率(Hz)= 1.44/(R1 * C1)利用555定时器实现宽范围脉宽调制器(PWM)脉宽调制器(PWM)常常用在开关电源(稳压)中,要使开关电源稳压范围宽(即输入电压范围大),可利用555定时器构成宽范围PWM。
仅需把一个二极管和电位计添加到异步模式运转的555定时器上,就产生了一个带有可调效率系数为1%到99%的脉宽调制器(图1)。
它的应用包括高功率开关驱动的电动机速度控制。
图1:在555定时器电路中增加一个二极管和电位计可构成一个宽范围PWM。
/TD>这个电路的输出可以驱动MOSFET去控制通过电动机的电流,达到平滑控制电动机速度9 0%左右。