GPS静态控制测量精讲
- 格式:ppt
- 大小:527.50 KB
- 文档页数:25
南方测绘石家庄GNSS产品蔡高峰GPS静态测量,是利用测量型GPS接收机进行定位测量的一种。
主要用于建立各种级别的控制网。
进行GPS静态测量时,认为GPS接收机的天线在整个观测过程中的位置是静止,在数据处理时,将接收机天线的位置作为一个不随时间的改变而改变的量,通过接收到的卫星数据的变化来求得待定点的坐标。
在测量中,GPS静态测量的具体观测模式是多台(3台以上)接收机在不同的测站上进行静止同步观测,时间由40分钟到十几小时不等。
使用GPS进行静态测量前,先要进行点位的选择,其基本要求有以下几点:1、周围应便于安置接收设备和操作,视野开阔,市场内障碍物的高度角不宜超过15度;2、远离大功率无线电发射源(如电视台、电台、微波站等),其距离不小于200米;远离高压输电线和微波无线电信号传送通道,其距离不小于50米;3、附近不应有强烈反射卫星信号的物件(如大型建筑物、大面积水域等);4、地面基础稳定,易于点的保存;5、充分利用符合要求的旧有控制点。
GPS点位选好后,就可以架站进行静态数据采集了。
在采集静态数据时,一定要对中整平,在采集的过程中需要做好记录,包括每台GPS各自所对应的点位、不同时间段的静态数据对应的点位、采集静态数据时GPS的天线高(S86量测高片高,S82量斜高)。
用GPS采集完静态数据后,就要对所采集的静态数据进行处理,得出各个点的坐标。
下面以为临城建设局做的GPS静态测量为例,介绍静态数据处理的过程。
打开GPS数据处理软件,在文件里面要先新建一个项目,需要填写项目名称、施工单位、负责人,并设置坐标系统和控制网等级,基线的剔除方式。
在这里由于利用的旧有控制点所属的坐标系统是1954北京坐标系3度带,因此坐标系统设置成1954北京坐标系3度带。
控制网等级设置为E级,基线剔除方式选着自动。
在数据录入里面增加观测数据文件,若有已解算好的基线文件,则可以选择导入基线解算数据。
增加观测数据文件后,会在王图显示窗口中显示网图,还需要在观测数据文件中修改量取的天线高和量取方式(S86选择测高片,S82选择天线斜高)。
gps静态测量技术总结1500字GPS静态测量技术是一种利用全球定位系统(GPS)进行地理测量的方法。
该技术通过接收来自卫星的信号来确定目标位置的坐标,可以用于测量地球表面上的各种物体的位置、形状和运动。
GPS静态测量技术的原理是利用卫星发射的无线电信号来确定接收机的位置。
接收机接收到来自多个卫星的信号后,通过计算信号的传播时间和接收机与卫星的距离,可以确定接收机的位置坐标。
利用这个原理,可以对目标位置进行测量。
GPS静态测量技术的优势之一是其精度高。
由于GPS系统使用了多个卫星,能够提供非常准确的位置信息。
通过使用多个卫星的信号,可以排除由于单个卫星信号误差和干扰导致的误差。
因此,GPS静态测量技术可以实现亚米级的测量精度。
此外,GPS静态测量技术还具有快速、灵活和高效的特点。
相比于传统的测量方法,如全站仪测量和测距仪测量,GPS静态测量技术利用卫星信号直接进行测量,无需设置测站和测距仪。
这使得测量过程更加简便和高效。
在实际应用中,GPS静态测量技术可以用于各种地理测量任务。
例如,地形测量、土地测绘、城市规划等。
通过使用GPS静态测量技术,测量人员可以快速、准确地确定目标位置的坐标,无论是在城市环境还是户外环境。
然而,GPS静态测量技术也存在一些限制和挑战。
首先,GPS静态测量技术对天气条件和地形条件敏感。
在恶劣的天气条件下,如大雨、大雪、大风等,信号的传播可能会受到影响,从而影响测量精度。
此外,在复杂的地形条件下,如山区、森林等,信号传播也可能受到阻碍。
另外,GPS静态测量技术的精度也会受到一些因素的影响。
例如,接收机的精度、卫星的位置精度、信号传播时间等。
因此,在进行GPS静态测量时,需要认真选择合适的接收机和卫星,进行仔细的数据处理和误差校正,以提高测量精度。
总之,GPS静态测量技术是一种快速、准确、灵活的地理测量方法。
它可以用于各种地理测量任务,并取得非常高的测量精度。
然而,在实际应用中,需要注意天气条件和地形条件的限制,以及认真处理测量数据和误差校正,以保证测量结果的准确性。
For personal use only in study and research; not for commercial use由于GPS测量工作的实施方法取决于用户的具体要求,因此这里有必要对使用静态测量系统建立控制网的一般过程、作业的方法和原则进行介绍。
至于有特殊要求的用户还可参照国家有关部门颁发的测量规范。
1。
1 概述GPS测量工作与经典大地测量工作相类似,按其性质可分为外业和内业两大部分。
其中:外业工作主要包括选点(即观测站址的选择)、建立观测标志、野外观测作业以及成果质量检核等;内业工作主要包括GPS测量的技术设计、测后数据处理以及技术总结等。
如果按照GPS测量实施的工作程序,则大体可分为这样几个阶段:技术设计、选点与建立标志、外业观测、成果检核与处理。
GPS测量是一项技术复杂、要求严格、耗费较大的工作,对这项工作总的原则是,在满足用户要求的情况下,尽可能地减少经费、时间、和人力的消耗。
因此,对其各阶段的工作都要精心设计和实施。
南方静态测量系统GPS测量的工作程序如下图:1。
2 系统作业模式GPS测量的作业模式是指利用GPS定位技术,确定观测站之间相对位置所采用的作业方式。
它主要由GPS接收设备的软件和硬件来决定。
不同的作业模式其作业的方法和观测时间亦有所不同,因此亦有不同的应用范围。
S60GPS测量系统主要是用作控制测量用,采取的是静态载波相位相对定位模式。
下面简单介绍S60GPS测量系统的测量模式。
1.2.1 静态相对定位模式一、作业方法:采用两台(或两台以上)静态接收机,分别安置在一条(或数条)基线的端点,根据基线长度和要求的精度,按静态GPS测量系统外业的要求同步观测四颗以上的卫星数时段,时段从30分钟至几个小时不等。
二、定位精度:基线测量的精度可达±(3mm+1ppm×D),D为基线长度,以公里计。
三、作业要求:采取这种作业模式所观测的独立基线边,应构成闭合图形(如三角形、多边形),以利于观测成果的检核,增强网的强度,提高成果的可靠性和精确性。
GPS静态控制测量精度于全站仪控制测量精度对比摘要:GPS静态测量具有全天候、远距离、长时间观测、两点间不需要通视等优点,而全站仪测量技术在作业时受到距离较近、两点间通视限制,灵活性较差。
本文分别就GPS静态控制测量精度和全站仪控制测量精度及原理进行分析、精度对比,选择最优的作业方案。
关键词:GPS静态控制测量;全站仪控制测量;精度对比引言测绘科学的迅速发展和测绘技术的日新月异,要求现代测绘科技和应用仪器必须与之相适应,因此,有许多新型仪器被应用到测量工作中。
一、GPS和地面全站仪测量数据的应用(一)、GPS测量技术在测量领域的应用GPS,即授时、测距导航系统全球定位系统,自1994年投入使用以来,在众多领域得到了广泛的使用。
GPS因其具有全天候、高精度、快速实时定位,两点间不需要通视,能够得到三维坐标等优点,很快得到了测绘人的青睐,被广泛运用于各种测量项目中。
随着GPS技术的发展,其定位精度和可靠性得到很好的提高。
目前其精密单点定位最高可达到毫米级别。
除了GPS外,卫星定位导航系统还有俄罗斯的GLONASS、欧盟的GALILEO和我国的北斗卫星导航系统。
随着这些系统的投入使用和不断发展,未来空间定位导航变得更加的方便、可靠,覆盖到更广阔全球范围。
GPS定位技术,已成为大地测量和工程测量的一种重要技术手段。
在GPS的RTK和虚拟参考站CORS系统中,为快速测量提供了有力的工具。
在工程测量上,可运用GPS建立高精度的GPS控制网。
建立GPS控制网主要有几种形式:运用GPS建立新的控制网,利用地方参考坐标系的已知点和已知方位作为基准数据;对原有网,通过联测的方式,进行加密。
如城市和地方扩大控制网;将原有不同坐标系统的网,统一连接起来,将不同坐标系统下的边角网统一到统一坐标系统下。
(二)、全站仪测量技术在测量领域的应用全站仪,即全站仪电子速测仪,是集测距、测角为一体的高精度测量仪器。
最初的全站仪是光学经纬仪和光电测距仪的组合,随着电子测距技术、计算机技术、通信技术、激光技术等先进技术的发展和应用,全站仪变得越来越先进,功能越来越全面。
用静态GPS进行控制测量的精度分析摘要:本文简述了全球定位系统(gps)的结构特点、测量原理及应用,对影响静态gps进行控制测量方面精度因素进行了分析,并提出了一些合理的建议,以供参考。
关键词:静态gps;控制测量;精度分析1引言gps即全球卫星定位系统的英文缩写,该系统是以卫星为基础的无线电导航定位系统。
gps,开始时只用于军事目的,其主要目的是为海、空、陆三大领域提供全天候、实时和全球性的导航服务,还具备良好的抗干扰性和保密性。
因此,gps技术在工程测量、军事、通信、海洋测量等测绘领域展开研究及得到了广泛应用及研究[1]。
2静态gps的概况2.1 静态gps构成特点及其原理gps包括三大部分:空间gps卫星星座、地面监控系统、用户gps信号接收机。
(1)用户gps信号接收机,接收机机内软件、硬件以及gps 数据的后处理软件包构成完整的gps 用户设备。
gps 接收机的结构分为天线单元和接收单元两部分。
接收机一般采用机内和机外两种直流电源。
设置机内电源的目的在于更换外电源时不中断连续观测。
其主要特点是能够捕获到按一定卫星截止角所选择的待测卫星,同时跟踪这些卫星的运行状况。
当接收机捕获到跟踪的卫星信号后,就可测量出接收天线至卫星的距离变化率,据此就可解出卫星轨道参数等数据。
利用这些数据,接收机中的微处理计算机就可按定位解算方法进行定位计算,计算出用户所在地理位置的经度、纬度、高度等信息。
(2)gps地面监控站地面控制系统由主控制站、监测站、地面天线所组成。
地面控制站负责收集由卫星传回的信息,并计算相对距离、卫星星历、大气校正等数据。
(3)gps的空间部分是由21颗工作卫星和3颗在轨备用卫星组成,即24颗工作卫星组成,它均匀分布在6个轨道面上(每个轨道面4 颗) ,轨道倾角为55°。
此外还有3 颗有源备份卫星在轨道运行。
卫星的分布使得在全球任何时间、任何地方都可观测到4 颗以上的卫星,并能在卫星中预存导航信息。
静态GPS控制测量使用技术方法一、控制点的布设为了达到 GPS 测量高精度、高效益的目的,减少不必要的耗费,在测量中遵循这样的原则:在保证质量的前提下,尽可能地提高效率、降低成本。
所以对 GPS 测量各阶段的工作,都要精心设计,精心组织和实施。
建议用户在测量实施前,对整个 GPS 测量工作进行合理的总体设计。
总体设计,是指对 GPS 网进行优化设计,主要是:确定精度指标,网的图形设计,网中基线边长度的确定及网的基准设计。
在设计中用户可以参照有关规范灵活地处理,下面将结合国内现有的一些资料对GPS 测量的总体设计简单地介绍一下。
1 、确定精度标准在 GPS 网总体设计中,精度指标是比较重要的参数,它的数值将直接影响 GPS 网的布设方案、观测数据的处理以及作业的时间和经费。
在实际设计工作中,用户可根据所作控制的实际需要和可能,合理地制定。
既不能制定过低而影响网的精度,也不必要盲目追求过高的精度造成不必要的支出。
2 、选点选点即观测站位置的选择。
在 GPS 测量中并不要求观测站之间相互通视,网的图形选择也比较灵活,因此选点比经典控制测量简便得多。
但为了保证观测工作的顺利进行和可靠地保持测量结果,用户注意使观测站位置具有以下的条件:① 确保GPS接收机上方的天空开阔GPS测量主要利用接收机所接收到的卫星信号,而且接收机上空越开阔,则观测到的卫星数目越多。
一般应该保证接收机所在平面15°以上的范围内没有建筑物或者大树的遮挡。
新知达人, 详细讲解 | 静态GPS控制测量使用技术方法图 5-1 高度截止角② 周围没有反射面,如大面积的水域,或对电磁波反射(或吸收)强烈的物体(如玻璃墙,树木等),不致引起多路径效应。
③ 远离强电磁场的干扰。
GPS接收机接收卫星广播的微波信号,微波信号都会受到电磁场的影响而产生噪声,降低信噪比,影响观测成果。
所以GPS控制点最好离开高压线、微波站或者产生强电磁干扰的场所。