2015-2016年最新人教版初中初一七年级上册数学全册教案精品完整篇
- 格式:doc
- 大小:1.32 MB
- 文档页数:82
最新人教版初中数学七年级上册全册全套表格式优秀教案教学设计附反思名师优秀教案人教版初中数学七年级上册全册全套表格式优秀教案教学设计附反思人教版初中数学七年级上册全册全套表格式优秀教案教学设计附反思教学目标:1、通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。
2、经历探索简单事物排列与组合规律的过程。
3、培养学生有序地全面地思考问题的意识。
4、感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学方法解决问题的意识。
教学重点:经历探索简单事物排列与组合规律的过程。
教学难点:初步理解简单事物排列与组合的不同。
教具准备:卡纸、动物磁性图片教学过程:一、情景创设,激发兴趣师:小朋友们,你们是不是很喜欢旅游阿,生:是~师:好,今天老师就带你们去一个好玩的地方玩一玩好吗,瞧,这是哪儿, (呈现“数学广角”的卡片)生:数学广角~师:数学广角里有好多好玩的地方,今天还有个摘星的活动呢~能够在这次游玩中遵守纪律,发言积极响亮的同学都可以摘到星星~有没有信心呀,生:有~二、游戏娱乐,学在其中第一环节:时尚街——衣服搭配师:我们先去第一个景点时尚街看一看,老师看中了2件衣服、一条裙子和一条裤子,你能帮我搭配出几套衣服呢, (呈现衣服磁性图片,请学生把自己的搭配方法到黑板上来展示一下) 生1:红色衣服和裙子,绿色衣服和裤子。
生2:红色衣服和裤子,红色衣服和裙子。
师:刚才的两位小朋友都非常的棒,他们每个人都配出了两套,有哪位小朋友还想来试试,把所有的搭配方法都给大家介绍一下~生3:红色衣服和裙子,绿色衣服和裤子;红色衣服和裤子,红色衣服和裙子。
(在老师的引导下,学生用连线的方法表示出来。
具体图示如下:)三、由浅入深,体会感悟1、数字园——数字搭配1、写两位数。
师:刚才我们去了时尚街,小朋友们搭配衣服的本领可真棒~现在,老师带大家去数字园玩一玩~数字园里有3个数字宝宝,他们每个人都想和另外第一个数字娃娃交朋友。
新人教版七年级数学上册精品全册教案篇一:最新人教版七年级数学上册全册最新人教版七年级数学上册教案全册课题: 1.1 正数和负数(1)授课时间:____________ 12 3 1.1 正数和负数(2)授课时间:____________4 5 篇二:2015新人教版七年级数学上册全册教案数学教案七年级上册 2016—2017学年度第一学期教师:买买提·玉努斯伊吾县淖毛湖镇中学七年级(1)班数学课程表第一章有理数教材分析 1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,?从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念. 2.通过怎样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比较形象化. 3.对于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分. 4.正确理解绝对值的概念是难点.根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.三维目标 1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,?能说出数轴上已知点所表示的解。
2016年七年级数学上册全册教案(人教版)教案第一章有理数 1。
1 正数和负数第1课时正数和负数教学目标: 1.了解正数与负数是实际生活的需要. 2.会判断一个数是正数还是负数。
3.会用正负数表示互为相反意义的量. 教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义. 教学难点:负数的引入. 教与学互动设计: (一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况. (二)合作交流,解读探究举出一些生活中常遇到的具有相反意义的量,如温度是零上7 ℃和零下5 ℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等。
想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“—"(读作负)号来表示(零除外). 活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示。
讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数。
总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点。
(三)应用迁移,巩固提高【例1】举出几对具有相反意义的量,并分别用正、负数表示。
【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等. 【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0。
02 g,记作+0.02 g,那么—0。
03 g表示什么? 【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正。
N 第一章有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念【教学过程】:一、知识链接:1、小学里学过哪些数请写出来:、、。
2、阅读课本P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动:两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P2的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
【课堂练习】:1. P3第1,2题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。
新人教版七年级数学上册全册教案第一章有理数1.1正数和负数目标预设:一、知识与能力借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量二、过程与方法1、过程:通过实例引入负数,指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。
2、方法:讨论法、探究法、讲授法、观察法。
三、情感、态度、价值观乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用教学重难点:一、重点:理解正数和负数的概念,判断一个数是正数还是负数,应用正负数表示具有相反意义的量二、难点:负数的意义,理解具有相反意义的量。
教学准备:带有负数的实例若干预习导学:在生活、生产、科研中,经常遇到数的表示与数的运算的问题。
例如,⑴天气预报2003年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?⑵有三个队参加的足球比赛中,红队胜黄队(4∶1),黄队胜蓝队(1∶0),蓝队胜红队(1∶0),如何确定三个队的净胜球数与排名顺序?⑶某机器零件的长度设计为100mm,加工图纸标注的尺寸为100±0.5(mm),这里的±0.5代表什么意思?合格产品的长度范围是多少?(问题1-3友情提示、全班交流、教师点评)教学过程:一、创设情景,谈话引入在小学里我们已经学过哪些类型的数(自然数和分数),它们都是由实际需要而产生的,由记数、排序产生数1,2,3……,由表示“没有”“空位”,产生数0,由分物、测量产生分数,,……,但在预习导学中表示温度、净胜球数、加工允许误差时用到数:-3, 3, 2, -2, 0, +0.5, -0.5。
二、精讲点拨,质疑问难这里出现了一种新数:-3,-2,-0.5。
在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,小于设计尺寸0.5mm,像-3,-2,-0.5这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。
人教七年级数学上册教案全册教案:《人教七年级数学上册教案全册》第一章有理数教学目标:1.理解有理数的概念,能够区分有理数和无理数。
2.掌握有理数的加减乘除运算规则。
3.能够解决有理数的加减乘除的问题。
4.能够应用有理数解决实际问题。
教学过程:一、导入与引入新课1.温故知新:通过提问引导学生回顾整数的概念和上册学习的内容,例如“请问0是整数吗?”,“请举例说明有理数和无理数的区别”等问题。
2.引入新课:通过幻灯片或黑板书写,简单介绍有理数的定义和相关符号。
二、学习新课1.理解有理数的概念:教师通过示意图或实际数例,引导学生理解有理数的概念。
例如,通过将整数表示在数轴上,让学生掌握正数、负数及其性质。
2.区分有理数和无理数:教师通过讲解有理数和无理数的定义和特点,让学生能够区分有理数和无理数。
3.有理数的加减乘除运算规则:教师通过例题和练习操练,让学生掌握有理数的加减乘除运算规则。
例如,正数相加、正数相乘、负数相加等。
三、巩固训练教师给学生出一些计算题目,让学生上台演示解题过程,以检查学生对所学知识的掌握情况。
四、拓展与应用1.真实景物:教师通过实际生活场景,引导学生应用有理数解决实际问题。
例如,购物问题、温度问题等。
2.综合练习:教师给学生发放练习册,让学生在课后完成相关练习题目。
五、总结与反思教师总结本节课的要点,并与学生进行回顾和讨论。
六、课后作业布置课后作业,要求学生完成练习册上的相关题目。
教学反思:本节课通过引导学生回顾整数的概念和区分有理数和无理数,循序渐进地加深学生对有理数概念的理解和运算规则的掌握。
通过真实景物和综合练习的应用,增加学生对有理数的兴趣和实际运用能力。
同时,通过让学生参与讲解和上台演示解题过程,提高学生的主动性和合作能力。
在总结和反思环节,教师及时纠正学生在学习过程中的错误理解和操作方法,为下一节课的学习打下基础。
人教版七年级数学上册教案教学设计第一章有理数1.1正数和负数(2课时)第1课时正数和负数的概念了解正数和负数的产生;知道什么是正数和负数;理解正负数表示的量的意义;知道0既不是正数,也不是负数.重点正、负数的意义.难点1.负数的意义.2.具有相反意义的量.一、新课导入活动1:创设情境,导入新课教师投影展示教材第2页图片,让学生体验自然数的产生,分数的产生离不开生产和生活的需要,可以让学生自由发表意见和感想.二、推进新课活动2:体验负数的引入的必要性教师出示温度计:安排三名同学进行如下活动:研究手中的温度计上刻度的确切含义,一名同学手持温度计,一名同学说出其中三个刻度,一名同学在黑板上速记.教师根据活动情况,如果学生不能引入符号表示,教师也可参与活动,逐步引入负数.强调:0既不是正数,也不是负数.活动3:分组活动,感受正负数的意义各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜.1.老师说出指令:向前2步,向后3步,向前-2步,向后-3步,学生按老师的指令表演.2.各小组互相监督,派一名同学汇报完成的情况.活动4:深入理解正负数的意义,提高分析解决问题的能力师投影展示问题,讲解课本例题.例:1.一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值.2.某年,下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.学生讨论后解决.活动5:练习与小结练习:教材第3页练习.小结:这堂课我们学习了哪些知识?你能说一说吗?活动6:作业习题1.1第4,5,6,8题本课是有理数的第一课时,引入负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理。
(完整)人教版七年级数学上册全册教案第一章有理数1.1正数和负数教学目标: 1、了解正数与负数是从实际需要中产生的。
2、能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。
3、会用正、负数表示实际问题中具有相反意义的量。
重点:正、负数的概念重点:负数的概念、正确区分两种不同意义的量。
教学过程:正数和负数教师:如何来表示具有相反意义的量呢?我们现在来解决问题4提出的问题。
结论:零下5℃用-5℃来表示,零上5℃用5℃来表示。
为了用数表示具有相反意义的量,我们把其中一种意义的量。
如零上、向东、收入和高于等规定为正的,而把与它相反的量规定为负的。
正的用小学学过的数(0除外)表示,负的用小学学过的数(0除外)在前面加上“-”(读作负)号来表示。
根据需要,有时在正数前面也加上“+”(读作正)号。
注意:①数0既不是正数,也不是负数。
0不仅仅表示没有,也可以表示一个确定的量,如温度计中的0℃不是没有表示没有温度,它通常表示水结成冰时的温度。
②正数、负数的“+”“-”的符号是表示量的性质相反,这种符号叫做性质符号。
三、巩固知识1、课本P3 练习1,2,3,42、课本P4例四、总结①什么是具有相反意义的量?②什么是正数,什么是负数?③引入负数后,0的意义是什么?五、布置作业课本P5习题1.1第1、2题。
1.2.1有理数教学目标: 1、正确理解有理数的概念及分类,能够准确区分正整数、0、负整数、正分数、负分数。
2、掌握有理数的分类方法,会对有理数进行分类,体验分类是数学上常用的处理问题的方法。
重点:正确理解有理数的概念重点:有理数的分类教学过程:一、知识回顾,导入新课什么是正数,什么是负数?问题1:学习了负数之后,我们对数的认识范围扩大了,你能写出三个不同类型的数吗?(请三位同学上黑板上写出,其他同学在自己的练习本上写出,如果有出现不同类型的数,同学们可上黑板补充。
)问题2:观察黑板上的这么数,并给它们分类。
人教版数学七年级上册教案(精选14篇)人教版数学七年级上册教案第1篇一、教材分析1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用3、教学的重点、难点:重点:邻补角、对顶角的概念,对顶角的性质和应用。
难点:理解对顶角性质的探索(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。
同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。
)4、教学目标:A:知识与技能目标(1).理解对顶角和邻补角的概念,能在图形中辨认.(2).掌握对顶角相等的性质和它的推证过程(3).会用对顶角的性质进行有关的简单推理和计算.B:过程与方法目标(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。
(2).体会具体到抽象再到具体的思想方法.C:情感、态度与价值目标(1).感受图形中和谐美、对称美.(2).感受合作交流带来的成功感,树立自信心.(3).感受数学应用的广泛性,使学生更加热爱数学二、学情分析:在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.三、教法和学法:教法:叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.四、教学过程:1课前准备:课件,剪刀,纸片,相交线模型2教学过程:设置以下六个环节环节一:情景屋(创设情景,激发学习动机)请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线环节二:问题苑(合作交流,解释发现)通过一些问题的设置,激发学生探究的欲望,具体操作:(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。
2015-2016年第一章有理数单元教学内容1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,•从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.2.通过怎样用数简明地表示一条东西走向的马路旁的树、•电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比较形象化.3.对于相反数的概念,•从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.三维目标1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,•能说出数轴上已知点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,•会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、•负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.难点:准确理解负数、绝对值等概念.3.关键:正确理解负数的意义和绝对值的意义.课时划分1.1 正数和负数 2课时1.2 有理数 5课时1.3 有理数的加减法 4课时1.4 有理数的乘除法 5课时1.5 有理数的乘方 4课时第一章有理数(复习) 2课时1.1正数和负数第一课时三维目标一.知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.二.过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.三.情感态度与价值观培养学生积极思考,合作交流的意识和能力.教学重、难点与关键1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.2.难点:正确理解负数的概念.3.关键:创设情境,充分利用学生身边熟悉的事物,•加深对负数意义的理解.教具准备投影仪.教学过程四、课堂引入我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,•测量和分配有时不能得到整数的结果,为此产生了分数和小数.在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2•页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.五、讲授新课(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,•它们与负数具有相反的意义,我们把这样的数(即以前学过的0•以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+13,…就是3,2,0.5,13,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数.(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数.(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.用正负数表示具有相反意义的量(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量.•正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.(6)、请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.(7)、你能再举一些用正负数表示数量的实际例子吗?(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.六、巩固练习课本第3页,练习1、2、3、4题.七、课堂小结为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,•但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.八、作业布置1.课本第5页习题1.1复习巩固第1、2、3题.九、板书设计1.1正数和负数第一课时1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,•它们与负数具有相反的意义,我们把这样的数(即以前学过的0•以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+13,…就是3,2,0.5,13,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.2、随堂练习。
3、小结。
4、课后作业。
十、课后反思1.1正数和负数第二课时三维目标一.知识与技能进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义.二.过程与方法经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征.三.情感态度与价值观鼓励学生积极思考,激发学生学习的兴趣.教学重、难点与关键1.重点:正确理解正、负数的概念,能应用正数、•负数表示生活中具有相反意义的量. 2.难点:正数、负数概念的综合运用.3.关键:通过对实例的进一步分析,•使学生认识到正负数可以用来表示现实生活中具有相反意义的量.教具准备投影仪.教学过程四、复习提问课堂引入1.什么叫正数?什么叫负数?举例说明,•有没有既不是正数也不是负数的数?2.如果用正数表示盈利5万元,那么-8千元表示什么?五、新授例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值.2.2001年下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,•中国增长7.5%.写出这些国家2001年商品进出口总额的增长率.分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数.•“负”与“正”是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.2.六个国家2001年商品进出口总额的增长率分别为:美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-•2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-•7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义.六、巩固练习1.课本第5页的第8题.点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、•意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多. 2.补充练习.若向西走10米,记作-10米,如果一个人从A地先走12米,再走-15米,•你能判断此人这时在何处吗?解:向西走10米,记作-10米,那么这人走12米,则表示向东走12米,再走-15米,表示向西走了15米,即这个人从A地先向东走12米,接着再向西走15米,此人这时应该在A地的西方3米处.七、课堂小结通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量.八、作业布置1.课本第5页习题1.1第4、5、6、7题.九、板书设计九、板书设计1.1正数和负数第二课时1、复习巩固,例题讲解。
2、随堂练习。
3、小结。
4、课后作业。
十、课后反思1.2 有理数第一课时三维目标一、知识与能力理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零.二、过程与方法经历对有理数进行分类的探索过程,初步感受分类讨论的思想.三、情感态度与价值观通过对有理数的学习,体会到数学与现实世界的紧密联系.教学重难点及突破在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开.教学准备用电脑制作动画体现有理数的分类过程.教学过程四、课堂引入1、我们把小学里学过的数归纳为整数与分数,引进了负数以后,我们学过的数有哪些?将如何归类?2.举例说明现实中具有相反意义的量.3.如果由A地向南走3千米用3千米表示,那么-5千米表示什么意义?4.举两个例子说明+5与-5的区别.5.数0表示的意义是什么?二、自主探究在学生讨论的基础上,引导学生自己进行有理数的分类,我们学过的数就可以分为以下几类:正整数,如1,2,3,…;零:0;负整数,如-1,-2,-3,…;正分数,如13,227,4.5(即412);负分数,如-12,-227,-0.3(即-310),-35……正整数、零和负整数统称整数,正分数、负分数统称分数,整数和分数统称有理数.回答下列各题:(1)0是不是整数?0是不是有理数?(2)-5是不是整数?-5是不是有理数?(3)-0.3是不是负分数?-0.3是不是有理数?2.你能对以上各种数作出一张分类表吗(要求不重复不遗漏)?让学生把自己作出的分类表进行分类,可以根据不同需要,用不同的分类标准,•但必须对讨论对象不重不漏地分类.把一些数放在一起,就组成一个数的集合,•简称数集.所有的有理数组成的数集叫做有理数集.类似的,•所有整数组成的数集叫做整数集,所有正数组成的数集叫做正数集,所有负数组成的数集叫做负数集,如此等等.五、题例精解例把下列各数填入表示它所在的数集的圈子里:-18,227,3.1416,0,•2001,•-35,•0.142857,95%六、随堂练习一、判断1.自然数是整数.() 2.有理数包括正数和负数.() 3.有理数只有正数和负数.() 4.零是自然数.() 5.正整数包括零和自然数.() 6.正整数是自然数.() 7.任何分数都是有理数.() 8.没有最大的有理数.() 9.有最小的有理数.()七、课堂小结:(提问式)1.有理数按正、负数,应怎样分类?2.有理数按整数、分数,应怎样分类?3.分类的原则是什么?八、课后作业:1.课本第14页习题1.2第1题.九、板书设计:1.2 有理数第一课时1、复习巩固,例题讲解。