3. 引入阻抗以后,可将所有网络定理和方法都应用
于交流,直流(f =0)是一个特例。
例1: 已知:R 1 10 ,R 0 2 0 1 0 ,L 5m 0,0 C H 1 F 0 ,
U 1V 0 , 0 3r 1a /s 4 ,d 求:各支路电流。
i2 R1 i1
i3 C
+
R2
_u
L
I1 I2 R1
Z
1 Y
1 GjB
GjB G2B2
R jX
RБайду номын сангаас
G G2B2
,
X
B G2B2
|Y | 1 , φ φ' | Z|
例 RL串联电路如图,求在=106rad/s时的等效并联电路。
50
解 RL串联电路的阻抗为:
X L L 1 6 0 0 .0 1 6 3 0 6 0
Z R jL X 5 j 0 6 7 0 .1 8 5 .2 0 0
R=|Z|cos
Z U I
X=|Z|sin
u i
阻抗三角形
|Z| X
R
分析 R、L、C 串联电路得出:
(1)Z=R+j(L-1/C)=|Z|∠为复数,故称复阻抗 (2)L > 1/C ,X>0, >0,电路为感性,电压领先电流;
L<1/C, X<0, <0,电路为容性,电压落后电流; L=1/C ,X=0, =0,电路为电阻性,电压与电流同相。
例 求图示电路的等效阻抗, =105rad/s 。
解 感抗和容抗为:
X LL 15 0 1 1 3 0 1 00
1
1
XCC150 0.110 610 0
R1