某电视台组织知识竞赛
- 格式:docx
- 大小:17.89 KB
- 文档页数:1
2021-2022学年云南省昭通市昭阳区八年级(上)期中地理试卷一、单选题(本大题共25小题,共50.0分)读如图完成下列1~2小题。
1.在某电视台进行的一档“地理知识竞赛”节目中,观众对其中几道题目作出了以下判断,其中正确的是()A. 中国大部分地区位于寒带B. 中国是一个内陆国家C. 中国领土最南端在曾母暗沙D. 中国陆地领土面积居世界第一2.和图中A,B,C三国相比,我国地理位置有很多优越性,说法正确的是()A. 与A国家相比,我国气候更寒冷B. 与B国家相比,我国有丰富的海洋资源C. 中国是四国中唯一海陆兼备的国家D. 与C国家比,我国受海洋影响更显著3.诗歌我爱你中国部分诗句如下:“当灿烂的太阳跳出了你东海的碧波,你的帕米尔高原上依然是群星闪烁”。
产生上述地理现象的原因是()A. 地形因素B. 南北跨纬度广C. 海陆位置的差异D. 东西跨经度广来自“一带一路”沿线的20国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购。
据此完成下面4~5小题。
4.网购已成为许多人购物的首选。
某老师网购时留下的收件人地址是:云南省昭阳区凤凰街道x社区。
其中的凤凰街道属于我国三级行政区划中的()A. 省级B. 县级C. 乡级D. 介于县、乡之间的特殊级别5.在各大城市相继推出“共享单车”之后,“共享雨伞”也逐步进入人们的视野。
如果只考虑降雨的影响,下列城市中,“共享雨伞”使用频率最高的可能是()A. 哈尔滨B. 广州C. 西安D. 乌鲁木齐6.《人民日报》策划的援鄂医疗队名片“粤来越好”、“湘互扶持”代表的省级行政区分别是()A. 上海市、四川省B. 广东省、湖南省C. 重庆市、海南省D. 福建省、河北省当一个国家或地区60岁以上人口占总人口比重达到10%,即意味着这个国家或地区进入人口老龄化。
2021年5月11日,我国第七次人口普查数据公布。
读下表,回答7~9题。
7.与2010年第六次人口普查相比,我国第七次人口普查数据显示()A. 劳动力数量过多B. 老龄人口比例下降C. 新生人口比例下降D.老龄化程度加剧8.针对表中所体现的人口问题,我国应采取的人口措施是()①提高生育服务水平②取消计划生育政策③完善社会养老保障机制④遏制新生人口的增长A. ①④B. ①③C. ②③D. ②④9.中共中央政治局2021年5月31日召开会议强调,依法组织实施“全面三孩”生育政策,主要是()A. 解决劳动力剩余问题B. 解决人口分布不均问题C. 缓解人口老龄化问题D. 缓解人口增长过快问题1999年,为庆祝中华人民共和国成立50周年,邮电部发行了一套《民族大团结》的邮票。
初中地理.中国的疆域周测试题一、选择题(每题5 分,共100分)1、从半球位置来看,我国位于()A.东半球、南半球B.东半球、北半球C.西半球、北半球D.西半球、南半球2、在某电视台举行的一档“地理知识竞赛”节目中,观众对其中几道题目作出了以下判断,其中不正确的是()A.中国大部分地区位于北温带B.中国是一个海陆兼备的国家C.中国领土最西端在曾母暗沙D.中国陆地领土面积居世界第三3、关于中国地理位置的优越性,错误的是()A、我国位于世界最大大陆——亚欧大陆的东部。
B、我国南北跨纬度大,南北气候差异大,为发展多种农业提供了有利条件。
C、西临太平洋,有利于发展海洋事业和对外交流。
D、从纬度位置来看,我国南部部分地区位于热带,没有地区位于寒带。
4、下列属于我国内海的是()A、渤海、黄海B、黄海、东海C、南海、东海D、渤海、琼州海峡5、与我国隔海相望的国家从北向南依次是( )A.韩国、菲律宾、日本、马来西亚、文莱、印度尼西亚B.韩国、日本、菲律宾、文莱、马来西亚、印度尼西亚C.韩国、日本、马来西亚、菲律宾、文莱、印度尼西亚D.韩国、马来西亚、文莱、印度尼西亚、菲律宾、日本6、我国东部濒临的海洋自北向南依次是A.渤海、黄海、东海、南海B.黄海、南海、东海、渤海C.南海、渤海、东海、黄海D.渤海、黄海、南海、东海7、我国领土四端中,最先看到日出的是()A、漠河以北黑龙江主航道的中心线上B、南沙群岛的曾母暗沙C、新疆的帕米尔高原上D、黑龙江与乌苏里江主航道中心线交汇处8、与我国陆上为邻的国家中,面积最大与人口最多的国家组合正确的是()A老挝越南 B 日本印度尼西亚C印度俄罗斯 D 俄罗斯印度9、哈尔滨的冰灯城与广州的花市能同时成为人们欢度春节的好去处,这是由于我国()A、地势高低起伏B、东西跨经度广C、南北跨纬度广D、海陆位置不同读下面我国四个省级行政区轮廓图,回答11—12题。
11. 上图中,各省区轮廓图代码与其名称、简称、省级行政中心搭配正确的一组是()A. ①-湖北-鄂-武汉B. ②-山东-鲁-长沙C. ③-云南-云-成都D. ④-广东-粤-福州12. 小明同学的家乡,每年有两次阳光直射现象,他家乡所在的省区可能是()A. ①②B. ①③C. ②③D. ③④13、我国幅员辽阔,东西相距5000多千米,跨60多度,这就造成了14、成语“秦晋之好”、“得陇望蜀”,“黔驴技穷”中的“秦、晋、陇、蜀、黔”对应下列省区全称,排序正确的是一组()A、山西、陕西、四川、甘肃、广西B、陕西、山西、甘肃、贵州、四川C、四川、甘肃、广西、山西、陕西D、陕西、山西、甘肃、四川、贵州15、下列有两个简称的省级行政区是( )A.福建省、陕西省B.四川省、青海省C.云南省、甘肃省D.江西省、湖南省16、在天津上学的小芳在街上看到一辆来自家乡的汽车,车牌号为“赣AF5368”.你认为小芳的家乡在哪里。
全省广播电视技术大比武活动知识竞赛答卷(电视中心)一、填空题1、广播电视安全播出工作应当坚持不间断、高质量、既经济、又安全的方针。
2、在《演播室数字音频参数》(GY/T156-200)中规定,数字音频取样频率优选48KHz 。
3、广播电台、电视台直播节目应当具备必要的延时手段和应急措施,加强对节目的监听监看,监督参与直播的人员遵守直播管理制度和技术设备操作规范。
4、安全播出责任单位之间、播出环节之间应做到维护界限清晰、责任明确。
5、广播电视安全播出突发事件级别分为特别重大(特大) 、重大、较大三级。
6、发生安全播出突发事件,恢复节目信号播出时,应当遵循“先中央、后地方;先公益、后收费”的原则。
7、我国高清晰度电视标准规定,每个扫描行的有效像素数为1920 ,每一帧的有效扫描行数为1080 。
8、音频信号的频率范围是 20Hz—20KHz 。
9、在我国电视制式中,每秒钟需传送 25 帧电视画面。
二、判断题1、播出单位的施工安排应以减少对播出影响为原则,尽量安排在例行检修时间进行,需要临时停机的,应做好临时停机申请(或备案)和操作通知等工作。
( √ )2、电源干扰是一种周期性干扰,在图像上表现为滚道现象。
( √ )3、MPEG2是一种在数字电视系统中广泛使用的信源编码标准。
( × )4、安全播出责任单位可以接入、传送、播出境外广播电视节目。
( × )5、重要保障期间,安全播出责任单位可以进行例行检修和施工。
( × )6、广播电视安全播出实行分类分级保障制度。
( √ )7、《三网融合试点工作方案》明确广电负责IPTV(网络电视)集成播控平台建设管理。
√)8、同等条件下,同轴电缆比光缆的损耗低,传输距离长。
( × )9、PSK调制指的是载波的频率随调制信号状态的不同而改变。
( × )三、单项选择题1、我国模拟电视系统中视频信号的标称带宽为( 6 MHz )。
知识竞赛抢答题比赛规则是什么知识竞赛抢答题比赛是一种在竞赛中根据题目内容迅速抢答并回答的方式,常见于学校、电视节目和各种知识竞赛活动中。
本文将介绍知识竞赛抢答题比赛的基本规则。
1. 比赛形式知识竞赛抢答题比赛通常以个人或团队为单位进行,参赛者需要在主持人或裁判宣布问题后尽快回答。
回答正确者可以获得相应得分,回答错误者或未能在规定时间内回答者将失去得分。
2. 比赛规则•抢答环节:比赛开始时,主持人宣布问题,参赛者需要按规定方式进行抢答,通常是按下抢答器或者举手示意。
•回答时间:参赛者在抢答成功后需要在规定的时间内给出答案,超时视同回答错误。
•得分规则:回答正确的参赛者可以获得相应的得分,得分可以根据不同题目设定而有所不同。
•负分惩罚:回答错误的参赛者将失去得分,甚至可能会被罚以负分。
•裁判判定:裁判会对回答进行判定,确定是否正确,并决定是否给分。
•记分方式:比赛通常设有计分员负责记录得分情况,并及时更新比分榜。
•决胜规则:若比赛结束时有多人或多队得分相同,可采取额外的决胜方式来确定胜负。
3. 竞赛要素知识竞赛抢答题比赛中有一些关键要素影响着比赛的进行和结果:•知识广度:参赛者需要具备广泛的知识储备,涉及到文化、科学、历史等各个领域。
•反应速度:由于抢答时间紧迫,参赛者的反应速度也是取胜的关键之一。
•策略:参赛者可以根据题目类型和自身情况选择适当的策略,如集中抢答某个领域题目,或者谨慎抢答保持积分。
•团队配合:在团队赛中,团队成员之间的默契配合也是获胜的重要条件。
4. 知名比赛知识竞赛抢答题比赛在各类媒体平台上广受欢迎,有一些知名的比赛深受观众喜爱,例如:•《谁是首富》:一档知识竞赛抢答节目,通过各种题目考验参赛者的各方面知识。
•学校知识竞赛:学校常常组织各类知识竞赛比赛,学生们在比赛中展现各自的学识。
•电视台知识竞赛:电视节目中也有不少知识竞赛节目,吸引着众多观众参与。
5. 结语知识竞赛抢答题比赛是一种充满挑战和乐趣的竞赛形式,参与其中既可以锻炼个人知识水平,也可以培养团队合作精神。
一、选择题 1.不等式组20240x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .2.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( )A .B .C .D .3.已知点()121M m m --,在第四象限,则m 的取值范围在数轴上表示正确的是( ) A . B .C .D .4.不等式组10840x x ->⎧⎨-≤⎩的解集在数轴上表示为( )A .B .C .D .5.如果a 、b 表示两个负数,且a b >,则( ) A .1ab> B .1b a> C .11a b> D .1ab <6.不等式()2x 13x -≥的解集是( ) A .x 2≥B .x 2≤C .x 2≥-D .x 2≤-7.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数答错题数得分下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分D .某参赛选手得分可能为负数8.若a b <,则下列不等式中不正确的是( ) A .11+<+a bB .a b ->-C .22a b --<--D .44a b < 9.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .68m <<B .67≤<mC .67m ≤≤D .67m <≤10.若01x <<,则下列选项正确的是( ) A .21x x x<< B .21x x x<<C .21x x x<<D .21x x x<< 11.下列不等式说法中,不正确的是( ) A .若,2x y y >>,则2x > B .若x y >,则22x y -<- C .若x y >,则22x y >D .若x y >,则2222x y --<--二、填空题12.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是______________(任写一个). 13.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是3x my m =⎧⎨=+⎩(m 为常数),方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩的解x 、y 满足3x y +>,则m 的取值范围为______. 14.先阅读短文,回答后面所给出的问题:对于三个数a 、b 、c 中,我们给出符号来表示其中最大(小)的数,规定{}min ,,a b c 表示这三个数中最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}min 1,2,31-=-,{}max 1,2,33-=;{}(1)min 1,2,1(1)a a a a ≤-⎧-=⎨->-⎩,若{}{}min 4,4,4max 2,1,2x x x x +-=+,则x 的值为_______.15.已知关于x 的不等式6m x <<的整数解共有3个,则m 的取值范围为_____________. 16.已知点()6,29P m m --关于x 轴对称的点在第三象限,则m 的整数解是______.17.在平面直角坐标系 xOy 中,点(,)P a b 的“变换点”Q 的坐标定义如下:当a b 时,Q点坐标为(,)b a -;当a b <时,Q 点坐标为(,)a b -. (1)(2,3)-的变换点坐标是_____________.(2)若(,0.52)a a -+的变换点坐标是(,)m n ,则m 的最大值是_____________.18.若不等式(2﹣a )x >2的解集是x <22a-,则a 的取值范围是_____. 19.关于x 的不等式2x -a ≤-3的解集如图所示,则a 的值是______ .20.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________. 21.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.三、解答题22.解不等式组253(2)13212x x xx +≤+⎧⎪⎨+-≤⎪⎩, 并把不等式组的解集在数轴上表示出来,写出不等式组的非负整数解.23.筹建中的迪荡中学需720套单人课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组.每组每天可生产12张:生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案. 24.解下列不等式(组) (1)5261x x -<+;(2)2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩. 25.工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A 、B 两种产品共50件.已知生产一件A 种产品需要甲种原料9千克,乙种原料3千克;生产一件B 种产品需要甲种原料4千克,乙种原料10千克.则安排A 、B 两种产品的生产件数有几种方案?一、选择题1.已知关于x 的不等式组15x ax b-≥⎧⎨+≤⎩的解集是3≤x ≤5,则+a b 的值为( )A .6B .8C .10D .122.已知关于x 的不等式组3x 05m x +⎧⎨-⎩<>的所有整数解的和为-9,则m 的取值范围( )A .3≤m <6B .4≤m <8C .3≤m <6或-6≤m <-3D .3≤m <6或-8≤m <-43.某商品进价为800元,出售时标价为1200元,后来由于该商品积压,准备打折销售,若要保证利润率不低于5%,则最多可打几折( ) A .6B .7C .8D .94.如果a b >,可知下面哪个不等式一定成立( ) A .a b ->-B .11a b< C .2a b b +> D .2a ab >5.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A .6折 B .7折 C .8折D .9折6.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a --7.下列不等式中,是一元一次不等式的是( ) A .2x 10->B .12-<C .3x 2y 1-≤-D .2y 35+>8.关于x 的不等式620x x a -≤⎧⎨≤⎩有解,则a 的取值范围是( )A .a <3B .a≤3C .a≥3D .a >39.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是 A .m ≥2B .m >2C .m <2D .m ≤210.若线段4、4、m 能构成三角形,且使关于x 的不等式组23834x m x m >-⎧⎨-+≥-⎩有解的所有整数m 的和为( ) A .6B .1C .2D .311.已知实数x ,y ,且2<2x y ++,则下列不等式一定成立的是( ) A .x y >B .44x y ->-C .33x y ->-D .22x y> 二、填空题12.不等式21302x --的非负整数解共有__个. 13.已知不等式组11x x a >⎧⎨<-⎩无解,则a 的取值范围为__.14.对任意四个整数a 、b 、c 、d 定义新运算:a b c dad bc =-,若1<2 4 1x x -<12,则x 的取值范围是____.15.不等式组的解集为23113x x -<⎧⎨-≤⎩的解集为______.16.已知点()6,29P m m --关于x 轴对称的点在第三象限,则m 的整数解是______. 17.令a 、b 两个数中较大数记作{}max ,a b 如{}max 2,33=,已知k 为正整数且使不等式{}max 21,33k k +-+≤成立,则关于x 方程21136x k x---=的解是_____________. 18.关于x 的不等式2x -a ≤-3的解集如图所示,则a 的值是______ .19.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________.20.已知a 340218a <+<a 的值为____________. 21.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.三、解答题22.解不等式或不等式组,并把解集在数轴上表示出来.(1)432136x x -+>-; (2)2(1)0210x x +<⎧⎨-⎩.23.解不等式组:23332x x x x >-⎧⎪⎨-+≥⎪⎩①②,并把它们的解集表示在数轴上.24.(1)解不等式()311x x -≥+,并将其解集在数轴上表示出来.(2)若不等式325123x x --<+的最小整数解是关于x 的方程24x ax -=的解,求a 的值. 25.解下列不等式(组) (1)22143x x +-≥ (2)2731205x x x +>-⎧⎪-⎨≥⎪⎩一、选择题1.已知关于x 的不等式组521x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( )A .a <3B .a ≥3C .a >3D .a ≤32.下列各式中正确的是( ) A .若a b >,则11a b -<- B .若a b >,则22a b >C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 3.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是( )A .1x >-B .3x ≤C .13x -≤≤D .13x -<≤4.不等式组23x x ≥-⎧⎨<⎩的整数解的个数是( )A .4个B .5个C .6个D .无数个5.如果a b >,可知下面哪个不等式一定成立( ) A .a b ->-B .11a b< C .2a b b +> D .2a ab >6.下列说法中不正确的是( ) A .若a b >,则a 1b 1->- B .若3a 3b >,则a b > C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<-7.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数 答错题数得分 A20 0 100 B18 2 88 C14 6 64 D15570E 9 11 34下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分D .某参赛选手得分可能为负数8.若a b <,则下列各式中不一定成立的是( ) A .11a b -<-B .33a b <C .a b ->-D .ac bc <9.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( )A .a <-2B .a ≤-2C .a >-2D .a ≥-210.不等式组32153x x ->⎧⎨-<-⎩的解集在数轴上的表示是( )A .B .C .D .11.下列命题是假命题的是( ).A .两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B .在实数7.5-15327-,π-,22中,有3个有理数,2个无理数C .在平面直角坐标系中,点(21,7)P a a -+在x 轴上,则点P 的坐标为(7,0)-D .不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为7二、填空题12.“鼠去牛来辞旧岁,龙飞凤舞庆明时.”在新年的钟声敲响之际,南开中学初2022级举行了元旦晚会.在晚会前,一、二、三班都组织购买了 A 、B 、C 三类糖果.已知一班分别购买 A 、B 、C 三类糖果各3千克、2千克、5千克,二班分别购买A 、B 、C 三类糖果各 2千克、1千克、4千克,且一班和二班购买糖果的总金额比值为3∶2.若三类糖果单价和为108元,且各单价是低于50元/千克的整数,A 与C 单价差大于25元.则三班分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为______元.13.先阅读短文,回答后面所给出的问题:对于三个数a 、b 、c 中,我们给出符号来表示其中最大(小)的数,规定{}min ,,a b c 表示这三个数中最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}min 1,2,31-=-,{}max 1,2,33-=;{}(1)min 1,2,1(1)a a a a ≤-⎧-=⎨->-⎩,若{}{}min 4,4,4max 2,1,2x x x x +-=+,则x 的值为_______.14.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________.15.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________.16.已知点N 的坐标为()8a a -,,则点N 一定不在第____象限 17.不等式组210360x x ->⎧⎨-<⎩的解集为_______.18.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.19.已知a >b ,则15a +c _____15b +c (填“>”“<”或“=”).20.方程组43165x y k x y -=+⎧⎨+=⎩的解x 、y 满足条件0783x y ,则k 的取值范围_____.21.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,则甲种运输车至少需要安排 ________辆.三、解答题22.台州某电视台组织知识竞赛,共设20道选择题,各题分值相同,答对一题得5分,可以选择不答,下表记录的是5名参赛者的得分情况.(1)由表格知,不答一题得________分,答错一题扣_________分.(2)某参赛者F 一共对了14题,不答题数与总得分有何关系?(3)某参赛者G 答错题数比不答题数的2倍多1题,最后得分为64分,他答对了几道题? (4)在前10道题中,参赛者N 答对8题,1题放弃不答,1题答错,则后面10题中,至少要答对几题才有可能使最后得分不低于79分?为什么?23.解不等式:()3157x x +≤+,并把它的解集在数轴上表示出来.24.某电器超市销售A 、B 两种型号的电风扇,表中是近两周的销售情况:(1)求A 、B 两种型号的电风扇的销售单价.(2)若A 、B 两种型号的电风扇每台进价分别为200元,170元,该超市准备采购这两种型号的电风扇共30台,且费用不多于5400元.①最多能采购A 种型号的电风扇多少台?②设超市销售完这30台电风扇所获得的利润为W 元,试问利润能否达到1400元?若能,请给出相应的采购方案;若不能,请说明理由.25.解方程或不等式(组)(1)2(21)1690x --=.(2)211143x x +-+. (3)421223x x x x+⎧-<⎪⎨⎪-⎩。
2017年中央电视台趣味古诗词知识竞赛试题2017年中央电视台趣味古诗词知识竞赛试题中国古典诗文是中华文化宝库中的精华,近年来涌现了如《诗词大会》这样宣扬和传承古典诗词的节目,掀起了全民学习的高潮。
下面YJBYS小编为大家整理搜集了2017年中央电视台趣味古诗词知识竞赛试题,欢迎大家阅读参考,希望帮助到大家!一、古诗趣味园。
1、七彩园——填颜色。
乌云翻( )未遮山,( )雨跳珠乱入船。
山外( )山楼外楼,西湖歌舞几时休?等闲识得东风面,万( )千( )总是春。
碧玉妆成一树高,万条垂下( )丝绦。
( )毛浮( )水,( )掌拨清波。
( )日依山尽,( )河入海流。
一年好景君须记,最是橙( ) 橘( )时。
千里( )云( )日曛,北风吹雁雪纷纷。
2、百花园——填花名。
小楼一夜听春雨,深巷明朝卖( )。
接天莲叶无穷碧,映日()别样红。
人闲()落,夜静春山空。
借问()何处落,风吹一夜满关山。
忽如一夜春风来,千树万树( )开。
去年今日此门中,人面( )相映红。
待到重阳日,还来就( )。
借问酒家何处有?牧童遥指( )村。
3、动物园——填动物。
春( )到死丝方尽,蜡炬成灰泪始干。
晴川历历汉阳树,芳草凄凄( )洲。
泥融飞( ),沙暖睡( )。
西塞山前( )飞,桃花流水( )肥。
蒌蒿满地芦芽短,正是( )欲上时。
4、数字园——填数字。
人间( )月芳菲尽,山寺桃花始盛开。
故人西辞黄鹤楼,烟花( )月下扬州。
停车坐爱枫林晚,霜叶红于( )月花。
( )曲黄河万里沙,浪淘风簸自天涯。
白发( )千丈,缘愁似个长。
举杯邀明月,对影成( )人。
酒债寻常行处有,人生( )( )古来稀。
南朝( )百( )( )寺,多少楼台烟雨中。
故国( )千里,深宫( )( )年。
5、地名园——填地名。
一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( )A .a <3B .a ≥3C .a >3D .a ≤3B解析:B 【分析】首先解不等式,然后根据不等式组无解确定a 的范围. 【详解】 解:5210x x a -≥-⎧⎨->⎩①②解不等式①,得3x ≤; 解不等式②,得x a >; ∵不等式组无解, ∴3a ≥; 故选:B . 【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a的值为( )A .﹣1B .0C .1D .2D解析:D 【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值. 【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩,解不等式1x a -<-得:1x a <-, 解不等式113x-≤得:2x ≥-,∴不等式组的解集为:21x a -≤<-, 由数轴知该不等式组有3个整数解, 所以这3个整数解为-2、-1、0, 则11a -=, 解得:2a =, 故选:D . 【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.3.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是( )A .1x >-B .3x ≤C .13x -≤≤D .13x -<≤ D解析:D 【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集. 【详解】由数轴知,此不等式组的解集为-1<x≤3, 故选D . 【点睛】考查解一元一次不等式组,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )x… -2 -1 0 1 2 3 … y …321-1-2…A .x <1B .x >1C .x <0D .x >0A解析:A将x=0、y=1和x=1、y=0代入ax+b=y得到关于a、b的方程组,解之得出a、b的值,从而得到关于x的不等式,解之可得答案.【详解】解:根据题意,得:10 ba b=⎧⎨+=⎩,解得a=-1,b=1,则不等式-ax-b<0为x-1<0,解得x<1,故选:A.【点睛】本题考查了解一元一次不等式,解题的关键是根据题意列出关于x的不等式,并熟练掌握解一元一次不等式的步骤和依据.5.不等式组20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A .B .C .D . C解析:C【解析】分析:先求出各不等式的解集,再求出其公共解集即可.详解:解不等式x+2>0,得:x>-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选C.点睛:本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.若关于x的不等式组255332xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a的取值范围( )A.1162a-<-B.116a2-<<-C.1162a-<-D.1162a-- A【分析】分别解两个不等式得到得x <20和x >3-2a ,由于不等式组只有5个整数解,则不等式组的解集为3-2a <x <20,且整数解为15、16、17、18、19,得到14≤3-2a <15,然后再解关于a 的不等式组即可. 【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20 解②得x >3-2a ,∵不等式组只有5个整数解, ∴不等式组的解集为3-2a <x <20, ∴14≤3-2a <15,1162a ∴-<-故选A 【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键.7.如果不等式组5x x m <⎧⎨>⎩有解,那么m 的取值范围是( )A .m >5B .m≥5C .m <5D .m≤8C解析:C 【解析】 ∵不等式组有解,∴m <5. 故选C .【方法点睛】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键. 8.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数 答错题数得分 A20 0 100 B18288A .胜一场积5分,负一场扣1分B .某参赛选手得了80分C .某参赛选手得了76分D .某参赛选手得分可能为负数B解析:B 【分析】由参赛者A 可得:胜一场得100÷20=5分,设负一场扣x 分,根据参赛者B 的得分列出方程,求出方程的解即可得出负一场扣多差分;设参赛选手胜y 场,则负(20-y )场,根据胜场的得分+负场的得分=选手得分,分别建立方程求出其解即可. 【详解】A .由参赛者A 可得:胜一场得100÷20=5分,设负一场扣x 分,根据参赛者B 的得分:5181288x ⨯-⨯=,解得:1x =,所以负一场扣1分;故本选项正确;B .设参赛选手胜y 场,则负(20-y )场,则()512080y y ⨯-⨯-=,解得503y =,∵y 为整数,∴参数选手不可能得80分;故本选项错误;C .设参赛选手胜y 场,则负(20-y )场,()512076y y ⨯-⨯-=,解得16y =,所以参数选手胜了16场,负了4场;故本选项正确;D .设参赛选手胜y 场,则负(20-y )场,()51200y y ⨯-⨯-<,解得103y <,所以当参赛选手低于4场胜利时候,得分就可能是负数;故本选项正确; 故选:B 【点睛】本题考查了总数÷分数=每份数的运用,列一元一次方程解实际问题的运用,结论猜想试题的运用,解答时关键胜场的得分+负场得分=总得分是关键.9.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤7B解析:B 【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围. 【详解】解不等式x ﹣m <0,得:x <m ,解不等式7﹣2x≤2,得:x≥52,因为不等式组有解,所以不等式组的解集为52≤x<m,因为不等式组的整数解有3个,所以不等式组的整数解为3、4、5,所以5<m≤6.故选:B.【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.10.不等式325132x x++≤-的解集表示在数轴上是()A.B.C.D. B解析:B【分析】根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.【详解】解:去分母,得,2(3x+2)≤3(x+5)﹣6,去括号,得6x+4≤3x+15﹣6,移项、合并同类项,得3x≤5,系数化为1,得,x≤53,在数轴上表示为:故选:B.【点睛】本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.二、填空题11.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.1≤x <4【分析】分别求出每一个不等式的解集再找到公共部分即可得【详解】解:解不等式①得x <4解不等式②得x≥1所以不等式组的解集为:1≤x <4故答案为:1≤x <4【点睛】此题主要考查了求一元一次不解析:1≤x <4. 【分析】分别求出每一个不等式的解集,再找到公共部分即可得. 【详解】解:217?311?2x x x -<⎧⎪⎨+-≥⎪⎩①②解不等式①得,x <4, 解不等式②得,x≥1,所以,不等式组的解集为:1≤x <4. 故答案为:1≤x <4. 【点睛】此题主要考查了求一元一次不等式组的解集,正确求出每一个不等式解集是解答此题的关键.12.已知关于x 的不等式6m x <<的整数解共有3个,则m 的取值范围为_____________.【分析】首先写出连续3小于6的整数然后即可判断m 的取值范围【详解】由题意得:符合题意的整数解为543∴m 不能取值3可以取值2∴故答案为【点睛】本题考查了解不等式难度较低主要考查学生对不等式组知识点的解析:23m ≤<【分析】首先写出连续3小于6的整数,然后即可判断m 的取值范围. 【详解】由题意得:符合题意的整数解为5,4,3 ∴m 不能取值3,可以取值2 ∴23m ≤< 故答案为23m ≤<. 【点睛】本题考查了解不等式,难度较低,主要考查学生对不等式组知识点的掌握.整理出x 的取值范围分析整数解情况为解题关键.13.若||2x =,||3y =,且0x y +<,则x y -值为______.1或5【分析】由已知可以得到x=2或-2y=3或-3然后对xy 的取值进行分类讨论找出使x+y<0的取值组合即可求得x-y 的值【详解】解:∵|x|=2|y|=3∴x=2或-2y=3或-3(1)当x=2解析:1或5 【分析】由已知可以得到x=2或-2,y=3或-3,然后对x 、y 的取值进行分类讨论,找出使x+y<0的取值组合,即可求得x-y 的值. 【详解】解:∵|x|=2,|y|=3,∴x=2或-2,y=3或-3,(1)当x=2时,要使x+y<0 ,必须y=-3,此时x-y=2-(-3)=2+3=5; (2)当x=-2时,要使x+y<0 ,必须y=-3,此时x-y=-2-(-3)=-2+3=1; 故答案为1或5. 【点睛】本题考查绝对值、不等式和有理数加减法的综合应用,熟练掌握绝对值、不等式、有理数加减法及分类讨论的思想是解题关键 . 14.若关于x 的不等式组2()12153xm x 的解集为76x -<<-,则m 的值是______.【分析】先解不等式组得出其解集为结合可得关于的方程解之可得答案【详解】解:由①得:由②得:不等式的解集为:∵关于的不等式组的解集为【点睛】本题考查的是利用一元一次不等式组的解集求参数熟悉相关性质是解 解析:152【分析】先解不等式组得出其解集为1262m x,结合76x -<<-可得关于m 的方程,解之可得答案. 【详解】 解:2()102153xm x ①②由①得:2210x m +->,221x m >-+, 12x m >-+ 由②得:212x <-,6x <-,∴不等式的解集为:162m x -+<<- ∵关于x 的不等式组的解集为76x -<<-,172m ∴-+=-152m ∴=【点睛】本题考查的是利用一元一次不等式组的解集求参数,熟悉相关性质是解题的关键. 15.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________.0【分析】求出不等式组的解集确定出最小整数解即可【详解】不等式组整理得:不等式组的解集为:-1<x≤2最小的整数解为0故答案为:0【点睛】本题主要考查一元一次不等式组的整数解掌握一元一次不等式组的求解析:0 【分析】求出不等式组的解集,确定出最小整数解即可. 【详解】不等式组整理得:21x x ≤⎧⎨>-⎩,∴不等式组的解集为:-1<x ≤2,∴最小的整数解为0.故答案为:0. 【点睛】本题主要考查一元一次不等式组的整数解,掌握一元一次不等式组的求解是解题关键. 16.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌解析:35m <-【分析】首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可. 【详解】25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++,解得12mx -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-.【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.17.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.【分析】先求出不等式的解再根据不等式的最大整数解确定a 的取值范围即可【详解】解:解得∵不等式的最大整数解为∴解得:;故答案为:【点睛】本题考查的是不等式的解正确的解不等式是解题的关键 解析:512a -<≤- 【分析】先求出不等式的解,再根据不等式的最大整数解确定a 的取值范围即可. 【详解】解:解2310a x -->,得213<-a x , ∵不等式2310a x -->的最大整数解为2-,∴21-2-13<-≤a , 解得:512a -<≤-; 故答案为:512a -<≤-.【点睛】本题考查的是不等式的解,正确的解不等式是解题的关键.18.已知a 、b 的和,a 、b 的积及b 的相反数均为负,则a ,b ,a -,+a b ,b a -的大小关系是________.(用“<”把它们连接起来)【分析】根据相反数正负数和有理数加减运算的性质分析即可得到答案【详解】∵∴∴∴∵∴∴∵∴∴即故答案为:【点睛】本题考查了相反数正负数有理数大小比较有理数加减运算的知识;解题的关键是熟练掌握相反数正负 解析:a a b b a b a <+<<-<-【分析】根据相反数、正负数和有理数加减运算的性质分析,即可得到答案.【详解】∵0b -<∴0b >∴0b a a -+>∴b a a ->-,b a a +>∵0a b ⨯<∴0a <∴0a ->∵0a b +<∴b a <-∴0a a b b a b a <+<<<-<-即a a b b a b a <+<<-<-故答案为:a a b b a b a <+<<-<-.【点睛】本题考查了相反数、正负数、有理数大小比较、有理数加减运算的知识;解题的关键是熟练掌握相反数、正负数和有理数加减运算的性质,从而完成求解.19.如果不等式组324x a x a +⎧⎨-⎩<<的解集是x <a ﹣4,则a 的取值范围是_______.a≥﹣3【分析】根据口诀同小取小可知不等式组的解集解这个不等式即可【详解】解这个不等式组为x <a ﹣4则3a+2≥a ﹣4解这个不等式得a≥﹣3故答案a≥﹣3【点睛】此题考查解一元一次不等式组掌握运算法解析:a ≥﹣3.【分析】根据口诀“同小取小”可知不等式组32{4x a x a +-<<的解集,解这个不等式即可. 【详解】解这个不等式组为x <a ﹣4,则3a +2≥a ﹣4,解这个不等式得a ≥﹣3故答案a ≥﹣3.【点睛】此题考查解一元一次不等式组,掌握运算法则是解题关键 20.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________.【分析】表示出不等式组中两不等式的解集根据x 的范围确定出a 的值即可【详解】解不等式得解不等式得∵不等式组的解集为解得:故答案为:【点睛】本题考查了解一元一次不等式组能根据不等式的解集和已知得出关于的解析:5a =-【分析】表示出不等式组中两不等式的解集,根据x 的范围确定出a 的值即可.【详解】解不等式21x a ->得12a x +>, 解不等式122x x ->-得1x <,∵不等式组的解集为21x -<<,122a +=-, 解得:5a =-.故答案为:5a =-.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于a 的方程是解此题的关键.三、解答题21.我国古代民间把正月正、二月二、三月三、五月五、六月六、七月七、九月九这“七重”列为吉庆日;“七”在生活中表现为时间的阶段性,比如一周有“七天”……在数的学习过程中,有一类自然数具有的特性也和“七”有关.定义:对于四位自然数n ,若其千位数字与个位数字之和等于7,百位数字与十位数字之和也等于7,则称这个四位自然数n 为“七巧数”.例如:3254是“七巧数”,因为347+=,257+=,所以3254是“七巧数”; 1456不是“七巧数”,因为167+=,但457+≠,所以1456不是“七巧数”.(1)若一个“七巧数”的千位数字为a ,则其个位数字可表示为______(用含a 的代数式表示);(2)最大的“七巧数”是______,最小的“七巧数”是______;(3)若m 是一个“七巧数”,且m 的千位数字加上十位数字的和,是百位数字减去个位数字的差的3倍,请求出满足条件的所有“七巧数”m .解析:(1)7-a ;(2)7700,1076;(3)6431,4523,2615【分析】(1)根据七巧数的定义,即可得到答案;(2)根据七巧数的定义,即可得到答案;(3)设m 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,根据题意得到a ,b ,c ,d 之间的数量关系,进而求出b 的范围,即可求解.【详解】(1)∵一个“七巧数”的千位数字为a ,∴其个位数字可表示为:7-a ,故答案是:7-a ;(2)由题意可得:最大的“七巧数”是:7700,最小的“七巧数”是:1076,故答案是:7700,1076;(3)设m 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则3()77a c b d a d c b +=-⎧⎪=-⎨⎪=-⎩①②③,把②③代入①,可得:7-d+7-b=3b-3d ,既:4b-2d=14,∴d=2b-7,∴百位数字为b ,个位数字为2b-7,十位数字为7-b ,∵2b-7≥0且7-b≥0,∴3.5≤b≤7,当b=4时,则d=1,a=6,c=3,m=6431,当b=5时,则d=3,a=4,c=2,m=4523,当b=6时,则d=5,a=2,c=1,m=2615,当b=7时,则d=7,a=0,c=0,不符合题意,∴ 满足条件的所有“七巧数”m 为:6431,4523,2615.【点睛】本题主要考查新定义问题,理解题意,列出方程和不等式,掌握分类讨论的思想方法,是解题的关键.22.(1)解方程组:43220x y x y +=⎧⎨+=⎩(2)解不等式组:3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩ 解析:(1)12x y =-⎧⎨=⎩;(2)25x ≤<. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)43220x y x y +=⎧⎨+=⎩①②, 由①2-⨯②得:322y y -=,解得2y =,将2y =代入②得:220x +=,解得1x =-,则方程组的解为12x y =-⎧⎨=⎩; (2)3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩①②, 解不等式①得:5x <,解不等式②得:2x ≥,则不等式组的解为25x ≤<.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.23.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来. 解析:解集为:31x -<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:32,12125x x x x <+⎧⎪⎨++≥⎪⎩①②,由①得:1x <;由②得:3x ≥-,∴不等式组的解集为31x -≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.24.解下列方程(方程组)或不等式(组).(1)[]{}3213(21)35x x ---+=(2)2(53)3(12)x x x +≤--(3)解方程214163x x --=-(4)解方程组2538x y x y +=⎧⎨-=⎩(代入法解) (5)372(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩ (6)0.35340.532m n m n m n m n +-⎧-=⎪⎪⎨+-⎪+=⎪⎩ 解析:(1)23x =-;(2)3x ≤-;(3)34x =;(4)31x y =⎧⎨=⎩;(5)15x -≤<;(6)71012m n ⎧=⎪⎪⎨⎪=⎪⎩. 【分析】(1)先去括号,然后移项、合并同类项,系数化为1,即可得到答案;(2)先去括号,然后移项、合并同类项,系数化为1,即可得到答案;(3)先去分母,去括号,然后移项、合并同类项,系数化为1,即可得到答案; (4)由代入消元法解方程组,即可得到答案;(5)先求出每个不等式的解集,即可得到不等式组的解集;(6)先把方程组去分母,然后进行整理,再利用加减消元法解方程组,即可得到答案.【详解】解:(1)[]{}3213(21)35x x ---+=,∴[]{}3216335x x ---+=,∴{}32165x x --=,∴{}3145x --=,∴3125x --=, ∴23x =-; (2)2(53)3(12)x x x +≤--, ∴10636x x x +≤-+,∴10736x x -≤--,∴39x ≤-,∴3x ≤-;(3)214163x x --=-,∴212(4)6x x -=--,∴21826x x -=--,∴43x =, ∴34x =; (4)2538x y x y +=⎧⎨-=⎩①②, 由①得:52x y =-③,把③代入②得:3(52)8y y --=,解得:1y =,把1y =代入①,得3x =,∴方程组的解为31x y =⎧⎨=⎩; (5)372(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩①② 解不等式①,得5x <;解不等式②,得1x ≥-;∴不等式组的解集为:15x -≤<;(6)0.35340.532m n m n m n m n +-⎧-=⎪⎪⎨+-⎪+=⎪⎩, 方程组整理得:5352153m n m n +=⎧⎨-=⎩①②, 由①-②,得:3618n =, ∴12n =, 把12n =代入②,得710m =, ∴方程组的解为:71012m n ⎧=⎪⎪⎨⎪=⎪⎩; 【点睛】本题考查了解一元一次方程,解二元一次方程组,解不等式,解不等式组,解题的关键是熟练掌握运算法则,正确的进行解题.25.解不等式(组):(1)24123x x ---≤;(2)63(4) 23253x xx x-≥-⎧⎪⎨++>⎪⎩①②.解析:(1)x≤4;(2)1<x≤3.【分析】(1)先去分母,再去括号、移项、合并同类项、系数化为1得到解集;(2)分别解不等式即可得到不等式组的解集.【详解】解:(1)去分母,得:3(x﹣2)﹣6≤2(4﹣x),去括号,得:3x﹣6﹣6≤8﹣2x,移项,得:3x+2x≤8+6+6,合并同类项,得:5x≤20,系数化为1,得:x≤4;(2)解不等式①,得:x≤3,解不等式②,得:x>1,则不等式组的解集为1<x≤3.【点睛】此题考查解不等式及不等式组,掌握解不等式的方法是解题的关键.26.解不等式组:23332x xxx>-⎧⎪⎨-+≥⎪⎩①②,并把它们的解集表示在数轴上.解析:(1)1<x≤3,图见解析【分析】求出不等式组中两个不等式的解集后,再求出两个解集的公共部分并在数轴上表示出来即可.【详解】解:解不等式①得:x>1,解不等式②得:x≤3,∴不等式组的解集为:1<x≤3,并可在数轴上表示如下:【点睛】本题考查不等式组的求解,熟练掌握求不等式解集公共部分的方法是解题关键. 27.解不等式,并把解表示在数轴上. 417366x x +≥- 解析:3x ≤,见解析【分析】先去分母,然后移项、合并同类项,系数化为1,即可得到答案.【详解】解:去分母,得2417x x ≥+-移项,得4271x x -≤-合并同类项,得26x ≤系数化为1,得3x ≤;把解表示在数轴上如图:【点睛】本题考查了解一元一次不等式,解题的关键是掌握解不等式的方法进行解题.28.计划对河道进行改造,现有甲乙两个工程队参加改造施工,受条件限制,每天只能由一个工程队施工.若甲工程队先单独施工3天,再由乙工程队单独施工5天,则可以完成550米施工任务:若甲工程队先单独施工2天,再由乙工程对单独施工4天,则可以完成420米的施工任务.(1)求甲、乙两个工程队平均每天分别能完成多少米施工任务?(2)该河道全长6000米,若两队合作工期不能超过90天,乙工程队至少施工多少天? 解析:(1)甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米;(2)乙工程队至少施工50天【分析】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据等量关系列出二元一次方程组,即可求解;(2)设乙工程队施工a 天,根据不等量关系,列出一元一次不等式,即可求解.【详解】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据题意得:3555024420x y x y +=⎧⎨+=⎩,解得:5080x y =⎧⎨=⎩, 答:甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米; (2)设乙工程队施工a 天,根据题意得:80a+50(90-a )≥6000,解得:a≥50,答:乙工程队至少施工50天【点睛】本题主要考查二元一次方程组与一元一次不等式的实际应用,找出等量关系和不等量关系,列出方程组和不等式,是解题的关键.。
党章党纪党规知识竞赛案例分析30题(含答案)1.某厅局副处级党员领导干部马某利用省城工作之便,策划和组织自发成立的战友会,并担任战友会副会长等。
根据《中国共产党纪律处分条例》,对马某应该如何处理?请援引《条例》相应条款并进行分析。
马某的该种行为属于违反组织纪律的行为。
马某作为副处级党员领导干部,参加自发成立的战友会,且担任战友会副会长,完全违反了党的组织纪律,应根据情节轻重给予纪律处分。
根据《中国共产党纪律处分条例》规定,党员领导干部违反有关规定组织、参加自发成立的老乡会、校友会、战友会等,情节严重的,给予警告、严重警告或者撤销党内职务处分。
2.某电视台原主持人党员张某在某酒店与多家单位人员聚餐,言谈间极力丑化毛泽东和中国共产党的形象,引起社会强烈反响。
请援引《中国共产党纪律处分条例》相应条款并进行分析。
张某丑化毛泽东和中国共产党的形象的行为属于违反政治纪律的行为,应根据情节轻重给予纪律处分。
《中国共产党纪律处分条例》规定,通过信息网络、广播、电视、报刊、书籍、讲座、论坛、报告会、座谈会等方式,丑化党和国家形象,或者诋毁、诬蔑党和国家领导人,或者歪曲党史、军史的,情节较轻的,给予警告或者严重警告处分;情节较重的,给予撤销党内职务或者留党察看处分;情节严重的,给予开除党籍处分。
3.日前,中央纪委发出通报,某省委原常委、秘书长赵某严重违反党的政治纪律,在党内搞团团伙伙,大肆进行利益交换、利益输送,拉拢腐蚀领导干部,公开散布与全面从严治党要求相违背的言论,被开除党籍。
请援引《中国共产党纪律处分条例》相应条款并进行分析。
赵某的该种行为属于违反党的政治纪律的行为,应根据情节轻重给予纪律处分。
根据《中国共产党纪律处分条例》规定,在党内搞团团伙伙、结党营私、拉帮结派、培植私人势力或者通过搞利益交换、为自己营造声势等活动捞取政治资本的,给予严重警告或者撤销党内职务处分;情节严重的,给予留党察看或者开除党籍处分。
广播电视知识竞赛试题及参照答案一、多选1、集团管控管理手册编制原则( ABC )。
A、系统性原则B、权责明确原则C、包容性原则D、效率性原则2、董事会新成立了三个委员会( ACD )A、专家技术委员会B、薪酬与考核委员会C、预算委员会D、战略投资征询委员会3、省企业未来旳组织架构中,将成立部分子企业有( ABCD )A、技术投资企业B、工程建设企业C、电视运行管理企业D、网络资源经营管理企业4、企业各项管控制度制定和管控活动中,坚持( ACD )三项基本原则。
A、合标B、合规C、合理D、合情5、省企业所属单位按照省企业旳统一布署,搞好各自领域旳经营管理,提高专业化水平,形成“( ABCD )运行高效、友好有序”旳集团管控体系。
A、定位明确B、分工协作C、管控有力D、沟通顺畅6、保证企业关键业务安全、可靠、稳定,保障基本公共文化服务;通过创新发明,培育企业( ABD )三大内生性创新能力;通过创新发明,打造高素质人才队伍,形成支撑企业可持续发展旳人才环境与机制。
A、市场机制创新能力B、技术与产品创新能力C、经营与销售创新能力D、社会资源引进消化吸取再创新7、大胆实践,鼓励和支持一切有助于经济效益高速增长旳生产要素开发配置旳改革创新实践。
积极运用资本杠杆手段,实行广电网络业务旳资源、市场、人才、技术、产品及增值应用服务旳对内引进合作与对外投资扩张,( BCD )。
A、对内增进增长B、用存量换增量C、用资源换资本D、用产品换效益8、积极鼓励产品转化应用创新发明。
积极鼓励开发智能终端应用实体商品。
鼓励与终端实体商品制造商联合研发、生产并载网销售。
对于有市场应用前景旳( ABCD )高清视频录制电话等类似商品,可以采用合作生产,载网代理推广销售等多种方式共同做大市场和利润。
对于前景看好、研发人无力开发或推广旳中间产品、半成品、创意产品,企业可以通过购置接续开发、联合开发等形式,引进来试验、改善,成熟后推向全国市场。
一、选择题1.下列各式中正确的是( ) A .若a b >,则11a b -<- B .若a b >,则22a b > C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 2.已知关于x 的不等式组1021x x x a -⎧<⎪⎨⎪+>⎩有且只有一个整数解,则a 的取值范围是( )A .11a -<≤B .11a -≤<C .31a -<≤-D .31a -≤<-3.已知点()3,2P a a --关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ). A . B . C .D .4.不等式组3213,23251223x x x x ++⎧≤+⎪⎨⎪->-⎩的解集为( )A .B .C .D .5.下列说法中不正确的是( ) A .若a b >,则a 1b 1->- B .若3a 3b >,则a b > C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<-6.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ). A .8-B .8C .10D .267.如果点P(m ,1m -)在第四象限,则m 的取值范围是( )A .0m >B .01m <<C .1m <D .1m8.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .68m <<B .67≤<mC .67m ≤≤D .67m <≤9.若m n <,则下列各式中正确的是( ) A .33m n +>+B .33m n ->-C .33m n ->-D .33m n > 10.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( ) A .x >3B .x <3C .x >﹣3D .x <﹣311.已知实数x ,y ,且2<2x y ++,则下列不等式一定成立的是( ) A .x y >B .44x y ->-C .33x y ->-D .22x y > 二、填空题12.关于x 的不等式组x 5x a ≤⎧⎨>⎩无解,则a 的取值范围是________.13.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.14.“x 的4倍与1的差不大于3”用不等式表示为 ________________ . 15.若不等式0x b x a -<⎧⎨+>⎩的解集为23x <<,则a ,b 的值分别为_______________.16.关于x 的不等式组0321x a x -≥⎧⎨->⎩有3个整数解,则a 的取值范围是________.17.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________. 18.若关于x 的不等式组2()12153xm x 的解集为76x -<<-,则m 的值是______.19.若a b >0,cb<0,则ac________0. 20.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.21.已知a >b ,则15a +c _____15b +c (填“>”“<”或“=”).三、解答题22.解不等式组253(2)13212x xxx+≤+⎧⎪⎨+-≤⎪⎩,并把不等式组的解集在数轴上表示出来,写出不等式组的非负整数解.23.解不等式或不等式组,并将其解集在数轴上表示出来.(1)解不等式2151132x x-+-≥,并把它的解集在数轴上表示出来.(2)解不等式组233311362x xx x+>⎧⎪+-⎨-≥⎪⎩.24.受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a,求a的最大值.25.学校需要购买一些篮球和足球,已知篮球的单价比足球的单价贵30元,买2个篮球和3个足球一共需要510元.(1)求篮球和足球的单价;(2)根据学生体育活动的需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的23,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?一、选择题1.下列各式中正确的是( ) A .若a b >,则11a b -<- B .若a b >,则22a b > C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 2.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .23.不等式-3<a≤1的解集在数轴上表示正确的是( ) A . B . C .D .4.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ). A .8-B .8C .10D .265.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数 答错题数得分 A20 0 100 B18 2 88 C14 6 64 D15570E 9 11 34下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分D .某参赛选手得分可能为负数6.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是 A .m ≥2B .m >2C .m <2D .m ≤27.如图,有理数a 在数轴上的位置如图所示,下列各数中,大小一定在0至1之间的是( )A .aB .1a +C .1-aD .1a-8.不等式组36030x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .9.下列命题是假命题的是( ).A .两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B .在实数7.5-,15,327-,π-,()22中,有3个有理数,2个无理数C .在平面直角坐标系中,点(21,7)P a a -+在x 轴上,则点P 的坐标为(7,0)-D .不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为710.如果a >b ,那么下列不等式不成立...的是( ) A .0a b -> B .33a b ->-C .1133a b >D .33a b ->-11.不等式1322x x -+>的解在数轴上表示正确的是( ) A .B .C .D .二、填空题12.若0a b c ++=,且a b c >>,以下结论: ①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =; ③22()a b c =+④||||||||a b c abc a b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >. 其中正确的结论是______(填写正确结论的序号).13.若关于x 的不等式0x a -<的正整数解只有3个,则a 的取值范围是________________.14.不等式组的解集为23113x x -<⎧⎨-≤⎩的解集为______.15.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________.16.不等式组233225x x x -≥⎧⎨+>-⎩的解集是__________.17.关于x 的不等式2x -a ≤-3的解集如图所示,则a 的值是______ .18.关于x 的不等式组0821x m x -≥⎧⎨->⎩有3个整数解,则m 的取值范围是______.19.已知a 、b 的和,a 、b 的积及b 的相反数均为负,则a ,b ,a -,+a b ,b a -的大小关系是________.(用“<”把它们连接起来)20.在实数范围内规定一种新的运算“☆”,其规则是:a ☆b=3a+b ,已知关于x 的不等式:x ☆m>1的解集在数轴上表示出来如图所示.则m 的值是________ .21.如果不等式组2{223xa xb +≥-<的解集是01x ≤<,那么+a b 的值为 .三、解答题22.解不等式(或组): (1)2934x x++≤(2)() 47512432x xx x⎧-<-⎪⎨->-⎪⎩23.某商店有A商品和B商品,已知A商品的单价比B商品单价多12元,若购买400件B 商品与购买100件A商品所用钱数相等.(1)求A,B两种商品的单价分别是多少元.(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4,如果需要购买A,B 两种商品的总件数不少于32,且该商店购买的A,B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?说明理由.24.(1)解方程组:35427x yx y-=⎧⎨+=⎩;(2)解不等式组:()3121318xxx x-⎧≥+⎪⎨⎪--<-⎩.25.解下列不等式(组)(1)221 43x x+-≥(2)273125x xx+>-⎧⎪-⎨≥⎪⎩一、选择题1.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .102.下列不等式的变形正确的是( ) A .由612m -<,得61m < B .由33x ->,得1x >- C .由03x>,得3x > D .由412a -<,得3a >-3.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是( )A .1x >-B .3x ≤C .13x -≤≤D .13x -<≤4.下列变形中,不正确的是( ) A .若a>b ,则a+3>b+3 B .若a>b ,则13a>13b C .若a<b ,则-a<-bD .若a<b ,则-2a>-2b.5.如果a b >,可知下面哪个不等式一定成立( ) A .a b ->-B .11a b< C .2a b b +> D .2a ab >6.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a --7.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数答错题数得分下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分D .某参赛选手得分可能为负数8.若关于x 的方程 332x a += 的解是正数,则a 的取值范围是( ) A .23a <B .23a >C .a 为任何实数D .a 为大于0的数9.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( ) A .2m >-B .2m >C .3m >D .2m <-10.若关于x 的不等式组327x x a -<⎧⎨<⎩的解集是x a <,则a 的取值范围是( ).A .3aB .3a >C .3aD .3a <11.如果a >b ,那么下列不等式不成立...的是( ) A .0a b ->B .33a b ->-C .1133a b >D .33a b ->-二、填空题12.已知点()2,3P a a -在第四象限,那么a 的取值范围是________. 13.关于x 的不等式组x 5x a≤⎧⎨>⎩无解,则a 的取值范围是________. 14.先阅读短文,回答后面所给出的问题:对于三个数a 、b 、c 中,我们给出符号来表示其中最大(小)的数,规定{}min ,,a b c 表示这三个数中最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}min 1,2,31-=-,{}max 1,2,33-=;{}(1)min 1,2,1(1)a a a a ≤-⎧-=⎨->-⎩,若{}{}min 4,4,4max 2,1,2x x x x +-=+,则x 的值为_______.15.对任意四个整数a 、b 、c 、d 定义新运算:a b c dad bc =-,若1<2 4 1x x -<12,则x 的取值范围是____.16.关于x ,y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足x +y >﹣1,则m 的取值范围是_____.17.若关于x 的不等式x a ≥的负整数解是1,2,3---,则实数a 满足的条件是________. 18.若||2x =,||3y =,且0x y +<,则x y -值为______.19.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________.20.若a b >0,cb<0,则ac________0. 21.方程组24x y k x y +=⎧⎨-=⎩的解满足1x >,1y <,k 的取值范围是:__________.三、解答题22.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来.23.解不等式或不等式组,并把解集在数轴上表示出来. (1)432136x x -+>-; (2)2(1)0210x x +<⎧⎨-⎩.24.定义一种新运算“a b ⊗”的含义为:当a b ≥时,a b a b ⊗=+;当a b <时,a b a b ⊗=-.例如:32325⊗=+=,()()22224-⊗=--=-.(1)填空:()21-⊗=________;(2)如果()()3x 732x 2-⊗-=,求x 的值.25.解不等式组:23332x xxx>-⎧⎪⎨-+≥⎪⎩①②,并把它们的解集表示在数轴上.。