小试和中试混凝沉淀试验装置设计实例
- 格式:pdf
- 大小:48.03 KB
- 文档页数:5
实验二混凝沉淀实验一、实验目的1、观察混凝现象及过程,了解混凝的净水机理及影响混凝的主要因素;2、学会求天然水体最佳混凝条件(包括投药量和pH值)的基本方法。
二、实验原理胶体颗粒带有一定电荷,它们之间的电斥力是胶体稳定性的主要因素。
胶体表面的电荷值常用电动电位ξ表示,又称为Zeta电位。
Zeta电位的高低决定了胶体颗粒之间斥力的大小和影响范围。
一般天然水中的胶体颗粒的Zeta电位约在-30mV以上,投加混凝剂之后,只要该电位降到-15mV左右即可得到较好的混凝效果。
相反,当Zeta电位降到零,往往不是最佳混凝状态。
投加混凝剂的多少,直接影响混凝效果。
水质是千变万化的,最佳的投药量各不相同,必须通过实验方可确定。
在水中投加混凝剂如A12(SO4)3、FeCl3后,生成的AI(lIl)、Fe(III)化合物对胶体的脱稳效果不仅受投加的剂量、水中胶体颗粒的浓度、水温的影响,还受水的pH值影响。
如果pH值过低(小于4),则混凝剂水解受到限制,其化合物中很少有高分子物质存在,絮凝作用较差。
如果pH值过高(大于9-10),它们就会出现溶解现象,生成带负电荷的络合离子,也不能很好地发挥絮凝作用。
投加了混凝剂的水中,胶体颗粒脱稳后相互聚结,逐渐变成大的絮凝体,这时,水流速度梯度G值的大小起着主要的作用。
(具体计算见有关教材,本实验项目不考虑该影响因素)三、实验设备及药剂1、天印湖湖水2、六联搅拌机(附2000mL烧杯)3.、pH计4、温度计5.、浊度仪6.、浓度为10g/L的氯化铁(FeCl3·6H20)溶液7.、浓度为10%的HCl溶液8、浓度为10%的NaOH溶液四、实验步骤本实验分为最佳投药量和最佳pH值两部分。
在进行最佳投药量实验时,先选定一种搅拌速度和pH值,求出最佳投药量。
然后按照最佳投药量求出混凝最佳pH值。
1、最佳投药量实验步骤(1)用6个1000mL的烧杯,分别放入1000mL原水,放置在实验搅拌机平台上;(2)确定原水特征,即测定原水浊度、pH值、温度;(3)确定形成矾花所用的最小混凝剂量。
实验项目名称:混凝沉淀实验(所属课程:水污染控制工程)院系:专业班级:姓名:学号:实验日期:实验地点:合作者:指导教师:本实验项目成绩:教师签字:日期:一、实验目的(1)观察混凝现象及过程,了解混凝的净水机理及影响混凝的重要因素。
(2)确认某水样的最佳投药量及其相应的pH值。
(3)测定计算反应过程的G值和GT值,是否在适宜的范围内。
二、实验原理水中的胶体颗粒,主要是带负电的黏土颗粒。
胶体间的静电斥力,胶粒的布朗运动及胶粒表面的水化作用,使得胶粒具有分散稳定性,三者中以静电斥力影响最大。
因此,胶体颗粒靠自然沉淀是不能除去的。
向水中投加混凝剂能提供大量的正离子,压缩胶团的扩散层,使ξ电位降低,静电斥力减小。
此时,布朗运动由稳定因素转变为不稳定因素,也有利于胶粒的吸附凝聚、水化胶中的水分子与胶粒有固定联系,具有弹性和较高的黏度,把这些分子排挤除去需要克服特殊的阻力,阻碍胶粒直接接触。
有些水化膜的存在决定于双电层状态,投加混凝剂降低ξ电位,有可能是水化作用减弱,混凝剂水解后形成的高分子物质或直接加入水中的高分子物质一般具有链状结构,在胶粒与胶粒间起吸附架桥作用。
即使ξ电位没有降低或减低不多,胶粒不能相互接触,通过高分子连状物媳妇叫李,也能形成絮凝体。
投加了混凝剂的水中,胶体颗粒脱稳后相互聚结,逐渐变成大的絮凝体。
这时,水流速度梯度G值的大小起着主要的作用,具体计算见有关教材。
三、实验设备与试剂(1)无极调速六联搅拌机1台。
(4)秒表1块。
(5)1000mL量筒1个。
(6)1mL,2mL,5ml,10mL移液管各1支。
(7)200mL烧杯1个,吸耳球等。
(8)1000mL烧杯6个。
(9)10%Al2(SO4)3溶液500mL。
(10)实验用原水(配制)。
(11)注射针筒。
(12)10%的NaOH溶液和10%HCl溶液500mL各一瓶。
四、实验步骤(2)1000mL量筒量取6份水样至6个1000mL烧杯中,另量取200mL水样放在200mL的烧杯中。
混凝沉淀实验1实验名称:混凝沉淀实验一、实验目的1、通过实验观察混凝现象、加深对混凝沉淀理论的理解;2、掌握确定最佳投药量的方法,选择和确定最佳混凝工艺条件;3、了解影响混凝条件的相关因数。
二、实验原理1.混凝原理包括三部分:1)双电层的压缩;2)吸附架桥;3)网。
这三种混凝机理并不是水处理过程中孤立的现象,但往往同时存在,但在不同的药剂种类、用量和水质条件下发挥着不同的作用,主要有一定的机理。
对于聚合物混凝剂,主要的机理是吸附架桥机理。
无机金属盐混凝剂同时具有三种功能。
胶体表面的电荷值常用电动电位ξ表示,又称为zeta电位。
一般天然水中的胶体颗粒的zeta电位约在-30mv以上,投加混凝剂之后,只要该电位降到-15mv左右即可得到较好的混凝效果。
相反,当电位降到零,往往不是最佳混凝状态。
因为水中的胶体颗粒主要是带负电的粘土颗粒。
胶体间存在着静电斥力,胶粒的布朗运动,胶粒表面的水化作用,使胶粒具有分散稳定性,三者中以静电斥力影响最大,若向水中投加混凝剂能提供大量的正离子,能加速胶体的凝结和沉降。
2.通过向水中添加混凝剂,可以使水中的胶体颗粒不稳定的高价电解液称为“混凝剂”。
混凝剂可分为无机盐混凝剂和聚合物混凝剂。
水处理中常用的混凝剂包括三氯化铁、硫酸铝、聚合氯化铝(PAC)、聚丙烯酰胺等。
本实验使用PAC。
它是AlCl 3和Al(OH)3之间的水溶性无机聚合物。
一般化学式为[Al2(OH)NCL(6-n)]m,其中m代表聚合度,n代表PAC产品的中性度。
3.投药量单位体积水中投加的混凝剂量称为“投药量”,单位为mg/l。
混凝剂的投加量除与混凝剂品种有关外,还与原水的水质有关。
当投加的混凝剂量过小时,高价电解质对胶体颗粒的电荷斥力改变不大,胶体难以脱稳,混凝效果不明显;当投加的混凝剂量过大时,则高价反离子过多,胶体颗粒会吸附过多的反离子而使胶体改变电性,从而使胶体粒子重新稳定。
因此混凝剂的投加量有一个最佳值,其大小需要通过试验确定。
给水处理工程实验一混凝实验一、实验目的:1、通过实验观察混凝现象,加深对混凝理论的理解;2、学会求得一般天然水体最佳混凝条件(包括投药量、pH值、水流速度梯度)的基本方法;3、加深对混凝机理的理解。
4、了解混凝的相关因素。
二、实验原理:分散在水中的胶体颗粒带有电荷,同时在布朗运动及其表面水化作用下,长期处于稳定分散状态,不能用自然沉淀方法去除。
向这种水中投加混凝剂后,可以使分散颗粒相互结合聚集增大,从水中分离出来。
由于各种原水有很大差别,混凝效果不尽相同。
混凝剂的混凝效果不仅取决于混凝剂投加量,同时还取决于水的pH值、水流速度梯度等因素。
胶体颗粒(胶粒)带有一定电荷,它们之间的电斥力是胶体稳定性的主要因素。
胶粒表面的电荷值常用电动电位ξ来表示,又称为Zeta电位。
Zeta电位的高低决定了胶体颗粒之间斥力的大小和影响范围。
Zeta电位的测定,可通过在一定外加电压下带电颗粒的电泳迁移率计算:ξ= KπηuHD (1-1)式中:ξ——Zeta电位(mV);K ——微粒形状系数,对于圆球体K=6;π——系数,为3.1416;η——水的粘度(Pa·S),(此取η=10-1Pa·S);u ——颗粒电泳迁移率(um/s/\V/cm);H ——电场强度梯度(V/cm);=81。
D ——水的介电常数D水Zeta电位值尚不能直接测定,一般是利用外加电压下追踪胶体颗粒经过一个测定距离的轨迹,以确定电泳迁移率值,再经过计算得出Zeta电位。
电泳迁移率用下式进行计算:u=GL(1-2)VT式中:G ——分格长度(um);L ——电泳槽长度(cm);V ——电压(V);T ——时间(s)。
一般天然水中胶体颗粒的Zeta电位约在-30毫伏以上,投加混凝剂后,只要该电位降到-15毫伏左右即可得到较好的混凝效果。
相反,当Zeta电位降到零,往往不是最佳混凝状态。
投加混凝剂的多少,直接影响混凝效果。
投加量不足不可能又很好的混凝效果。
6000m3/d某厂印染废水处理工艺设计1绪论我国是纺织印染业的第一大国,而纺织印染业又是工业废水排放大户,印染厂每加工100m2织物,产生废水量3-5m3,故由此而造成的生态及经济损失是不可计量的,所以解决印染水污染问题势在必行。
在我国,印染废水是当前最主要的水体污染源之一。
由于这类废水成分相当复杂,往往含多种有机染料并且毒性强,色度深,PI1值波动大,难降解,组分变化大,且水量大,浓度高,所以一直是工业废水处理的难点,也是急需解决的问题之一。
为此,国内外对印染废水的处理技术进行了广泛的研究。
1.1印染废水来源及水质特性印染废水主要来源于印染加工的四个工序:预处理、染色、印花、整理。
预处理阶段排出退浆废水、煮炼废水、漂白废水和丝光废水,染色工序排出印染废水、印花废水和皂液废水,整理工序则排出整理废水。
印染废水是以上各类废水的混合废水,或除漂白废水以外的综合废水。
印染废水的水质随采用的纤维种类和加工工艺的不同而异,污染物组分差异很大。
一般印染废水,pH值为6-10,COD:为400-1000mg/L,色度为100-400倍,SS为100-200mg/L。
但当印染工艺及采用的纤维种类和加工工艺变化后,废水水质将有较大变化[1]。
总体来说,纺织印染废水的特点如下:(l)色度大,有机物含量高,除含染料和助剂等污染物外,还含有大量的浆料,废水粘性大。
(2)COD变化大,高时可达2000-3000mg/L,BOD也高达200-300mg/L。
5(3)碱性大,如硫化染料和还原染料废水PH值可达10以上。
(4)染料品种多,可生化性较差。
(5)由于加工品种及产量经常变化,导致水温水量较大变化。
1.2印染废水的治理技术目前,国内的印染废水处理手段以生化法为主,有的还将化学法与之串联。
国外也是基本如此。
由于近年来化纤织物的发展和印染后整理技术的进步,使PVA浆料、新型助剂等难生化降解有机物大量进入印染废水,给处理增加了难度。
研究报告混凝沉淀实验设计实验名称:混凝沉淀实验设计一(实验目的:1.掌握水处理实验设计的一般方法;2.掌握混凝工艺基本原理,了解针对实际废水采用混凝工艺的参数确定与优化。
二(实验原理:胶体颗粒带有一定的电荷,它们之间的静电斥力是胶体颗粒长期处于稳定的分散悬浮状态的主要原因,胶粒所带的电荷即电动电位称电位,电位的高低决,,定了胶体颗粒之间斥力的大小及胶体颗粒的稳定性程度,胶粒的电位越高,胶,体颗粒的稳定性越高。
胶体颗粒的电位通过在一定外加电压下带电颗粒的电泳迁移率计算:,,,,K, ,HDK,6 式中:——微粒形状系数,对于圆球体; K, ——系数,为3.1416;,1 ——水的粘度(Pa?S),(此取); ,,10Pa,S,——颗粒电泳迁移率(); ,m/s/V/cm,H——电场强度梯度(V/cm);D——水的介电常数D=8.1。
水,,通常,电位一般值在10-200mv之间,一般天然水体中胶体颗粒的电位-30mv 以上,投加混凝剂以后,只要该电位降至-15mv左右,即可得到较好的混凝效果,,相反,电位降为0时,往往不是最佳混凝效果。
投加混凝剂的多少,直接影响混凝的效果。
投加量不足或投加量过多,均不能获得良好的混凝效果。
不同水质对应的最优混凝剂投加量也各不相同,必须通过实验的方法加以确定。
向被处理水中投加混凝剂(如Al(SO))后,生成Al(?)化合物对胶体颗粒的243 脱稳效果不仅受投量、水中胶体颗粒的浓度影响,同时还受水PH的影响。
若PH,4,则混凝剂的水解受到限制,其水解产物中高分子多核多羟基物质的含量很少,絮凝作用很差;如水PH,8-10,它们就会出现溶解现象而生成带负电荷,不能发挥很好混凝效果的络合离子。
水力条件对混凝效果有重大的影响,水中投加混凝剂后,胶体颗粒发生凝聚而脱稳,之后相互聚集,逐渐变成大的絮凝体,最后长大至能发生自然沉淀的程度。
在此过程中,必须严格控制水流的混合条件,在凝聚阶段,要求在投加混凝剂的同时,使水流具有强烈的混合作用,以便所投加的混凝剂能在较短时间内扩散到整个被处理水体中,起压缩双电层作用,降低胶体颗粒的电位,而是其脱稳,, 此阶段所需延续的时间仅为几十秒钟,最长不超过2min。
实验报告实验项目名称:混凝沉淀实验(所属课程:水污染控制工程)院系:专业班级:姓名:学号:实验日期:实验地点:合作者:指导教师:本实验项目成绩:教师签字:日期:一、实验目的(1)观察混凝现象及过程,了解混凝的净水机理及影响混凝的重要因素。
(2)确认某水样的最佳投药量及其相应的pH值。
(3)测定计算反应过程的G值和GT值,是否在适宜的范围内。
二、实验原理水中的胶体颗粒,主要是带负电的黏土颗粒。
胶体间的静电斥力,胶粒的布朗运动及胶粒表面的水化作用,使得胶粒具有分散稳定性,三者中以静电斥力影响最大。
因此,胶体颗粒靠自然沉淀是不能除去的。
向水中投加混凝剂能提供大量的正离子,压缩胶团的扩散层,使ξ电位降低,静电斥力减小。
此时,布朗运动由稳定因素转变为不稳定因素,也有利于胶粒的吸附凝聚、水化胶中的水分子与胶粒有固定联系,具有弹性和较高的黏度,把这些分子排挤除去需要克服特殊的阻力,阻碍胶粒直接接触。
有些水化膜的存在决定于双电层状态,投加混凝剂降低ξ电位,有可能是水化作用减弱,混凝剂水解后形成的高分子物质或直接加入水中的高分子物质一般具有链状结构,在胶粒与胶粒间起吸附架桥作用。
即使ξ电位没有降低或减低不多,胶粒不能相互接触,通过高分子连状物媳妇叫李,也能形成絮凝体。
投加了混凝剂的水中,胶体颗粒脱稳后相互聚结,逐渐变成大的絮凝体。
这时,水流速度梯度G值的大小起着主要的作用,具体计算见有关教材。
三、实验设备与试剂(1)无极调速六联搅拌机1台。
(4)秒表1块。
(5)1000mL量筒1个。
(6)1mL,2mL,5ml,10mL移液管各1支。
(7)200mL烧杯1个,吸耳球等。
(8)1000mL烧杯6个。
页共页第实验报告(9)10%Al(SO)溶液500mL。
342(10)实验用原水(配制)。
(11)注射针筒。
(12)10%的NaOH溶液和10%HCl溶液500mL各一瓶。
四、实验步骤(2)1000mL量筒量取6份水样至6个1000mL烧杯中,另量取200mL水样放在200mL的烧杯中。
实验名称:混凝沉淀实验设计一.实验目的:1.掌握水处理实验设计的一般方法;2.掌握混凝工艺基本原理,了解针对实际废水采用混凝工艺的参数确定与优化。
二.实验原理:胶体颗粒带有一定的电荷,它们之间的静电斥力是胶体颗粒长期处于稳定的分散悬浮状态的主要原因,胶粒所带的电荷即电动电位称ξ电位,ξ电位的高低决定了胶体颗粒之间斥力的大小及胶体颗粒的稳定性程度,胶粒的电位越ξ高,胶体颗粒的稳定性越高。
胶体颗粒的电ξ位通过在一定外加电压下带电颗粒的电泳迁移率计算: HDK πημξ=式中:K ——微粒形状系数,对于圆球体6=K ;π ——系数,为3.1416;η——水的粘度(Pa ·S ),(此取S Pa ⋅=-110η);μ ——颗粒电泳迁移率(cm V s m ///μ);H ——电场强度梯度(V/cm ); D ——水的介电常数D 水=8.1。
通常,ξ电位一般值在10-200mv 之间,一般天然水体中胶体颗粒的ξ电位-30mv 以上,投加混凝剂以后,只要该电位降至-15mv 左右,即可得到较好的混凝效果,相反,ξ电位降为0时,往往不是最佳混凝效果。
投加混凝剂的多少,直接影响混凝的效果。
投加量不足或投加量过多,均不能获得良好的混凝效果。
不同水质对应的最优混凝剂投加量也各不相同,必须通过实验的方法加以确定。
向被处理水中投加混凝剂(如Al 2(SO 4)3)后,生成Al(Ⅲ)化合物对胶体颗粒的脱稳效果不仅受投量、水中胶体颗粒的浓度影响,同时还受水P H 的影响。
若PH<4,则混凝剂的水解受到限制,其水解产物中高分子多核多羟基物质的含量很少,絮凝作用很差;如水PH>8-10,它们就会出现溶解现象而生成带负电荷,不能发挥很好混凝效果的络合离子。
水力条件对混凝效果有重大的影响,水中投加混凝剂后,胶体颗粒发生凝聚而脱稳,之后相互聚集,逐渐变成大的絮凝体,最后长大至能发生自然沉淀的程度。
实验三 混凝沉淀实验混凝沉淀实验是给水处理的基础实验之一,被广泛地用于科研.教学和生产中。
通过混凝沉淀实验,不仅可以选择投加药剂种类.数量,还可以确定其他混凝最佳条件。
一 原理:天然水中存在大量胶体颗粒,是使水产生浑浊的一个重要原因,胶体颗粒靠自然沉淀是不能去处的。
清除或降低胶体颗粒稳定因素的过程叫做脱稳。
脱稳后的胶粒,在一定的水利条件下,才能形成较大的絮凝体,俗称矾花。
直径较大且较密实的矾花容易下沉。
自投加混凝剂[342)(SO Al ]直至形成较大矾花的过程叫混凝。
从胶体颗粒变成较大的矾花是一连续的过程,为了研究的方便可划分为混合反应两个阶段,混合阶段要求浑水和混凝剂快速均匀混合,一般来说,该阶段只能产生用眼睛难以看见的微絮凝体;反应阶段则要求将微絮凝体形成较密实的大粒径矾花。
(配药)1、配1%的342)(SO Al 溶液.2、如果取10mg/l 的342)(SO Al100ml 烧杯中称取10mg 342)(SO Al =用移液管移取1ml 的1%342)(SO Al 溶液.二. 实验目的1.了解混凝的现象和过程,混合及反应的作用。
2.确定水样的混凝剂最佳投量及pH 值对混凝效果的影响。
三.仪器设备及药品混凝搅拌机一台,浊度仪一台,酸度/离子计一台,电子调速搅拌机一台,秒表(平表也可)一块,温度计,1000ml 烧杯,100ml 烧杯,移液管,吸耳球,1000ml 量筒,混凝剂(硫酸铝或碱式氯化铝),氢氧化钠,盐酸等。
四.实验组织实验分6小组,每组6人。
五.实验步骤1. 熟悉搅拌机操作步骤,选择适宜的混合搅拌转速(300转/分),混合时间30秒,反应搅拌转速100转/分,反应时间10分钟,慢速搅拌转速50转/分,反应时间10分钟。
2. 测定水样的温度,浊度及pH 值,将水样分为3桶,每2组用一桶,除1,2组外,其他四组分别用NaOH 或HCl 对水样的pH 进行调整(pH 约等于10,5.5,8.5)并记录调整后的pH 值。
上海江科教学器材有限公司絮凝沉淀装置(4组实验)型号:GJK28一、实验目的水处理中经常遇到的沉淀多属于絮凝颗粒沉淀,即在沉淀过程中,颗粒的大小、形状和密度都有所变化,随着沉淀深度和时间的增长,沉速越来越快。
絮凝颗粒的沉淀轨迹是一条曲线,难以用数学方式来表达,只能用实验的数据来确定必要的设计参数。
通过实验希望达到以下目的:1、了解絮凝沉淀特点和规律;2、掌握絮凝沉淀实验方法和实验数据整理方法。
二、实验设备与材料1、水泵2、配水箱3、搅拌装置4、配水管阀门5、水泵循环管阀门6、各沉淀柱进水阀门7、各沉淀柱放空阀门8、排水管9、取样口(1)沉淀柱:有机玻璃沉淀柱,直径D=100mm,柱高1700mm,沿不同高度设有取样口。
(2)配水及投配系统:配水箱、搅拌装置、水泵、配水管等(3)取样设备(自备):定时器、烧杯、移液管、磁盘等。
(4)悬浮物分析所需设备及用具(自备):分析天平(感量0.1mg)、带盖称量瓶、干燥皿、烘箱等。
(5)水样(自备):城市污水或人工配水等。
三、实验步骤(1)将欲测水样倒入进水槽进行搅拌,待搅拌均匀后取样测定原水悬浮物浓度(SS)。
(2)开启水泵及各沉淀池的进水阀(3)依次向1~4沉淀柱内进水,当水位达到溢流孔时,关闭进水阀门,同时记录沉淀时间。
4根沉淀柱的沉淀时间分别是20min、40 min、60 min、80 min、100 min 、120 min。
(4)当达到各柱的沉淀时间时,沿柱面自上而下依次取样,测定水样悬浮物浓度。
(5)将实验数据记入表1,计算结果记入表2表1 絮凝沉淀实验数据记录表表2 各取样点悬浮物去除率E 值计算表四、实验相关知识点悬浮物浓度不太高,一般在600~700mg/L 以下的絮凝颗粒,在沉降过程中颗粒之间会发生相互碰撞而产生絮凝作用的沉淀称为絮凝沉淀。
给水工程中的混凝沉淀污水处理中初沉淀池内的悬浮物沉淀均属此类。
絮凝沉淀过程中由于颗粒相互碰撞,使颗粒粒径和质量凝聚变大,从而沉降速度不断加大,因此,颗粒沉降实际是一个变速沉降过程。
实验三 混凝沉淀实验混凝沉淀实验是给水处理的基础实验之一,被广泛地用于科研.教学和生产中。
通过混凝沉淀实验,不仅可以选择投加药剂种类.数量,还可以确定其他混凝最佳条件。
一 原理:天然水中存在大量胶体颗粒,是使水产生浑浊的一个重要原因,胶体颗粒靠自然沉淀是不能去处的。
清除或降低胶体颗粒稳定因素的过程叫做脱稳。
脱稳后的胶粒,在一定的水利条件下,才能形成较大的絮凝体,俗称矾花。
直径较大且较密实的矾花容易下沉。
自投加混凝剂[342)(SO Al ]直至形成较大矾花的过程叫混凝。
从胶体颗粒变成较大的矾花是一连续的过程,为了研究的方便可划分为混合反应两个阶段,混合阶段要求浑水和混凝剂快速均匀混合,一般来说,该阶段只能产生用眼睛难以看见的微絮凝体;反应阶段则要求将微絮凝体形成较密实的大粒径矾花。
(配药)1、配1%的342)(SO Al 溶液.2、如果取10mg/l 的342)(SO Al100ml 烧杯中称取10mg 342)(SO Al =用移液管移取1ml 的1%342)(SO Al 溶液.二. 实验目的1.了解混凝的现象和过程,混合及反应的作用。
2.确定水样的混凝剂最佳投量及pH 值对混凝效果的影响。
三.仪器设备及药品混凝搅拌机一台,浊度仪一台,酸度/离子计一台,电子调速搅拌机一台,秒表(平表也可)一块,温度计,1000ml 烧杯,100ml 烧杯,移液管,吸耳球,1000ml 量筒,混凝剂(硫酸铝或碱式氯化铝),氢氧化钠,盐酸等。
四.实验组织实验分6小组,每组6人。
五.实验步骤1. 熟悉搅拌机操作步骤,选择适宜的混合搅拌转速(300转/分),混合时间30秒,反应搅拌转速100转/分,反应时间10分钟,慢速搅拌转速50转/分,反应时间10分钟。
2. 测定水样的温度,浊度及pH 值,将水样分为3桶,每2组用一桶,除1,2组外,其他四组分别用NaOH 或HCl 对水样的pH 进行调整(pH 约等于10,5.5,8.5)并记录调整后的pH 值。
污水处理实验室小试系统设计方案一、本设计的目的将目前应用于处理工业废水及生活污水中比较常用、比较成熟的处理工艺在实验室进行小试,确定合理的处理工艺及设计参数,服务于实际工程需要;二、设计可选模块厌氧反应池,缺氧反应池,曝气好氧反应池,(沉淀池)A2O;水解酸化池;SBR 反应器;曝气生物滤池;MBR污水处理;气浮池;电絮凝模块;混凝沉淀;给药罐;三、实验设备1、带PLC的可编程控制箱,可扩展到电脑控制(以中继代替接触器作为电流输出),输出12V直流和220V单相,路数待定2、小水泵,若干,12V;3、养鱼曝气机,若干4、小型转子流量计,若干5、电磁阀,若干6、磁力转子搅拌机,若干7、给药罐8、连接管、阀门、连接件等若干9、连接管材质采用PVC材质、池体材质采用PVC材质10mm、管子之间连接采用胶粘式和胶圈式四、实验小试系统的组成4.1进水水质水量进水水质:COD cr≦2000mg/L,BOD5≦1000mg/L,SS≦300mg/L,氨氮≦40mg/L,总磷≦3mg/L。
不考虑其他分类。
(均按最大值作为设计进水水质)进水水量:Q=20L/h=0.48m3/d4.2出水水质标准出水水质按污水综合排放标准一级标准:COD≦100mg/L,BOD5≦20mg/L,SS ≦70mg/L,氨氮≦15mg/L,总磷≦0.5mg/L4.3废水特性水质分析微生物分解、氧化水中有机物的需氧量,COD是化学氧化剂氧化水中BOD5污染物所需要的氧化剂的量。
BOD5/COD的比值常用来表示污水的可生化性,当BOD5/COD>0.3时表示废水的可生化性较好,比值小于0.3时,污水的处理应考虑生化技术以外的其他污水处理技术。
该水质BOD5/COD=0.5可生化性良好,适合采用生化处理。
该水质SS≦300mg/L,SS较高,应该考虑物化法预处理SS;而且COD cr、BOD5较高;此外氨氮、总磷高,所以生化部分应该考虑既可以去除水中COD cr、BOD5又可以生物脱氮除磷工艺。
实验⼀混凝沉淀实验实验⼀混凝沉淀实验⼀、实验⽬的1、通过本实验确定某⽔样的最佳投药量;2、观察矾花的形成过程及混凝深沉效果。
⼆、实验设备及⽤具1、⽆极调速六联搅拌机1台。
2、1000ml烧杯6-8个;3、200ml烧杯8个;4、100ml注射器1~2⽀,移取沉淀⽔⼩清液;5、100ml洗⽿球1个,配合移液管移药⽤;6、1ml移液管1根;7、5ml移液管1根;8、10ml移液管1根;9、温度计1⽀(测⽔温⽤);10、秒表1块(测转速⽤);11、1000ml量筒1个,量原⽔体积;12、1%FeCL3或AL2(SO4)3溶液⼀瓶;13、酸度计、浊度仪各1台。
三、实验步骤1、测原⽔⽔温、浑浊度(约70度左右)和PH值。
2、⽤1000ml量筒分别量取500ml⽔样置于6个1000ml的烧杯中。
3、⽤移液管分别移取0、1、2、3、4、5ml的混凝剂于搅拌机的加药试管中,混凝剂为1%的AL2(SO4)3溶液或FeCL3溶液。
4、将准备好的⽔样置于搅拌机中,开动机器调整转速,中速(200r/min)运转5min。
5、5min后将搅拌机调快,快速(400r/min)运转,同时将混凝剂加⼊⽔样中(⽤蒸馏⽔将药管中残留药液洗净,⼀同加⼊⽔样中),同时开始计时,快速搅拌30s。
6、30s后,迅速将转速调到中速运转(200r/min),搅拌5min后,再迅速将转速调⾄慢速(100r/min),搅拌10min。
7、搅拌过程中,注意观察并记录矾花形成的过程,矾花外观、⼤⼩、密实度等并填⼊1.1中。
8、搅拌完成后,停机,将⽔样杯取也,于⼀旁静置15min并观察矾花沉淀过程。
15min后,⽤注射器分别汲取⽔样杯中上清液100ml(够测浊度、PH值即可),置于六个洗净的200ml的烧杯中,测浊度及PH值,并记⼊表1.2中。
表1.1混凝沉淀实验观察记录表1.2实验数据记录表四、注意事项1、取⽔样时,所取⽔样要搅拌均匀,要⼀次量取以尽量减少所取⽔样浓度上的差别。