五年级下册数学复习资料(人教版)
- 格式:doc
- 大小:106.50 KB
- 文档页数:20
图形的变换一、判断:1、直角梯形是轴对称图形。
()2、平行四边形有两条对称轴。
()3、长方形和正方形都有4条对称轴。
()4、数学书的封面是一个轴对称图形。
()5、三角形是轴对称图形。
()6、圆有无数条对称轴。
()7、汽车方向盘的运动不是旋转现象。
()8、等腰梯形只有一条对称轴。
()9、两个图形能够完全重合,这两个图形就是轴对称图形。
()二、填空:1、在轴对称图形中,对称轴两侧相对的点到对称轴的距离()。
2、等腰三角形有()条对称轴,等边三角形有()条对称轴。
圆有()条对称轴,椭圆有()条对称轴,半圆有()条对称轴,长方形有()条对称轴,正方形有()条对称轴,菱形有()条对称轴,等腰梯形有()条对称轴,正五边形有()条对称轴,正六边形有()条对称轴。
3、旋转不改变图形的()和(),只改变图形的()。
三、下面大写字母那些是轴对称图形,在括号里打“√”。
A()B()F()K()M()W()S()O()E()N()四、画出下列图形的所有对称轴。
90度的图形;图3:画出绕点o逆时针旋转90度的图形;图4:画出向下平移3格的图形;图6:画出绕点o逆时针旋转90度、180度、270度的图形。
六、填一填:1、这些现象哪些是“平移”现象,哪些是“旋转”现象:(1)张叔叔在笔直的公路上开车,汽车的运动是()现象,方向盘的运动是()现象。
(2)升国旗时,国旗的升降运动是()现象。
(3)妈妈用拖布擦地,是()现象。
(4)自行车的车轮转了一圈又一圈是()现象。
(5)索道上运行的观光缆车。
()。
(6)推开窗户。
()(7)钟面上的分针。
()(8)飞机的螺旋桨。
()(9)工作中的电风扇。
()(10)拉动抽屉。
()2、(1)图形1绕A点()旋转90。
到图形2。
(2)图形2绕A点()旋转90。
到图形3。
(3)图形4绕A点顺时针旋转()到图形2。
(4)图形3绕A点顺时针旋转()到图形1。
3、看右图填空。
(1)指针从“12”绕点A顺时针旋转600到“2”;(2)指针从“12”绕点A顺时针旋转(0)到“3”;(3)指针从“1”绕点A顺时针旋转(0)到“6”;(4)指针从“3”绕点A顺时针旋转300到“()”;(5)指针从“5”绕点A顺时针旋转600到“()”;(6)指针从“7”绕点A顺时针旋转(0)到“12”。
;4知识点易错点汇总★知识点归纳一、轴对称1、定义:把一个图形沿着某一条直线对折,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点。
2、性质:对称点到对称轴的距离相等。
3、轴对称图形:指具有特殊形状的一个图形,它可以有一条或多条对称轴。
二、旋转1、定义:把一个图形绕某一点(或轴)转动一定的角度的图形变换叫做旋转。
2、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度钟表中指针运动的方向为顺时针方向,与钟表中指针的运动方向相反的方向为逆时针方向。
3、性质:图形绕着某一点旋转一定的度数,图形的对应点、对应线段都旋转了相应的度数,对应点到旋转点的距离相等,对应的线段和对应的角度相等。
图形旋转后,形状、大小都没有发生变化,只有位置变了。
4、旋转90°的方法(1)找出原图行的关键点或关键线段;(2)借助三角板或量角器作原图行关键点或线段与旋转中心所在线段的垂线(3)在所垂线上量出或数出与原线段相等的长度(即找到原图关键点的对应点);(4)顺次连接所找到的对应点,即可得到原图形旋转90°后的图形。
5、时钟上包含12大格,60小格,时钟上相邻两数字间即为一大格,一大格为30°;每一大格又平均分为了五个小格,一小格为6°三、平移1、定义:指在一个平面内,将一个图形上的所有点都按照某个方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
2、性质:平移不改变图形的形状和大小。
3、图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。
(2)找出原图形的各关键点。
(3)根据题目要求将各个点依次平移,找出各个点的对应点。
(4)顺次连接平移后的各点。
◆习题:1、图形的变换包括:、、。
其中只是改变原图形位置的变换是、。
2、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫()图形,那条直线就是()。
五年级数学下册知识点归纳第一部分图形与几何一、观察物体1、从不同的位置(或同一位置)观察物体,看到的形状可能相同也可能不同;从同一位置观察长方体或正方体时不能看到所有的面,最多只能看到三个面,最少看到一个面。
2、正面、侧面(左面,右面)、后面都是相对的,它是随着观察角度的变化而变化。
通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
3、观察物体,从实物观察到对立体图形的观察有一个体验、认识、提高的过程,多观察物体,多画观察到的图形,自己制作立体图形,有意识的训练想象能力,逐渐就会观察立体图形了。
4、观察物体,先要确定观察的位置(方向)(常选择上面、正面、左侧面、右侧面),再确定观察的形状,并把它画下来,在平面图形画上斜线。
5、根据各个位置看到的平面图形推算共有几个小正方体方法:从正面看数层数,从下往上数;从上面看数列数,从左往右数;从左面看数排数,前排在右后排在左,从右往左数。
6、至少用8 个正方体可拼成较大的正方体,27 个64 个125 个。
都可拼成较大正方体。
二、图形的运动1、旋转:物体或图形围绕一个定点沿着一个方向转动一定的角度的现象叫做旋转。
如风扇的叶片旋转。
定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转三要素:①旋转中心,固定不变;②旋转方向有顺时针、逆时针;③旋转角度有:常见的有30°、45°、60°90°、180°、270°。
(3)长方形绕中心点旋转180 度与原来重合,正方形绕中心点旋转90 度与原来重合。
等边三角形绕中点旋转120 度与原来重合。
(4)旋转的性质:①图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;②其中对应点到旋转中心的距离相等;旋转前后图形的大小和形状没有改变,位置和方向发生改变,旋转中心是唯一不动的点,③两组对应点分别与旋转中心的连线所成的角度相等,都等于旋转角;(5)怎样画图形旋转的形状:(1)先观察原图形的形状特征找准关键点,(2)找准旋转中心、旋转方向、旋转角度;(3)使用直角三角板的顶点与旋转中心重合,则该图形旋转后的形状就在三角板另一条边上;(4)确定各对应点的长度,用虚线标出来;(5)将每个对应点连接并标出名称。
一图形的变换1、轴对称:把一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
(考点,判断一个图形是否是轴对称图形)2、轴对称图形的特点:①对应点在对称轴的两边②对应点到对称轴的距离相等(考点:画对称轴,注意用尺画虚线;画一个图形的轴对称图形,注意根据对应点到对称轴的距离相等,先找对应点,再连线。
例题见书本P4 例2)3、旋转:在平面内,一个图形绕着一个顶点或轴的运动叫做旋转。
(考点:钟面上指针的旋转;画一个图形的旋转后的图形。
注意,找到中心点,看清题意要求顺时针还是逆时针,钟面上一大格是30度,画图时找3、6、9、12时四个时刻的指针方向的边。
例题见书本P5 例3 例4)4、平移:一个图形沿着一条直线的运动称为平移。
二因数和倍数1、3×7=21,3和7是21的因数,21是3和7的倍数,不能说谁是倍数,谁是因数.2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
3、一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
4、自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。
最小的奇数是1,最小的偶数是0。
任何一个自然数,不是奇数,就是偶数。
5、个位上是0,2,4,6,8的数都是2的倍数.6、个位上是0或5的数,是5的倍数。
7、一个数各位上的数的和是3的倍数,这个数就是3的倍数。
8、个位上是0的数既是2的倍数,又是5的倍数。
9、能同时被2、3、5整除(同时有因数2、3、5)的最小数是30,最大的两位数是90,最小的三位数是120.10、100以内的质数:二三五七和十一,(2、3、5、7、11)十三后面是十七,(13、17)还有十九别忘记,(19)二三九, 三一七,(23、29、31、四一,四三,四十七,(41、43、47)五三九, 六一七, (53、59、61、67)七一,七三,七十九, (71、73、79)八三,八九,九十七。
人教版五年级数学下册期末复习(含解析)完整1.如图,在一个长方体上挖一个正方体,下面说法对的的是()。
A.体积和表面积都不变B.体积和表面积都减少C.体积减少,表面积不变D.体积不变,表面积减少2.如图,这个纸杯最多能装水大约250()。
A.立方分米B.立方米C.毫升D.升3.6的因数有1,2,3,6,这几个因数的关系是1236++=,像6这样的数叫做完全数。
下面几个数中,是完全数的是()。
A.28 B.9 C.15 D.484.甲数是乙数的5倍,甲、乙两数的最大公因数是()。
(甲乙两数是正整数)A.甲数B.乙数C.5 D.15.明明6分钟折5只纸鹤,芳芳3分钟折2只纸鹤,诺诺5分钟折3只纸鹤,谁折的快?()A.明明快B.芳芳快C.诺诺快D.无法确定6.两根同样长的绳子,第一根用去57,第二根用去57米,剩下的相比较,()。
A.第一根长B.一样长C.无法比较7.一个舞蹈队有45人,寒假期间有一个紧急演出,老师需要尽快通知到每一个队员。
如果用打电话的方式,每分钟通知1人。
最少花多少时间就能通知到每个人?()A.4分钟B.5分钟C.6分钟D.7分钟8.李阿姨喝一整杯酒,分四次喝完。
第一次喝了这杯酒的16,觉得味道太重了,就加满了雪碧,第二次喝了13,还是觉得味道重,再一次加满了雪碧,第三次喝了半杯后又加满了雪碧,最后一次李阿姨把整杯都喝完,请问李阿姨喝的()。
A.红酒多B.雪碧多C.一样多9.在括号里面填上合适的分数。
46厘米=(________)米 90分=(________)小时1060米=(________)千米 200立方分米=(________)立方米10.97是(________)分数,它的分数单位是(________),它有(________)个这样的单位。
它比1多(________)个这样的单位。
11.一个数比30大,比50小。
如果这个数即是3的倍数又是5的倍数,那么它是(________)。
人教版五年级下册数学期末复习附答案完整1.修一条路,已经修好全长的14,已修的是未修的()。
A.3倍B.13C.4倍D.142.一根钢管锯成两段,第一段长47米,第二段占全长的47,两段比较,()。
A.第一段长B.第二段长C.同样长D.无法判定3.有一张长方形纸,长18cm,宽12cm,如果要剪成若干同样大小的正方形而没有剩余,剪出的小正方形的边长最大是()。
A.3cm B.4cm C.6cm4.大于15小于35的分数有()个。
A.1 B.无数C.05.在5a,1.2x=0,1.5÷0.3=5,16÷a<1.2中,方程是()。
A.5a B.1.2x=0 C.1.5÷0.3=5 D.16÷a<1.2{}答案}B【解析】【分析】根据方程的定义,含有未知数的等式叫做方程,据此判断。
【详解】A.不是等式。
B.含有未知数,又是等式,可以判断为方程。
C.是等式,但不含未知数。
不是方程。
D.是不等式。
故答案为:B【点睛】掌握方程的定义是解答本题的关键。
6.按照因数的个数,可以将所有非0自然数分成()。
A.质数和合数B.质数、合数和1 C.奇数和偶数{}答案}B【解析】【分析】一个自然数,如果只有1和它本身两个因数,这样的数叫做质数;一个自然数,如果除了1和它本身还有别的因数,这样的数叫做合数。
1既不是质数也不是合数,由此解答即可。
【详解】按照因数的个数,可以将所有非0自然数分成质数、合数和1;故答案为:B。
【点睛】解答本题的关键是明确按照因数的个数来分,而不是根据是否能够被2整除来分,切勿忘记1既不是质数也不是合数。
7.在一个直径为16米的圆形花坛周围有一条宽为1米的小路,则这条小路的面积是()平方米。
A.πB.17πC.33πD.64π{}答案}B【解析】【分析】由题意可知:小路的面积等于内圆直径是16米、外圆直径是16+1米的环形的面积;带入圆环得的面积公式计算即可。
五年级下册数学复习资料(人教版)每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。
其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 ……个中6、12、18……是2、3的公倍数,6是它们的最小公倍数。
如果较大数是较小数的倍数,那末较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数1小数的意义把整数1均匀分成10份、100份、1000份……获得的非常之几、百分之几、千分之几……能够用小数表示。
一位小数表示非常之几,两位小数表示百分之几,三位小数表示千分之几……一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。
其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数1 小数的意义把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2小数的分类纯小数:整数部分是零的小数,叫做纯小数。
例如:0.25 、0.368 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。
例如:3.25 、5.26 都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。
例如:41.7 、25.3 、0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。
例如:4.33 …… 3.1415926 ……无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
例如:∏循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
例如:3.555 …… 0.0333 …… 12.109109 ……一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如:3.99 ……的循环节是“ 9 ” ,0.5454 ……的循环节是“ 54 ” 。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。
例如:3.111 …… 0.5656 ……混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。
3.1222 …… 0.03333 ……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
例如:3.777 …… 简写作0.5302302 …… 简写作。
(三)分数1 分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2 分数的分类真分数:分子比分母小的分数叫做真分数。
真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3 约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数1 表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用"%"来表示。
百分号是表示百分数的符号。
二方法(一)数的读法和写法1. 整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位的数12.543 亿。
2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如:1302490015 省略亿后面的尾数是13 亿。
3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。
例如:省略345900 万后面的尾数约是35 万。
省略4725097420 亿后面的尾数约是47 亿。
4. 大小比较1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。
分数的分母和分子都不相同的,先通分,再比较两个数的大小。
(三)数的互化1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2. 分数化成小数:用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
(四)数的整除1. 把一个合数分解质因数,通常用短除法。
先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。
3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
4. 成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。
(五)约分和通分约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
三性质和规律(一)商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
(三)小数点位置的移动引起小数大小的变化1. 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……2. 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……3. 小数点向左移或者向右移位数不够时,要用“0"补足位。
(四)分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
(五)分数与除法的关系1. 被除数÷除数= 被除数/除数2. 因为零不能作除数,所以分数的分母不能为零。
3. 被除数相当于分子,除数相当于分母。
四运算的意义(一)整数四则运算1整数加法:把两个数合并成一个数的运算叫做加法。
- 在加法里,相加的数叫做加数,加得的数叫做和。
加数是部分数,和是总数。
- 加数+加数=和一个加数=和-另一个加数2整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
- 在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。
被减数是总数,减数和差分别是部分数。
- 加法和减法互为逆运算。
3整数乘法:求几个相同加数的和的简便运算叫做乘法。
- 在乘法里,相同的加数和相同加数的个数都叫做因数。
相同加数的和叫做积。
- 在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。