SVPWM交流调速系统的建模与仿真
- 格式:pdf
- 大小:302.28 KB
- 文档页数:3
交流电机SPWM调速系统建模与动态仿真1交流电机调速原理正弦脉宽调制技术SPWM (Sine Pulse Width Modulation)是用所期望的正弦波为“调制波”(Modulation Wave),而以N倍于调制波频率的三角波为“载波”(Carrier Wave)的一种逆变器控制技术。
SPWM技术的控制的特点是原理简单、通用性强、控制方便、调节灵活,能有效降低谐波分量、稳定输出电压,是一种比较好的波形改善法,在目前中小型逆变器中获得了广泛的应用。
1.1 SPWM控制原理(1)单极性SPWM法是指三角波载波信号Uc与正弦波调制信号Ur始终保持相同极性Uc为正的三角波,当Ur处于正半周期时,产生正向调制脉冲信号;当Ur 处于负半周期时,通过倒向电路保持同极性,产生负向调制脉冲信号,如图1-1所示。
(2)双极性SPWM法是指三角波载波信号与正弦波调制信号的极性均为正负交替改变,如图1-2所示。
载波信号Uc为正负对称的三角波,调制信号Ur 直接与Uc 进行比较,便可得到双极性SPWM脉冲。
对于三相逆变器来说,载波信号Uc可以三相共用;由正弦波发生器产生三相相位相差120°的可变幅,变频的正弦波信号Uru、Urv和Urw分别作为三相调制信号。
三相调制信号分别于Uc进行比较,可获得三相SPWM信号,利用三相SPWM信号控制相应的电子开关的开通和关断,便可得到三相双极性SPWM输出电压。
图1-2双极性SPWM原理1.2 SPWM的控制算法常用的生成SPWM波的控制算法主要有自然采样法和对称规则采样法(本文只介绍这两种)。
(1)自然采样法:按照正弦波与三角波的交点进行脉冲宽度与间隙时间的采样,从而生成SPWM波形,称为自然采样法,如图1-3所示,图中Tc为载波周期,S为脉冲宽度。
自然采样法采用计算的方法寻找三角载波Uc与参考正弦波Ur的交点作为开关值以确定SPWM的脉冲宽度,这种方法误差小、精度高,但是计算量大,难以做到实时控制,用查表法将占用大量内存,调速范围有限,一般在实际的机算计控制中不采用。
基于DSP和FPGA的交流伺服 PMSM 由于高转矩、低损耗、脉动小、电气时间常数小等物理特点,使其成为高精数控加工的最佳执行机构。
开发一个基于交流永磁伺服电机的高精度,快响应、强稳定性的伺服系统有着十分重要的实际意义。
本文首先对交流伺服系统的基本概况做了阐述,推导了永磁同步电机的数学模型,介绍了电压空间矢量的控制方法,设计了三闭环控制系统,给出了位置环、速度环和电流环控制器的设计方法,其中对位置环和速度环采用了鲁棒性很强的滑模变结构控制方法,对电流环采用了经典的PI控制,通过MATBAL仿真验证了此控制系统的可行性。
在硬件结构上采用IPM+DSP+FPGA结构,其中IPM功率模块完成功率驱动,DSP完成控制算法和通讯,FPGA完成对霍尔信号的检测、码盘信号的读取、键盘的扫描、显示器的动态刷新、保护信号的处理等功能。
此结构使DSP和FPGA充分发挥各自的优势,同时在性能上还弥补了各自的不足,节约了大量时间和资源,提高了系统的性能。
最后对整个系统的软件做了介绍,给出了主要部分的流程图及部分代码。
关键字:交流伺服;PMSM;DSP;FPGA;SVPWM;滑模变结构控制;PIReseach of AC Servo System based on DSP And FPGAAbstractWith the rapid development of the AC servo technology which based on power electronics technology and microprocessor technology, the AC servo system has been appliced in CNC machine tools, household appliances and many other industrial products widely. PMSM Permanent Magnet Synchronous Motor has many good characteristics such as high torque, low wastage, low pulse, low electric time constant and etc, which make PMSM become the best implement in high precise CNC. Herefore, it is of practical significance to develop high accuracy, fast response and strong stability servo control system.First of all, the general situation about AC servo technology is given. On the base of introducing the mathematics model of PMSM, SVPWM method is put forward. Secondly the paper degigns a three close loop contol system, giving the designing details in position loop controller, speed loop and the circuit loop. The position loop and the speed loop take the sliding mode variable control method which has high robustness and the circuit loop takes the classical PI control method. According to the result of simulation by MATBAL, the system is feasible.Then the paper introduces the hardware system based on IPM+DSP+FPGA. IPM module accomplishes power diver. DSP finishes the works including AC servo control algorithm and the communication. FPGA achieves the purposes including detecting thehall signal, reading code disc signal, scanning the keyboard, dynamic refreshing the LED display, dealing with protection signal and etc. This hardware system makes DSP and FPGA full play each one’s advantages and make up each one’s disadvantages, which not only saves much time, but also improved the efficiency of whole system. Finally, the paper introduces the software system by giving the main flow chart and some codes.Keywords: AC servo; PMSM;DSP; FPGA; SVPWM; sliding mode variable control; PI第1章绪论- 1 -1.1交流伺服系统简介 - 1 -1.2交流伺服系统的发展过程与趋势- 2 -1.3交流伺服系统的控制方案- 4 -1.4本文的研究目的和意义及内容安排 - 5 -第2章PMSM的结构和数学模型- 7 -2.1 PMSM的结构- 7 -2.2 PMSM的数学模型- 8 -2.3 本章小结- 11 -第3章 PMSM交流伺服系统的控制方案 - 13 -3.1 PMSM的矢量控制系统- 13 -3.2 位置环和速度环滑模变结构控制器的设计- 17 - 3.3 电流环PI控制器的设计- 23 -3.4 本章小结- 27 -第4章 PMSM交流伺服系统仿真- 28 -4.1 SVPWM仿真- 28 -4.2 PMSM交流伺服系统仿真- 31 -第5章 PMSM交流伺服系统的硬件设计 - 37 -5.1 交流伺服硬件系统的总体结构 - 37 -5.2 主功率电路- 37 -5.3 DSP硬件系统- 41 -5.4 FPGA硬件系统- 44 -5.5 DSP和FPGA总线接口电路 - 50 -5.6 系统电源电路 - 51 -5.7 本章小结- 53 -第6章 PMSM交流伺服系统的软件设计 - 54 - 6.1 软件的总体设计方案- 54 -6.2 DSP软件系统- 54 -6.3 FPGA软件系统- 64 -6.4本章小结- 68 -第7章总结与展望- 69 -参考文献- 71 -第1章绪论1.1交流伺服系统简介伺服来自英文单词Servo,指系统跟随外部指令进行人们所期望的运动,运动要素包括位置、速度和力矩。
附 SVPWM 的仿真实现1 SVPWM 的基本原理SPWM 常用于变频调速控制系统,经典的SPWM 控制主要目的是使变频器的输出电压尽量接近正弦波,并未关注输出的电流波形.而矢量控制的最终目的是得到圆形的旋转磁场,这样就要求变频器输出的电流波形接近正弦波。
锁定得到圆形的旋转磁场这一目标,SVPWM 控制技术利用逆变器各桥臂开关控制信号的不同组合,使逆变器的输出电压空间矢量的运行轨迹尽可能接近圆形。
SVPWM 是从电动机的角度出发,着眼于使电机获得幅值恒定的圆形磁场.图1所示为PWM 逆变器的拓扑结构以及等效开关模型。
AS B S CS 4622d U 2d U 0'135A B C逆变器拓扑结构 等效开关模型图1 PWM 逆变器电路电压源型逆变器常采用180ο导通型。
用A B C S S S 、、分别标记三个桥臂的状态,规定当上桥臂器件导通时桥臂状态为1,下桥臂导通时桥臂状态为0,当3个桥臂的功率开关管变化时,就会得到328=种开关模式,每种开关模式对应一个电压矢量,矢量的幅值为23d U ;有两种开关模式对应的电压矢量幅值为零,称为零矢量。
例如:在某一时刻,设V1,V2,V3管处于开通状态,即10a b c s s ,s ===,设为三相对称负载,各开关管的开通电阻均相等,则逆变器的等效电路为:图2 10a b c s s ,s ===时逆变器的等效电路图这样,很容易就能得到该瞬时时刻的相电压:112333AN d BN d CN d v U ,v U ,v U ===- (1)将其在静止坐标系中表示出来,如图3所示:图3 10a b c s s ,s ===电压矢量图其中,U 是合成的电压矢量,在两相静止坐标系(,αβ坐标系)下,利用相电压合成电压矢量U 的表达式:U 2433j j AN BN CN k(v v e v e )ππ=++ (2)其中,k 为三相静止坐标系向两相静止坐标系转换的变换系数,变换分为基于等功率的坐标变换和基于等量的坐标变换,这里选择等量的坐标变换,则23k =,式(2)即为:U(3)将式(1)的具体数值代入上式,则有:U 1323j d U e π= (4)这样就得到了10a b c s s ,s ===开关状态下的电压矢量,按照同样的方法分析另外7种开关状态,可以分别得到每种开关状态所对应的电压矢量,总结为表1所示。
SVPWM仿真与分析电压空间矢量控制技术是把逆变器和交流电动机视为一体,以圆形旋转磁场为目标来控制逆变器的工作,磁链轨迹的控制是通过交替使用不同的电压空间矢量实现的。
把逆变器和交流电动机视为一体,以圆形旋转磁场为目标来控制逆变器的工作,磁链轨迹的控制是通过交替使用不同的电压空间矢量实现的。
第一章SVPWM基本原理随着微电子技术、计算机控制技术以及电力电子技术的发展,正弦脉宽调制(SPWM)策略已广泛应用于交流变频调速系统中,但是SPWM方法不能充分利用馈电给逆变器的直流电压;SPWM是基于调节脉冲宽度和间隔来实现接近于正弦波的输出电流,但是仍会产生某些高次谐波分量,引起电机发热、转矩脉动甚至系统振荡;另外,SPWM适合模拟电路,不便于数字化实现。
在交流电机调速的磁通轨迹控制思想的基础上,发展产生了电压空间矢量脉宽调制(SVPWM)方法。
SVPWM物理概念清晰、算法简单且适合数字化实现,在输出电压或电机线圈电流中产生的谐波少,提高了对电压源逆变器直流供电电源的利用率。
1.13s/2s变换交流电动机三相对称绕组通以三相对称电流可以在电动机气隙中产生空间旋转的磁场,在功率不变的条件下,按磁动势相等的原则,三相对称绕组产生的空间旋转磁场可以用两相对称绕组来等效。
这就是矢量坐标变换中的三相静止坐标系和两相静止坐标系的变换(简称3S/2S变换)。
如图1-1所示。
对三相电进行3S/2S变换,将u,u,u分解到u,u坐标轴上。
可有:abc a Pu=u一ucos60。
一ucos60。
a abcu-0u+ucos30。
一ucos30。
式i-iP abc整理可得:式1-2c图1-13S/2S 变换对于三相交流电u ,u ,u 有:abcu -U cos (®t )am<u -U cos (①t —120。
)b mu —U cos (®t +120。
) cm 将u ,u ,u 代入式1-2中,可得结果:abcu auPUcosmsin在进行3s/2s 变换时,希望得到等幅值变换,所以式1-2 式1-3式1-4中添加一个系数C=2/3。