晶界和晶界模型
- 格式:pptx
- 大小:459.10 KB
- 文档页数:32
1.液体原子结构的主要特征。
(1)液体结构中近邻原子数一般为5~11个(呈统计分布),平均为6个,与固态晶体密排结构的12个最近邻原子数相比差别很大;(2)在液体原子的自由密堆结构中存在五种间隙,四面体间隙占了主要地位。
(3)液体原子结构在几个原子直径范围内是短程有序的,而长程是无序的。
2.液体表面能的产生原因。
液体表面层的分子,一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,而且前者的作用要比后者大。
因此在液体表面层中,每个分子都受到一个垂直于液面并指向液体内部的不平衡力。
这种吸引力使表面上的分子趋向于挤入液体内部,促成液体的最小表面积。
要使液体的表面积增大就必须要反抗液体内部分子的吸引力而做功,从而增加分子的位能,这种位能就是液体的表面能。
3.液体表面张力的概念和影响因素。
液体表面层的原子或分子受到内部原子或分子的吸引,趋向于挤入液体内部,使液体表面积缩小,因此在液体表面的切线方向始终存在一种使液体表面积缩小的力,其合力指向液体内部的作用力,这种力称为液体表面张力。
液体的表面张力大小受很多因素的影响。
如果不考虑液体内部其它组元向液体表面的偏聚和液体外部组元在液体表面的吸附,液体表面张力大小主要受物质本身结构、所接触的介质和温度的影响。
(1)液体的表面张力来源于液体内部原子或分子间的吸引力,因此液体内部原子或分子间的结合能的大小直接影响到液体的表面张力的大小。
一般来说,液体中原子或分子间的结合能越大,表面张力越大。
具有金属键原子结合的物质的表面张力最大;其次由大到小依次为:离子键结合的物质、极性共价键结合的物质、非极性共价键结合的物质。
(2)液体的表面张力的产生是由于处于表面层的原子或分子一方面受到液体内部原子或分子的吸引,另一方面受到液体外部原子或分子的吸引。
当液体处在不同介质环境时,液体表面的原子或分子与不同物质接触所受的作用力不同,因此导致液体表面张力的不同。
一般来说,介质物质的原子或分子与液体表面的原子或分子结合能越高,液体的表面张力越小;反之,介质物质的原子或分子与液体表面的原子或分子结合能越低,液体的表面张力越大。
复习题(下)第六章空位与位错本章的主要内容:晶体中的缺陷,晶体缺陷的分类晶体缺陷的形成点缺陷:点缺陷的种类,点缺陷的形成,点缺陷的运动,点缺陷的平衡浓度,点缺陷对材料性能的影响位错:位错理论的起源:理论切变强度,位错学说位错的观察位错基本类型及特征:刃型位错,螺型位错,混合位错柏氏矢量:确定方法,柏氏矢量的模,实际晶体中的柏氏矢量,柏氏矢量的特性,位错密度外力场中作用在位错线上的力位错运动:滑移,攀移,派一纳力,混合位错的运动位错的弹性性质:直螺错的应力场,直刃错的应力场,混合直位错的应力场位错的应变能及位错线张力位错间的交互作用:两根平行螺位错的交互作用,两根平行刃位错的交互作用,位错的相互交截:螺型位错与螺型位错,刃错与刃错,螺错与刃错位错的塞积位错的增殖实际晶体中的位错:单位位错,堆垛层错,不全位错:肖克莱,弗兰克不全位错位错反应及汤普逊四面体位错与溶质原子的交互作用:弹性交互作用,柯垂尔气团,斯诺克气团,静电交互作用化学交互作用1 填空1 空位是热力学_______________的缺陷,而位错是热力学_____________的缺陷。
2 fcc晶体中单位位错(全位错)的柏氏矢量是_________________;bcc晶体中单位位错(全位错)的柏氏矢量是_________________;hcp晶体中单位位错(全位错)的柏氏矢量是_________________;fcc中Frank位错的柏氏矢量是___________。
3 一根柏氏矢量b=a/2<110>的扩展位错滑出晶体后,在晶体表面产生的台阶的高度为_____________________。
4 在某温度下,晶体中的空位数与点阵数的比值称为__________________。
2ξ为位错线单位矢量,b为柏氏矢量,则bξ=0时为_______位错,bξ=b时为________________位错,bξ =-b时为______________位错。
晶胞晶体晶格晶界晶粒的关系1. 认识基础概念让我们先来聊聊这些科学名词——晶胞、晶体、晶格、晶界、晶粒。
别担心,听起来复杂,其实很简单。
想象你在拼乐高,每一个小块儿代表的就是这些概念中的一个部分。
1.1 晶胞:小小的基础单位晶胞,顾名思义,就是晶体的基本单位。
它是一个小小的立方体或其它几何形状的结构,像乐高的一个小块儿一样。
它包含了构成整个晶体的基本元素或分子。
这些晶胞像砖块一样一个个堆砌起来,组成了更大的晶体结构。
简单点说,晶胞就像你搭建乐高时的一个基础单元。
1.2 晶体:结构的整体当你把许多个晶胞按照一定的规律排列起来,就形成了一个晶体。
晶体就像是一个完整的乐高模型,它的每一部分都是由这些晶胞拼接而成的。
晶体的美妙之处在于它们的排列是有规律的,这种规律叫做晶格。
2. 晶格与晶体结构2.1 晶格:有序的排列晶格其实就是一种规则的排列方式,像棋盘上的格子一样。
每个晶胞都在一个特定的位置上,按照一定的规律排列,这样就形成了晶格。
不同的晶体有不同的晶格结构,比如立方体、六角形等。
就像不同的乐高模型可能有不同的形状和结构。
2.2 晶体的多样性由于晶格的不同,晶体有很多种类。
例如,钻石和石墨都是由碳元素构成的,但它们的晶格结构不同,所以它们的性质也大相径庭。
钻石的晶格非常紧密,所以它非常坚硬,而石墨的晶格则比较松散,导致它滑腻且易于剥离。
3. 晶界与晶粒:结构的细节3.1 晶界:界限的存在晶界就是不同晶粒之间的“隔阂”。
就像两个不同的乐高模型接触的地方一样,晶界是晶体中不同区域之间的界限。
晶界的存在可能会影响晶体的性质,比如它们可能会影响晶体的强度和韧性。
想象一下,如果你在搭建乐高时,接缝处拼接得不太好,那么整个模型的稳定性也会受到影响。
3.2 晶粒:大块的集合体晶粒是指晶体中的一个个小区域,每个区域都是由无数个晶胞组成的。
不同的晶粒有不同的晶体取向,就像不同的乐高模型部件可能朝向不同的方向。
晶粒的大小和分布会影响材料的整体性质,比如金属的强度和韧性。