工程结构抗震设计-桥梁结构抗震能力验算
- 格式:pptx
- 大小:682.58 KB
- 文档页数:37
土木工程中的桥梁抗震设计随着现代城市建设的迅猛发展,桥梁作为城市交通的重要组成部分,其安全性和可靠性越来越受到关注。
在地震频发的地区,桥梁抗震设计成为不可忽视的问题。
本文将介绍土木工程中桥梁抗震设计的原则和方法。
一、地震力的计算桥梁的抗震设计首先需要计算地震力。
地震力的计算一般采用地震反应谱分析方法,该方法可以将地震作用的时间历程转换为最大加速度、加速度峰值、速度和位移的变化曲线。
根据地震反应谱,可以估计桥梁在地震作用下的响应。
二、结构设计在桥梁结构设计中,应根据地震力计算结果考虑以下几个因素:1. 强度:桥梁的各构件和节点必须具有足够的强度,能够承受地震作用下的荷载,并保证不发生破坏。
2. 刚度:桥梁的刚度对于减小地震响应有重要影响。
通过增加桥梁刚度,可以减小桥梁的变形和振动。
3. 韧性:桥梁的韧性是指结构在地震作用下出现破坏时的变形能力。
增加桥梁的韧性可以减小破坏的可能性,并降低地震造成的损失。
4. 阻尼:桥梁的阻尼对于减小地震响应同样很重要。
通过增加桥梁的阻尼,可以减小结构的振动幅度。
三、土壤-结构相互作用土壤-结构相互作用是桥梁抗震设计中需要考虑的另一个重要因素。
土壤对于桥梁的刚度、阻尼和能量耗散等性能有着重要影响。
为了准确评估桥梁的地震响应,需要考虑土壤的动态反应。
常用的土壤-结构相互作用分析方法包括:弹性地基理论、半空间理论和数值模拟等。
四、桥梁抗震措施在桥梁抗震设计中,可以采取以下几种措施:1. 采用适宜的结构形式:合理的结构形式对于提高桥梁的抗震能力很重要。
例如,钢筋混凝土桥梁比砖石桥梁具有更好的抗震性能。
2. 设置防护装置:在桥梁结构中设置防护装置,如减震器、阻尼器等,能够有效减小地震响应。
3. 加固改造:对于现有桥梁,可以通过加固改造提高其抗震能力。
常用的加固措施包括:加固柱、增加剪切墙、加固梁、加固桩等。
4. 高质量工艺:在桥梁施工过程中,严格控制质量,确保结构的强度和韧性。
路桥科技169 桥梁工程中桥梁抗震设计鲍 伟(安徽省公路桥梁工程有限公司,安徽 合肥 230031)摘要:近年来,我国社会经济快速发展,桥梁工程的建设速度也不断加快。
桥梁的抗震设计也成为一个重要的话题,尤其是处于地震带的区域,更要在桥梁工程的设计时考虑好抗震设计,确保桥梁在使用过程中的安全性与可靠性,满足我国社会经济的发展需求。
基于此,本文将对桥梁工程中桥梁抗震设计进行分析。
关键词:桥梁工程;桥梁抗震设计;桥梁设计1 桥梁震害分析 在城市现代化发展进程中,城市人口形成了聚集状态,加快了区域内经济发展进程。
交通网络应用在城市命脉主体中,旨在全面提升城市抗震性能,加强桥梁抗震效果设计。
依据最近几十年实际发生的地震灾害事件,桥梁工程在地震灾害中极易遭受破坏,作为抗震防灾的关键环节。
桥梁工程在发生破坏时,将会阻断受灾区的交通线路,提升灾区救援困难,使地震引起的关联灾害持续深化,增加了救灾、灾后建设等工作的难度。
与此同时,桥梁在社会组织作为交通性基础设施,在建设时投入大量资金,极具公共性,灾后运维管理存在多重阻碍。
为此,加强桥梁抗震设计,尽可能地减少桥梁在地震中产生的损失问题,保障公共区域的基本安全。
结合往期地震中桥梁震害的具体情况,大致分为四种破坏类型:第一种桥梁工程震害为上部结构破坏,第二种为支座破坏,第三种为下部结构破坏,第四种基础结构破坏。
具体表现为:(1)会对地基产生破坏。
当地震发生后,地基是最先遭受冲击的部分,如果桥梁工程的地基土质松软,对地基的破坏力会更大。
(2)会对桥墩产生破坏。
在发生地震后,桥墩会在地震波的影响下出现偏移,这时就会剪断支座锚栓,极有可能造成桥段断裂或者桥梁坍塌。
(3)会对桥梁支座产生破坏。
当地震发生时,地震的破坏力会得到支座的阻挡与消除,虽然支座能对桥梁主体进行保护,但支座被破坏后,也会发生落梁的问题。
所以,需要做好抗震设计,降低地震产生的破坏。
2 桥梁工程中桥梁抗震设计 地震灾害所导致的桥梁垮塌、墩柱破坏、支座位移过大等震害将直接影响路网畅通甚至造成严重生命和财产损失,这引发了建设行业对抗震设计理念和设计方法的重视。
桥梁结构的抗震性能评估与改进研究摘要:桥梁作为人类文明的重要标志之一,承载着人们的出行和物资流动。
然而,地震作为一种自然灾害,给桥梁结构带来了巨大的破坏和威胁。
因此,评估和改进桥梁结构的抗震性能显得尤为重要。
本文旨在探讨桥梁结构的抗震性能评估方法,并分析现有抗震性能存在的问题。
通过本文的研究,希望能够为提升桥梁结构的抗震能力、保障人们的生命财产安全,提供有益的参考和指导。
关键词:桥梁结构;抗震性能;评估;改进;技术推广一、桥梁结构的抗震性能的重要性抗震技术是在地震灾害频发的背景下逐渐发展起来的一项重要技术。
随着科学技术的不断进步和人们对地震灾害的深入认识,抗震技术得到了广泛的关注和应用。
在过去的几十年里,抗震技术经历了从初级阶段到成熟阶段的发展过程。
在抗震技术的发展过程中,人们逐渐认识到地震对建筑物和结构的破坏是由地震波的传播和结构的动力响应引起的。
因此,抗震技术的发展主要集中在两个方面:一是地震波的预测和分析,二是结构的抗震设计和改进。
桥梁结构抗震性能的改进是保障桥梁结构安全可靠的重要措施。
地震是一种破坏性极强的自然灾害,对桥梁结构的影响尤为严重。
因此,提高桥梁的抗震性能具有重要的意义。
抗震性能改进可以有效减少地震对桥梁结构的破坏。
地震作用下,桥梁结构会受到地震波的冲击和地震引起的地面变形等影响,容易发生破坏甚至倒塌。
通过改进桥梁的抗震性能,可以增加结构的抗震能力和韧性,减少破坏发生的可能性,从而保障桥梁的安全运行。
抗震性能改进可以提高桥梁的使用寿命。
地震破坏不仅会导致桥梁结构的修复和重建,还会对桥梁的使用寿命造成严重影响。
通过改进抗震性能,可以增加桥梁结构的抗震能力和耐久性,延长桥梁的使用寿命,减少维修和更换的频率,降低维护成本。
抗震性能改进还可以提高桥梁结构的可靠性和安全性。
地震是一种突发性的自然灾害,对桥梁结构的要求非常高。
因此,通过改进抗震性能,可以增加桥梁结构的稳定性和可靠性,提高桥梁在地震中的抵抗能力,保障人员和交通的安全。
掌握地震动的基本特性,结构地震响应特性,反应谱,钢筋混凝土结构、钢结构、砌体结构和桥梁结构的抗震验算和构造措施,隔震减震的基本原理等。
掌握排架结构简化为单质点体系时,多遇地震水平地震作用标准值的计算(例题3.1)钢筋混凝土框架简化成多质点体系时,用振型分解反应谱法计算该框架在多遇地震下的层间地震剪力,以及内力图。
(例题3.3)多层钢筋混凝土框架结构,用底部剪力法计算其在多遇地震作用下各质点上的水平地震作用。
(例题3.7)一、填空题1、构造地震为由于地壳构造运动造成地下岩层断裂或错动引起的地面振动。
2、建筑的场地类别,可根据土层等效剪切波速和场地覆盖层厚度划分为四类。
3、《抗震规范》将50年内超越概率为 10% 的烈度值称为基本地震烈度,超越概率为 63.2% 的烈度值称为多遇地震烈度。
4、丙类建筑房屋应根据抗震设防烈度,结构类型和房屋高度采用不同的抗震等级。
5、柱的轴压比n定义为 n=N/fc Ac(柱组合后的轴压力设计值与柱的全截面面积和混凝土抗压强度设计值乘积之比)6、震源在地表的投影位置称为震中,震源到地面的垂直距离称为震源深度。
7、表征地震动特性的要素有三,分别为振幅、频谱和持时。
8、某二层钢筋混凝土框架结构,集中于楼盖和屋盖处的重力荷载代表值相等G 1=G2=1200kN,第一振型φ12/φ11=1.618/1;第二振型φ22/φ21=-0.618/1。
则第一振型的振型参与系数j= 0、724 。
9、多层砌体房屋楼层地震剪力在同一层各墙体间的分配主要取决于楼盖的水平刚度(楼盖类型)和各墙体的侧移刚度及负荷面积。
10、建筑平面形状复杂将加重建筑物震害的原因为扭转效应、应力集中。
11、在多层砌体房屋计算简图中,当基础埋置较深且无地下室时,结构底层层高一般取至 室外地面以下500mm 处 。
12、某一场地土的覆盖层厚度为80米,场地土的等效剪切波速为200m/s,则该场地的场地土类别为 Ⅲ类场地 (中软土) 。
1桥梁结构抗震Seismic Design for Bridge Structures土木工程学院2010.8第三章地震作用计算Seismic Action Calculation3. 1 概述3.2 静力法3.3 单自由度体系的地震反应3.4 单自由度体系的水平地震作用-反应谱法3.5 多自由度体系的地震反应3.6 多自由度体系的水平地震作用-振型分解反应谱法3.7 竖向地震作用计算3.8 地震反应时程分析法的概念3.9 结构自振频率的近似计算3.1 概述一、地震作用二、结构地震反应结构地震反应:三、结构动力计算简图及体系自由度a、水塔建筑d、多、高层建筑3.2 静力法静力法明显的优点是简单,其缺点是完全没有反映地基和结构的动力特征。
静力法只对刚度较大,且较低矮的结构才是合适的。
一般认为对于自振周期小于0.5秒的结构按静力法计算地震作用时,误差不会很大。
日本从20世纪20年代起始用静力法以来,为了表示场地、结构动力特性等众多因素的影响,对静力法作过多次修正,乘以多个系数,称之为震度法,并沿用至今。
我国鉴于当前路基和挡土墙、坝体等土木工程结构的动力观测资料和自振特性的试验研究尚少,故对它们的抗震验算,仍采用静力法计算地震作用。
3.3 单自由度体系的地震反应-----------------------单自由度体系的振动f cv cx=−=− f =−I f ma mx=−=−单自由度体系无阻尼自由振动:mxA:振幅单自由度体系无阻尼自由振动:2ξωωξ特征方程:(3)若一、运动方程二、运动方程的解初始条件:初始位移例题3-12.方程的特解II——冲击强迫振动图地面冲击运动地面冲击运动:⎩⎨⎧>≤≤=dtdt x xg g τττ00)(对质点冲击力:⎩⎨⎧>≤≤−=dtdtx m P g ττ0质点加速度(0~dt):自由振动初速度为t x)(图体系自由振动3.方程的特解III ——动⎪⎩⎪⎨⎧≥−−<=−−ττωωττττξωt t d x e t t dx D D g t )(sin )(0)()( 地面运动脉冲引起的反应tdte xt x D Dtg ωωξωsin )(−−=叠加:体系在t 时刻的地震反应为:⎪⎨≥−−=−−ττωωτξωt t e t dx Dt )(sin )()(单自由度体系的水平地震作用一、水平地震作用的定义二、地震反应谱地震(加速度)反应谱可理解为一个确定的地面运动,通过一组相同但自振周期t地震动的影响频谱:地面运动各种频率(周期)成分与加速度幅值的对应关系不同场地条件下的平均反应谱不同震中距条件下的平均反应谱地震反应谱峰值对应的周期也越长场地越软震中距越大地震动主要频率成份越小(或主要周期成份越长)G —体系的重量;—地震系数;—动力系数。
关于印发《市政公用设施抗震设防专项论证技术要点(城镇桥梁工程篇)》的通知建质[2011]30号各省、自治区住房和城乡建设厅,直辖市建委(建交委)及有关部门,新疆生产建设兵团建设局:根据《市政公用设施抗灾设防管理规定》(住房和城乡建设部令第1号),我部组织制订了《市政公用设施抗震设防专项论证技术要点(城镇桥梁工程篇)》,现印发给你们,请遵照执行。
各地住房和城乡建设主管部门要加强监管,确保市政公用设施抗震设防专项论证制度的落实。
各地在执行中发现的有关问题,请及时告我部工程质量安全监管司。
中华人民共和国住房和城乡建设部二〇一一年三月四日市政公用设施抗震设防专项论证技术要点(城镇桥梁工程篇)第一章总则第一条为做好全国新建、改建、扩建城镇桥梁工程初步设计阶段的抗震设防专项论证(以下简称专项论证)工作,根据《市政公用设施抗灾设防管理规定》(住房和城乡建设部令第1号),制定本技术要点。
第二条本技术要点适用于抗震设防区位于城市快速路、主干道路、城市轨道交通线路的下列城镇桥梁工程:(一)主跨跨径150m及以上的斜拉桥、悬索桥等缆索承重桥梁以及拱桥;(二)立体交叉线路为3层及3层以上(不计地面道路及地道)的大型互通立交桥梁;(三)采用国内尚无工程应用实例的减震、隔震技术(以下简称特殊减震、隔震技术)或结构材料超越现行设计规范(以下简称新材料)的桥梁;(四)抗震设防烈度7度及以上(地震动峰值加速度≥0.1g,g为重力加速度)的下列桥梁:1、建设在软弱土、液化土层等现行设计规范定义为对桥梁抗震不利的地段,且单跨跨度超过80m或总长超过500m的桥梁;2、联长超过250m的连续桥梁;3、单跨跨度超过50m或者联长超过150m,且曲率半径小于15b(b为桥宽)的曲线桥;4、单跨跨度超过80m,且属于结构动力特性复杂的异型桥梁;5、墩高超过30m,且在E2地震作用下允许结构进入塑性区的高墩桥梁;6、上部结构重心位置位于悬臂盖梁,且重心位置的悬臂长度≥5m的桥梁。
综合抗震能力指数计算公式地震是一种自然灾害,它给人类社会造成了巨大的损失。
为了减少地震带来的破坏,人们提出了抗震设计的概念。
抗震设计是指在建筑物、桥梁、堤坝等工程结构中,通过合理的设计和施工,使其在地震发生时能够保持完整性和稳定性,减少地震破坏。
而综合抗震能力指数就是评价建筑物抗震能力的一个重要指标。
综合抗震能力指数是根据建筑物的结构特点、材料性能、地震动特性等因素综合考虑,通过一定的计算方法得出的一个数值。
这个数值反映了建筑物在地震作用下的整体抗震能力,是评价建筑物抗震性能的重要依据。
下面我们来介绍一下综合抗震能力指数的计算公式。
综合抗震能力指数的计算公式包括了建筑物的结构特点、材料性能、地震动特性等多个因素。
一般来说,综合抗震能力指数的计算公式可以表示为:R = αS + βD + γC。
其中,R表示综合抗震能力指数,α、β、γ分别为结构特性系数、地震动特性系数和材料性能系数,S、D、C分别为结构特性、地震动特性和材料性能的具体参数。
在这个公式中,结构特性系数α是指建筑物结构的抗震性能,包括了结构的刚度、强度、耐震性能等因素。
地震动特性系数β是指地震动对建筑物的影响,包括了地震动的频率、幅值、方向等因素。
材料性能系数γ是指建筑材料的抗震性能,包括了材料的强度、韧性、耐久性等因素。
在实际的计算中,结构特性系数、地震动特性系数和材料性能系数的取值需要根据具体的建筑物和地震环境进行综合考虑。
通常情况下,可以通过相关的抗震设计规范和地震动参数来确定这些系数的取值。
综合抗震能力指数的计算公式可以帮助工程师和设计人员评估建筑物的抗震性能,指导抗震设计和施工工作。
通过对综合抗震能力指数的计算,可以及时发现建筑物的抗震性能问题,采取相应的措施加强建筑物的抗震能力,从而减少地震灾害造成的损失。
需要指出的是,综合抗震能力指数的计算公式是一个比较复杂的计算过程,需要充分考虑建筑物的结构特点、材料性能、地震动特性等多个因素。