铸造工艺设计基础
- 格式:doc
- 大小:473.50 KB
- 文档页数:16
铸造工艺基础知识及理论目录一、基础概念 (2)1.1 铸造的定义与意义 (3)1.2 铸造工艺的种类与应用 (4)二、铸造材料 (6)三、铸造设备 (7)3.1 熔炼设备 (9)3.2 锻造设备 (10)3.3 后处理设备 (11)四、铸造工艺过程 (12)五、铸造工艺设计 (13)5.1 工艺方案的确定 (15)5.2 工艺参数的选择 (16)5.3 工艺文件的编制 (18)六、铸造质量与控制 (20)6.1 铸造缺陷的产生原因及防止措施 (22)6.2 铸造质量检测方法与标准 (23)七、铸造生产与环境 (24)7.1 铸造生产的环保要求 (26)7.2 环保设备的应用与管理 (27)八、现代铸造技术的发展趋势 (28)8.1 快速凝固与近净形铸造技术 (30)8.2 数字化与智能化铸造技术 (31)8.3 生物铸造与绿色铸造技术 (33)一、基础概念铸造工艺是指将熔炼好的液态金属浇入铸型,待其凝固后获得所需形状和性能的金属制品的过程。
它是制造业中非常重要的工艺之一,广泛应用于汽车、航空、建筑、电子等领域。
铸造工艺的基础知识主要包括液态金属的性质、铸型(即模具)的设计与制造、浇注系统、凝固过程以及后处理等。
这些知识是理解和掌握铸造工艺的基本前提。
液态金属的性质:液态金属在铸造过程中的流动性、填充能力、冷却速度等对其最终的产品质量有着决定性的影响。
了解液态金属的成分、温度、粘度等基本性质对于铸造工艺的设计和实践都是非常重要的。
铸型的设计与制造:铸型是形成金属制品形状和内部结构的重要工具。
铸型的设计需要考虑到金属液的流动性和凝固特性,以及制品的精度和表面质量要求。
铸型的制造也需要选用合适的材料,并经过精密加工才能达到设计要求。
浇注系统:浇注系统是连接铸型和液态金属的通道,包括浇口杯、直浇道、横浇道和内浇道等部分。
合理的浇注系统设计可以确保金属液均匀地注入铸型,并有利于热量和气体的排出,从而提高制品的质量和生产效率。
第五章铸造第二篇铸造工艺基础教学内容合金的铸造性能、流动性、收缩性、偏析性;铸件的常见缺陷分析及防止;常见合金铸件的生产;砂型铸造工艺基础;几种典型的特种铸造工艺方法;铸件结构与铸造工艺及合金铸造性能的关系。
目的与要求要求了解合金流动性和收缩的概念、影响因素及其对铸件质量的影响,为铸件设计,选材和制订铸造工艺提供理论基础。
常用合金铸件的生产,要求了解灰铸铁、球墨铸铁、可锻铸铁、铸钢、铜、铝及其合金铸件的生产特点。
砂型铸造要求掌握制定铸造工艺图的基本原则,主要工艺参数的选择原则,分析典型铸件图例,并为今后解决实际问题打好基础。
掌握铸造工艺和合金铸造性能对铸件结构的要求。
特种铸造重点了解金属型铸造、熔模铸造、压力铸造和离心铸造基本知识。
‘第一节液态合金的充型充型:液态合金填充铸型的过程。
充型能力:液态金充满铸型型腔,获得形状完整、轮廓清晰健全的铸件的能力。
影响充型能力的主要因素是合金的流动性、浇注条件、铸型填充条件和铸件结构。
一、合金的流动性1.流动性的概念流动性:液态态合金本身的流动能力。
流动性好,易于浇出轮廓清晰,薄而复杂的铸件。
流动性好,有利于液态金属中的非金属夹杂物和气体上浮,排除。
流动性好,易于对液态金属在凝固中产生的收缩进行补缩。
2.流动性的测定方法以螺旋形试件的长度来测定:如图5-1影响合金流动性的因素:合金成分结金温度范围浇注温度充型压力图5—3所示为铁碳合金的流动性与含碳量的关系。
由图可见,亚共晶铸铁随含碳量增加,结晶间隔减小,流动性提高。
愈接近共晶成分,愈容易铸造。
二、浇注条件浇注温度浇注温度对合金的充型能力有着决定性影响。
浇注温度愈高,液态金属所含的热量较多,粘度下降,在相同的冷却条件下,合金在铸型中保持流动的时间长。
但是,浇注温度过高会使金属液体的吸气量和总收缩量增大,铸件容易生产气孔、缩孔、缩松、粘砂、粗晶等缺陷,故在保证充型能力足够的前提下,浇注温度不易过高。
对于形状复杂的薄壁铸件,为避免产生冷隔和浇不足等缺陷,浇注温度以略高些为宜。
热加工工艺基础第一章铸造工艺基础1.名词解释充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力。
缩孔:在铸件上部或最后凝固部位出现的容积较大的孔洞。
缩松:铸件断面上出现的分散、细小的孔洞。
逐层凝固:纯金属或共晶成分合金在凝固过程中不存在固、液相并存的凝固区,故断面上外层的固体和内层的液体由一条界限清楚地分开,随着温度的下降,固体层不断加厚,液体层不断减少直到中心层全部凝固。
糊状凝固:合金的凝固温度范围很宽或铸件断面温度分布曲线较为平坦,其凝固区在某段时间内,液固并存的凝固区贯穿整个铸件断面。
中间凝固:介于逐层凝固和糊状凝固之间的凝固方式。
定向凝固:使铸件按规定方向从一部分到另一部分逐渐凝固的过程。
同时凝固:尽量减少铸件各部位间的温度差使铸件各部位同时冷却凝固。
热裂:凝固后期合金收缩且受到铸型等阻碍产生应力,当应力超过某一温度下合金的强度所产生的裂纹。
冷裂:铸件固态下产生的裂纹。
热应力:由于铸件壁厚不均匀,各部分冷却速度不同,以致在同一时期铸件各部分收缩不一致而产生的应力。
侵入气孔:砂型或砂芯受热产生气体侵入金属液内部在凝固前未析出而产生的气孔反应气孔:合金液与型砂中的水分、冷铁、芯撑之间或合金内部某些元素、化合物之间发生化学反应产生气体而形成的气孔。
·析出气孔:合金在熔炼和浇注过程中接触气体使气体溶解其中,当合金液冷却凝固时,气体来不及析出而形成的气孔。
2.合金的流动性不足易产生哪些缺陷?浇不足,冷隔,气孔,夹渣,缩孔,缩松。
影响合金流动性的主要因素有哪几个方面?合金的种类,合金的成分,温度。
在实际生产中常用什么措施防止浇不足和冷隔缺陷?a.选用黏度小,比热容大,密度大,导热系数小的合金,使合金较长时间保持液态。
b.选用共晶成分或结晶温度范围窄的合金作为铸造合金。
c.选择合理的浇注温度。
3.充型能力与合金的流动性有什么关系?合金的流动性越好,则其充型能力越好。
不同化学成分的合金为何流动性不同?合金的化学成分不同,它们的熔点及结晶温度范围不同,其流动性不同。
铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。
1、铸造的实质利用了液体的流动形成。
2、铸造的特点A 适应性大(铸件分量、合金种类、零件形状都不受限制);B 成本低C 工序多,质量不稳定,废品率高D 力学性能较同样材料的锻件差。
力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松, 成份不均匀3、铸造的应用铸造毛胚主要用于受力较小,形状复杂(特别是腔内复杂)或者简单、分量较大的零件毛胚。
1、铸件的凝固(1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程.它由晶核的形成和长大两部份组成。
通常情况下,铸件的结晶有如下特点:A 以非均质形核为主B 以枝状晶方式生长为主.结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒. 晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或者混合组织等.(2)铸件的凝固方式逐渐的凝固方式有三种类型:A 逐层凝固B 糊状凝固C 中间凝固2、合金的铸造性能(1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。
它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。
生产上改善合金的充型能力可以从一下各方面着手:A 选择挨近共晶成份的趋于逐层凝固的合金,它们的流动性好;B 提高浇注温度,延长金属流动时间;C 提高充填能力D 设置出气冒口,减少型内气体,降低金属液流动时阻力。
(2)收缩性A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中.对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。
适当控制凝固顺序,让铸件按远离冒口部份最先凝固,然后朝冒口方向凝固, 最后才是冒口本身的凝固(即顺序凝固方式) ,就把缩孔转移到最后凝固的部位—- 冒口中去,而去除冒口后的铸件则是所要的致密铸件。
铸造必备基础知识在进行铸造工艺之前,了解铸造必备的基础知识是非常重要的。
本文将介绍铸造工艺的基本概念、材料选择、铸造方法、设计和工艺控制等方面的知识。
一、铸造的基本概念铸造是指将熔化的金属或非金属材料,通过浇筑或其他注入方式,借助于一定形状的模具,在其冷却过程中制成所需的零件或产品的工艺过程。
铸造是制造业中最常用的成型方法之一,具有形状复杂、尺寸精确、材料多样化等优点。
二、材料选择在铸造中,常用的金属材料包括铁、铜、铝、锌等。
选择合适的材料取决于产品的需求,如机械性能、耐腐蚀性、导电性等。
此外,还要考虑材料的可铸造性,如熔点、流动性等特性。
三、铸造方法铸造方法主要分为砂型铸造、金属型铸造和持续铸造等几种。
砂型铸造是最常见的一种,通过在模具中填充湿砂,形成铸型,然后在铸型中浇注熔化的金属。
金属型铸造主要用于高温合金和特殊材料的铸造。
持续铸造适用于大量生产和连续铸造的情况。
四、设计和工艺控制在进行铸造产品的设计时,需要考虑模具的结构、冷却方式、缩孔和气孔等缺陷的预防。
同时,还需要进行合理的工艺控制,如控制熔化温度、浇注速度、冷却时间等,来保证产品的质量。
五、常见问题和解决方法在铸造过程中,常见的问题包括缺陷、变形和裂纹等。
要解决这些问题,可以采用改进模具设计、增加冷却措施、调整工艺参数等方法。
六、铸造在工业中的应用铸造广泛应用于机械制造、汽车、航空航天、建筑等领域。
铸造的发展还推动了材料科学和工艺技术的进步。
七、总结铸造是一种常见且重要的制造方法,它具有成本低、生产效率高等特点。
在进行铸造前,了解铸造的基本概念、材料选择、铸造方法、设计和工艺控制等方面的知识是必不可少的,有助于提高产品的质量和生产效率。
随着科技的不断进步,铸造技术也在不断革新,为各行各业的发展做出了重要贡献。
铸造——将液体金属浇注到具有与零件形状相应的铸型型腔中,待其冷却凝固后获得铸件的方法。
作为一种成型工艺,熔铸的基本优点在于液态金属的抗剪应力很小,易于成型。
优点:1、原材料来源广,价格低廉,如废钢、废件、切屑等;生产成本低,与其它成形工艺相比,铸造具有明显的优势。
2、铸造是金属液态成形,因此可生产形状十分复杂,尤其是具有复杂内腔的各种尺寸规格的毛坯或零件。
3、铸件的形状尺寸与零件非常接近,减少了切削量,属于无切削加工;4、铸件的大小、重量及生产批量不受限制,可生产多种金属或合金的产品,比较灵活。
5、应用广泛,农业机械中40%~70%、机床中70%~80%的重量都是铸件。
缺点:1、铸件的力学性能不如相同化学成分的锻件好2、铸件质量不够稳定,工序多,影响因素复杂,工艺过程较难控制。
3、制品中有各种缺陷与不足。
微观组织随位置变化,化学成分随位置变化。
如铸件内部常存在气孔、缩孔、缩松、夹杂、砂眼和裂纹等缺陷。
4、尺寸精度较低。
5、铸造生产的劳动条件较差。
砂型铸造中,单件、小批量生产,工人劳动强度大砂型铸造——是以砂为主要造型材料制备铸型的一种铸造方法。
主要工序为:制作模样及型芯盒,配制型砂、芯砂,造型、造芯及合箱,熔化与浇注,铸件的清理与检查等。
简述砂型铸造的基本工艺过程。
(1)造型:用型砂及模样等工艺设备制造铸型。
通常分为手工造型和机器造型。
造芯、涂料、开设浇注系统、合型。
(2)熔炼与浇注熔炼:使金属由固态转变为熔融状态。
浇注:将熔融金属从浇包注入铸型。
(3)落砂与清理落砂:用手工或机械使铸件与型砂、砂箱分开。
清理:落砂后在铸件上清理表面粘砂、型砂、表面金属等。
金属型铸造——将液态金属浇入金属材料制成的铸型中以获得铸件的方法。
优点:1、尺寸精度高,表面质量好,机械加工余量小;2、金属型导热性好,冷却速度快,铸件晶粒细小,力学性能好;3、一型多铸,生产效率高,易于机械化或自动化;4、节省造型材料,环境污染小,劳动条件好。
铸造工艺设计基础铸造生产周期较长,工艺复杂繁多。
为了保证铸件质量,铸造工作者应根据铸件特点,技术条件和生产批量等制订正确的工艺方案,编制合理的铸造工艺流程,在确保铸件质量的前提下,尽可能地降低生产成本和改善生产劳动条件。
本章主要介绍铸造工艺设计的基础知识,使学生掌握设计方法,学会查阅资料,培养分析问题和解决问题的能力。
§1-1 零件结构的铸造工艺性分析铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。
还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。
这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。
另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸造工艺过程和降低成本。
铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。
因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。
一、铸件质量对铸件结构的要求1.铸件应有合理的壁厚某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。
采用合理的铸件结构,可防止许多缺陷。
每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。
在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。
(1)壁厚应不小于最小壁厚在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。
为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。
各种铸造工艺条件下,铸件最小允许壁厚见表7-1~表7-5合金种类铸件最大轮廓尺寸为下列值时/㎜﹤200200-400400-800800-12501250-2000﹥2000碳素铸钢低合金钢高锰钢不锈钢、耐热钢灰铸铁孕育铸铁(HT300以上)球墨铸铁88-98-98-113-45-63-499-101010-124-56-84-811121212-165-68-108-1014161616-206-810-1210-1216~18202020-258-1012-1612-14202525-10-1216-2014-16铸件最大轮廓为下列值时mm铸造铝合金﹤100100-200200-400400-800800-125034-55-66-88-12表1-2 熔模铸件的最小壁厚(单位:㎜)铸件尺寸/㎜最小壁厚/㎜碳钢高温合金铝合金铜合金10~50 1.5~2.00.6~1.0 1.5~2.0 1.5~2.0 50~100 2.0~2.50.8~1.5 2.0~2.5 2.0~2.5 100~200 2.5~3.0 1.0~2.0 2.5~3.0 2.5~3.0 200~350 3.0~3.5— 3.0~3.5 3.0~3.5﹥350 4.0~5.0— 3.5~4.0 3.5~4.0表1-3 金属型铸件的最小壁厚(单位:㎜)铸件尺寸/㎜最小壁厚/㎜铝硅合金铝镁合金、镁合金铜合金灰铸铁铸钢50×50 2.23 2.535100×100 2.53338225×22534 3.5410350×350454512压铸件面积/㎝2锌合金铝合金镁合金铜合金﹤250.7~1.00.8~1.2 1.5~2.025~100 1.0~1.6 1.2~1.8 2.0~2.5100~400 1.6~2.0 1.5~2.0 2.5~3.0﹥400 2.0~2.5 2.0~2.5 3.0~3.5(2)铸件的临界壁厚在铸件结构设计时,为了充分发挥金属的潜力,节约金属,必须考虑铸造合金的力学性能对铸件壁厚的敏感性。
厚壁铸件容易产生缩孔、缩松、晶粒粗大、偏析和松软等缺陷,从而使铸件的力学性能下降。
从这个方面考虑,各种铸造合金都存在一个临界壁厚。
铸件的壁厚超过临界壁厚后,铸件的力学性能并不按比例地随着铸件壁厚的增加而增加,而是显著下降。
因此,铸件的结构设计应科学地选择壁厚,以节约金属和减轻铸件重量。
在砂型铸造工艺条件下,各种合金铸件的临界壁厚可按最小壁厚的3倍来考虑。
铸件壁厚应随铸件尺寸增大而相应增大,在适宜壁厚的条件下,既方便铸造又能充分发挥材料的力学性能。
表7-5,表7-6给出砂型铸造各种铸造合金的临界壁厚。
表1-5 砂型铸造各种铸造合金的临界壁厚(单位:㎜)合金种类与牌号当铸件重量(㎏)为下列值时0.1~2.5 2.5~10﹥10灰铸铁HT100,HT150HT200,HT250HT300HT3508~1012~1512~1815~2010~1512~1515~1815~2020~2512~182525可锻铸铁KTH300-06 KTH390-8KTH350-10 KTH370-26~106~1012~1210~12----球墨铸铁QT400-15 QT450-10QT500-7 QT230-31014~1815~2018~205060碳素铸钢ZG200-400 ZG230-450ZG270-500 ZG310-570ZG340-640181515252020------铝合金镁合金锡合金6~1010~14--6~1212~186~810~14----含碳量0.100.200.300.400.50临界壁厚1113.518.52539(3)铸件的内壁厚度砂型铸造时,铸件内壁散热条件差,即使内壁厚度与外壁厚度相等,但由于它比外壁的凝固速度慢,力学性能往往要比外壁低,同时在铸造过程中易在内、外壁交接处产生热应力致使铸件产生裂纹。
对于凝固收缩大的铸造合金还易产生缩孔和缩松,因此铸件的内壁厚度应比外壁厚度薄一些。
图1-1 铸件内壁的合理结构a,b)不合理c)合理合金类别铸铁铸钢铸铝铸铜铸件内壁比外壁厚度应减少的相10~2020~3010~2015~20对值%注:铸件内腔尺寸大的取下限对于锻钢制造的轴类零件来说,增大直径便可提高承载能力。
但对铸件来说,随着壁厚的增加,中心部分晶粒粗大,承载能力并不随壁厚增加而成比例地增加。
因此,在设计较厚铸件时,不能把增加壁厚当作提高承载能力的唯一办法。
为了节约金属,减轻铸件重量,可以选择合理的截面形状,如承受弯曲载荷的铸件,可选用“T”型或“工”型截面。
采用加强筋也可减小铸件壁厚。
一般筋厚﹤内壁厚﹤外壁厚。
2 . 铸件壁应合理连接铸件壁厚不均,厚薄相差悬殊,会造成热量集中,冷却不均,不仅易产生缩孔、缩松,而且易产生应力、变形和裂纹。
所以要求铸件壁厚尽量均匀,如图1-2(a)所示结构中壁厚不均,在厚的部分易形成缩孔,在厚薄连接处易形成裂纹。
改为1-2(b)结构后,由于壁厚均匀,即可防止上述缺陷产生。
也可用薄壁加加强筋结构。
加强筋的布置应尽量避免或减少交叉,防止习惯年成热节。
例如钳工划线平台,其筋条布置如图1-3所示。
铸件各部分壁厚不均现象有时不可避免,此时应采用逐渐过渡的方式,避免截面突然变化。
接头断面的类型大致可分为L、V、K、T 和十字型五种。
在接头处,凝固速度慢,容易产生应力集中、裂纹、变形、缩孔、缩松等缺陷。
在接头形式的选用中,应优选L型接头,以减小与分散热节点及避免交叉连接。
逐渐过渡的形式与尺寸如表7-8所示。
由表可知,壁厚差别不很大时,采用圆弧过渡();壁厚差别很大时,采用L型过渡,在同等情况下,铸钢件的过渡尺寸比铸铁件要大。
两壁相交,其相交和拐弯处要作成圆角。
图1-2 均匀壁厚避免形成热节举例3.结构斜度进行铸件设计时,凡顺着拔模方向的不加工表面尽可能带有一定斜度以便于起模,便于操作,简化工艺。
铸件垂直度越小,斜度越大。
综合以上所述,为了保证铸件质量,铸件的合理结构为:1)壁厚力求均匀,减小厚大断面,防止形成热节。
办法是将厚大部位挖去一部分;图7-52)内壁厚度应小于外壁。
因为内壁冷却慢,适当减薄(图7-6)。
3)应有利于补缩和实现顺序凝固。
有些铸件铸锭厚度较大或厚度不均。
如果该件所用合金的体积收缩较大,则很容易形成缩孔、缩松。
此时应仔细审查零件结构,尽可能采取顺序凝固方式,让薄壁处先凝,厚壁处后凝,使在厚壁处易于安放冒口补缩,以防止缩孔、缩松。
图7-74)注意防止发生翘曲变形。
细长杆状铸件,大平板铸件,增加加强筋及改变截面形状床身一类的铸件,其截面形状不允许变化,为防止其变形可采用反挠度,即在模样上采取反变形量。
如果既不能设加强筋,又不能该变截面形状,只好采用人工失效方法消除应力减少变形。
5)应避免水平方向出现较大平面。
大平面铸件的上部型砂时间受金属液体烘烤,容易造成夹砂。
解决的办法是倾斜浇注或设计成倾斜壁。
应避免铸件收缩时受到阻碍,否则会造成裂纹,对于收缩大的合金铸件尤其要注意这一点。
4 . 铸件结构设计原则(1)设计铸件壁厚时应考虑到合金的流动性;流动性越好的合金,充型能力越强,铸造时就不容易产生浇不足、冷隔等缺陷,因此,能铸出的铸件最小壁厚尺寸也就越小。
(2)铸型型腔的形状与尺寸大小是根据铸件的形状与尺寸决定的。
不同的型腔形状和尺寸对液态金属的流动的阻力,散热情况是不同的,从而会导致液态金属在型腔内的流动与填充情况不同。
因此,铸件结构上应尽量避免突变性的转变、壁厚急剧的变化、细长结构、大的水平面、高度较大的凸台等。
(3)一个铸件在生产过程中是否出现缩孔、缩松、变形、热裂、冷裂等收缩类铸造缺陷,出现在哪个部位、严重程度如何,都与铸件结构密切相关。
由此可以得出指导铸件结构设计的原则:1)对凝固收缩大,容易产生集中缩孔的合金,如铸钢、球墨铸铁、可锻铸铁、黄铜、无锡青铜、铝硅共晶合金等,倾向于采用顺序凝固方式铸造。
这时在进行铸件结构设计时,应使铸件结构形式有利于顺序凝固。
2)对溶液产生缩松的合金,如锡青铜、磷青铜等采用冒口补缩效果不大,常采用同时凝固方式来使缩松更分散些;对收缩较小的合金,如铸铁更倾向于采用同时凝固方式铸造。
这时铸件的结构应是壁厚均匀,尽量减少金属的聚集与消除热节。
对于一些结构形状复杂的大铸件,也可将其各部分按顺序或同时凝固方式设计。
3)尽量使铸件结构有利于自由收缩,如尽量减少铸件的轮廓尺寸,减少突出部分,必要时可将一个铸件分成几个小铸件,然后用焊接或螺栓连接起来。
4)尽量避免产生应力集中的形状,如不应有尖角、不同壁厚之间的连接要平缓。
5)应考虑到各种铸造方法的工艺过程、凝固特点、铸型和型芯的特点。
尤其市使用金属铸型和型芯的铸造方法。
如金属型铸造、压力铸造,应便于铸件的抽芯和出芯。
二、从生产工艺考虑—简化工艺便于操作—角度对铸件结构提出的要求铸件结构不仅应有利于保证铸件质量,防止和减少铸造缺陷,而且应保证造型、制芯、清理等操作的方便,以利于提高生产率和降低成本。