图论-图的基本概念
- 格式:pdf
- 大小:371.95 KB
- 文档页数:15
图论及其应用简介图论是计算机科学中的一个重要分支,研究的对象是由边与顶点组成的图形结构以及与其相关的问题和算法。
图论的应用广泛,涵盖了计算机科学、网络科学、物理学、社会学、生物学等多个领域。
本文将介绍图论的基本概念、常用算法以及一些实际的应用案例。
图的基本概念图由顶点(Vertex)和边(Edge)组成,记作G=(V, E),其中V为顶点的集合,E为边的集合。
图可以分为有向图和无向图两种类型。
有向图有向图中的边具有方向性,即从一个顶点到另一个顶点的边有明确的起点和终点。
有向图可以表示一种有序的关系,比如A到B有一条边,但B到A可能没有边。
有向图的表示可以用邻接矩阵或邻接表来表示。
无向图无向图中的边没有方向性,任意两个顶点之间都有相互连接的边。
无向图可以表示一种无序的关系,比如A与B有一条边,那么B与A之间也有一条边。
无向图的表示通常使用邻接矩阵或邻接表。
常用图论算法图论中有许多经典的算法,其中一些常用的算法包括:深度优先搜索(DFS)深度优先搜索是一种用于遍历或搜索图的算法。
通过从起始顶点开始,沿着一条路径尽可能深入图中的顶点,直到无法再继续前进时,返回上一个顶点并尝试下一条路径的方式。
DFS可以用于判断图是否连通,寻找路径以及检测环等。
广度优先搜索(BFS)广度优先搜索也是一种用于遍历或搜索图的算法。
不同于深度优先搜索,广度优先搜索逐层遍历顶点,先访问离起始顶点最近的顶点,然后依次访问与起始顶点距离为2的顶点,以此类推。
BFS可以用于寻找最短路径、搜索最近的节点等。
最短路径算法最短路径算法用于计算图中两个顶点之间的最短路径。
其中最著名的算法是迪杰斯特拉算法(Dijkstra’s A lgorithm)和弗洛伊德算法(Floyd’s Algorithm)。
迪杰斯特拉算法适用于没有负权边的图,而弗洛伊德算法可以处理带有负权边的图。
最小生成树算法最小生成树算法用于找到一个连通图的最小的生成树。
其中最常用的算法是普里姆算法(Prim’s Algorithm)和克鲁斯卡尔算法(Kruskal’s Algorithm)。
图论(1)--图的基本概念有向图和⽆向图的建⽴以及赋权图引⼊Q:什么是图论?A:图论是数学的⼀个分⽀。
它以图为研究对象。
图论中的图是由若⼲给定的点及连接两点的线所构成的图形,这种图形通常⽤来描述某些事物之间的某种特定关系,⽤点代表事物,⽤连接两点的线表⽰相应两个事物间具有这种关系。
现在我们来探讨⽆向图和有向图的概念以及如何去建⽴最基本的图的模型什么是图对于初⼊图论的⼈来说,复杂的定义可能会直接劝退他们,现在我来举⼀个⾮常简单的例⼦。
这就是最常见的图,由于它没有指向,即没有明确的⽅向,它被称为⽆向图。
图是由顶点和边组成的,你应该很容易就知道那些元素是顶点,那些是边。
下⾯的具有⽅向的便是有向图:若有的边有向,有的边⽆向,则称为混合图。
接下来我们将引⼊更多的概念:若两个顶点有边相连,则称两个顶点相相邻,两个点称为起点/终点或端点如1指向2,则这两个顶点相邻,这两个顶点被称为断点,⽽1被称为起点,2被称为终点。
仅含⼀个顶点的边称为⾃环在⽆向图中,包含顶点v的边的个数,称为顶点的度。
在有向图中,以v为起点的边的个数,称为点的出度,以v为终点的边的个数,称为顶点的⼊度。
⽆向图的建⽴建⽴简单⽆向图,我们使⽤Matlab,版本为R2017a。
% 函数graph(s,t):可在 s 和 t 中的对应节点之间创建边,并⽣成⼀个图% s 和 t 都必须具有相同的元素数;这些节点必须都是从1开始的正整数,或都是字符串元胞数组。
s1 = [1,2,3,4]; %s为顶点,必须保证连续且从1开始的正整数t1 = [2,3,1,1]; %边 s与t之间是⼀⼀对应的G1 = graph(s1, t1);plot(G1) %画出效果图效果图:带汉字的⽆向图:% 注意字符串元胞数组是⽤⼤括号包起来的哦s2 = {'学校','电影院','⽹吧','酒店'};t2 = {'电影院','酒店','酒店','KTV'};G2 = graph(s2, t2);plot(G2, 'linewidth', 2) % 设置线的宽度% 下⾯的命令是在画图后不显⽰坐标set( gca, 'XTick', [], 'YTick', [] );效果图:有向图的建⽴:% ⽆权图 digraph(s,t)s = [1,2,3,4,1];t = [2,3,1,1,4];G = digraph(s, t);plot(G)set( gca, 'XTick', [], 'YTick', [] );注意边的顺序和⽅向,依次为1指向2,2指向3,3指向1,4指向1和1指向4效果图:赋权图的建⽴:赋权图,每条边都有⼀个⾮负实数对应的图。
图论导引参考答案图论导引参考答案图论是数学中的一个分支,研究的是图的性质和图之间的关系。
图由节点和边组成,节点表示对象,边表示对象之间的连接关系。
图论在计算机科学、网络分析、社交网络等领域有着广泛的应用。
本文将介绍图论的基本概念和常见算法,并提供一些参考答案来帮助读者更好地理解和应用图论。
一、图的基本概念1.1 有向图和无向图图可以分为有向图和无向图两种类型。
有向图中,边有方向,表示节点之间的单向关系;而无向图中,边没有方向,表示节点之间的双向关系。
1.2 路径和环路径是指图中一系列节点和边的连续序列,路径的长度为路径中边的数量。
如果路径的起点和终点相同,则称之为环。
1.3 连通图和连通分量在无向图中,如果任意两个节点之间都存在路径,则称该图为连通图。
连通图中的极大连通子图称为连通分量。
1.4 强连通图和强连通分量在有向图中,如果任意两个节点之间都存在路径,则称该图为强连通图。
强连通图中的极大强连通子图称为强连通分量。
二、图的存储方式2.1 邻接矩阵邻接矩阵是一种常见的图的存储方式,使用一个二维矩阵来表示图中节点之间的连接关系。
矩阵的行和列分别表示节点,矩阵中的元素表示节点之间是否存在边。
2.2 邻接表邻接表是另一种常见的图的存储方式,使用一个数组和链表的结构来表示图中节点之间的连接关系。
数组中的每个元素表示一个节点,链表中的每个节点表示与该节点相连的边。
三、常见图算法3.1 深度优先搜索(DFS)深度优先搜索是一种用于遍历图的算法。
从图中的一个节点开始,沿着一条路径一直深入直到无法继续为止,然后回溯到上一个节点,继续深入其他路径。
DFS可以用于判断图的连通性、寻找路径等问题。
3.2 广度优先搜索(BFS)广度优先搜索也是一种用于遍历图的算法。
从图中的一个节点开始,先访问其所有相邻节点,然后再依次访问这些节点的相邻节点,以此类推。
BFS可以用于计算最短路径、寻找连通分量等问题。
3.3 最小生成树算法最小生成树算法用于求解一个连通图的最小生成树,即包含图中所有节点且边的权重之和最小的子图。
图论基础知识的名词解释图论是数学的一个分支,研究图的属性和关系。
图是由节点和节点之间的边组成的抽象模型,被广泛应用于计算机科学、网络分析、医学和社会科学等领域。
下面,我们将解释一些图论中常用的基础概念和术语。
1. 图 (Graph)图是图论研究的基本对象,由一组节点和连接这些节点的边组成。
节点也被称为顶点 (Vertex),边则是节点之间的连接线。
图可以分为有向图 (Directed Graph) 和无向图 (Undirected Graph) 两种类型。
在有向图中,边有方向,从一个节点指向另一个节点;而在无向图中,边没有方向,节点之间的关系是双向的。
2. 顶点度数 (Degree of a Vertex)顶点度数指的是一个顶点与其他顶点相邻的边的数量。
在无向图中,顶点度数即与该顶点相连的边的数量;在有向图中,则分为入度 (In-degree) 和出度 (Out-degree)。
入度表示指向该节点的边的数量,而出度表示从该节点出发的边的数量。
3. 路径 (Path)路径指的是通过边连接的一系列节点,形成的顺序序列。
路径的长度是指路径上边的数量。
最短路径 (Shortest Path) 是指连接两个节点的最短长度的路径。
最短路径算法被广泛应用于计算机网络中的路由选择和地图导航系统中的路径规划。
4. 连通图 (Connected Graph)连通图是指图中的任意两个节点之间都存在路径的图。
如果一个图不是连通图,那么它可以被分割为多个连通分量 (Connected Component)。
连通图在社交网络分析和传感器网络等领域中具有重要的应用。
5. 完全图 (Complete Graph)完全图是指任意两个节点之间都存在边的图。
在完全图中,每对节点之间都有一条边相连。
n个节点的完全图有n(n-1)/2条边。
完全图经常用于描述需要互相交流的问题,如计算机网络中的通信。
6. 树 (Tree)树是一种无环连通图,其中任意两个节点之间有且仅有一条路径相连。
图论常考知识点总结1. 图的基本概念图是由顶点集合和边集合构成的。
顶点之间的连接称为边,边可以有方向也可以没有方向。
若图的边没有方向,则称图为无向图;若图的边有方向,则称图为有向图。
图的表示方式:邻接矩阵和邻接表。
邻接矩阵适合存储稠密图,邻接表适合存储稀疏图。
2. 图的连通性连通图:如果图中任意两点之间都存在路径,则称该图是连通图。
强连通图:有向图中,任意两个顶点之间都存在方向相同的路径,称为强连通图。
弱连通图:有向图中,去掉每条边的方向之后,所得到的无向图是连通图,称为弱连通图。
3. 图的遍历深度优先搜索(DFS):从起始顶点出发,沿着一条路往前走,走到不能走为止,然后退回到上一个分支点,再走下一条路,直到走遍图中所有的顶点。
广度优先搜索(BFS):从起始顶点出发,先访问它的所有邻居顶点,再按这些邻居顶点的顺序依次访问它们的邻居顶点,依次类推。
4. 最短路径狄克斯特拉算法:用于计算图中一个顶点到其他所有顶点的最短路径。
弗洛伊德算法:用于计算图中所有顶点之间的最短路径。
5. 最小生成树普里姆算法:用于计算无向图的最小生成树。
克鲁斯卡尔算法:用于计算无向图的最小生成树。
6. 拓扑排序拓扑排序用于有向无环图中对顶点进行排序,使得对每一条有向边(u,v),满足排序后的顶点u在顶点v之前。
以上就是图论中一些常考的知识点,希望对大家的学习有所帮助。
当然,图论还有很多其他的知识点,比如欧拉图、哈密顿图、网络流等,这些内容都值得我们深入学习和探讨。
图论在实际应用中有着广泛的应用,掌握好图论知识对于提升计算机科学和工程学的技能水平有着重要的意义。
图论--图的基本概念1.图:1.1⽆向图的定义:⼀个⽆向图G是⼀个有序的⼆元组<V,E>,其中V是⼀个⾮空有穷集,称作顶点集,其元素称作顶点或结点。
E是⽆序积V&V的有穷多重⼦集,称作边集,其元素称作⽆向边,简称边。
注意:元素可以重复出现的集合称作多重集合。
某元素重复出现的次数称作该元素的重复度。
例如,在多重集合{a,a,b,b,b,c,d}中,a,b,c,d的重复度分别为2,3,1,1。
从多重集合的⾓度考虑,⽆元素重复出现的集合是各元素重复度均为1的多重集。
1.2有向图的定义:⼀个有向图G是⼀个有序的⼆元组<V,E>,其中V是⼀个⾮空有穷集,称作顶点集,其元素称作顶点或结点。
E是笛卡尔积V✖V的有穷多重⼦集,称作边集,其元素为有向边,简称为边。
通常⽤图形来表⽰⽆向图和有向图:⽤⼩圆圈(或实⼼点)表⽰顶点,⽤顶点之间的连线表⽰⽆向边,⽤带箭头的连线表⽰有向边。
与1.1,1.2有关的⼀些概念和定义:(1)⽆向图和有向图统称为图,但有时也把⽆向图简称作图。
通常⽤G表⽰⽆向图,D表⽰有向图,有时也⽤G泛指图(⽆向的或有向的)。
⽤V(G),E(G)分别表⽰G的顶点集和边集,|V(G)|,|E(G)|分别是G的顶点数和边数,有向图也有类似的符号。
(2)顶点数称作图的阶,n个顶点的图称作n阶图。
(3)⼀条边也没有的图称作零图,n阶零图记作N n。
1阶零图N1称作平凡图。
平凡图只有⼀个顶点,没有边。
(4)在图的定义中规定顶点集V为⾮空集,但在图的运算中可能产⽣顶点集为空集的运算结果,为此规定顶点集为空集的图为空图,并将空图记作Ø。
(5)当⽤图形表⽰图时,如果给每⼀个顶点和每⼀条边指定⼀个符号(字母或数字,当然字母还可以带下标),则称这样的图为标定图,否则称作⾮标定图。
(6)将有向图的各条有向边改成⽆向边后所得到的⽆向图称作这个有向图的基图。
(7)若两个顶点v i与v j之间有⼀条边连接,则称这两个顶点相邻。
图论参考答案图论参考答案图论作为一门数学分支,研究的是图的性质与关系。
图由节点(顶点)和连接节点的边组成,它可以用来解决许多实际问题,如网络规划、社交网络分析等。
本文将从图的基本概念、图的表示方法、图的遍历算法以及图的应用等方面进行探讨。
一、图的基本概念图由节点和边构成,节点表示对象,边表示节点之间的关系。
图可以分为有向图和无向图两种类型。
在有向图中,边有方向,表示从一个节点到另一个节点的箭头;而在无向图中,边没有方向,表示节点之间的双向关系。
图中的节点可以用来表示不同的实体,如人、地点、物品等。
而边则表示节点之间的关系,可以是实体之间的联系、交互或者依赖关系等。
图的度是指与节点相连的边的数量。
在无向图中,节点的度等于与之相连的边的数量;而在有向图中,节点的度分为入度和出度,入度表示指向该节点的边的数量,出度表示从该节点出发的边的数量。
二、图的表示方法图可以使用邻接矩阵和邻接表两种方式进行表示。
邻接矩阵是一个二维数组,其中的元素表示节点之间的关系。
如果节点i和节点j之间有边相连,则邻接矩阵中的第i行第j列的元素为1;否则为0。
邻接矩阵的优点是可以快速判断两个节点之间是否有边相连,但是对于稀疏图来说,会浪费大量的空间。
邻接表是一种链表的形式,其中每个节点都有一个指针指向与之相连的节点。
邻接表的优点是可以有效地节省空间,适用于稀疏图。
但是在判断两个节点之间是否有边相连时,需要遍历链表,效率较低。
三、图的遍历算法图的遍历算法是指以某个节点为起点,按照一定的规则依次访问图中的所有节点。
深度优先搜索(DFS)是一种常用的图遍历算法。
它的思想是从起始节点开始,沿着一条路径一直访问到最后一个节点,然后回溯到上一个节点,继续访问其他路径。
DFS可以用递归或者栈来实现。
广度优先搜索(BFS)是另一种常用的图遍历算法。
它的思想是从起始节点开始,先访问所有与起始节点直接相连的节点,然后再依次访问与这些节点相连的节点。