合并同类项与移项
- 格式:ppt
- 大小:2.25 MB
- 文档页数:17
《解一元一次方程(一)合并同类项与移项》知识解析课标要求1.了解解方程的基本目标(使方程逐步转化为x=a 的形式),理解解一元一次方程的一般步骤(本节主要是合并同类项与移项),掌握一元一次方程的解法,体会解法中蕴涵的化归思想;2.能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的相等关系”,体会建立数学模型的思想;3.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力.知识结构 内容解析1.合并同类项:本质是分配律的逆运算,原来是在式子中运算,现在是在等式中运算,并且要注意格式上的问题,原来可以写“解:原式=......”,现在在方程中不存在这种写法,也可以帮助学生理解合并同类项在两处的却别,还能说明方程是在化简,渗透化归思想.2.移项:把等式一边的某项变号后移到另一边,叫做移项.这是概念,其中移项变号显得尤为重要,而且这也是许多学生极为容易犯错的地方,我认为让学生理解透彻这移项的本质实际上是等式性质1——等式两边同时加上或减去同一个数,等式仍然成立,是帮助学生避免犯错的办法之一.3.合并同类项与移项的作用:合并同类项与移项的目的就是化简方程,它是一种恒等变形,可以使方程变得简单,并逐步使方程向x =a 的形式转化,让学生明白,解方程实际上是化简的一个过程,而且可以帮助学生建立解数学题的一种方法:把未解决的问题转化为一个已经解决的问题,这就是重要的数学思想——化归思想,也是一种重要的学习方法!4.解方程的步骤:移项、合并同类项、系数化为1.5.用一元一次方程分析和解决实际问题的一般过程:表示同一量的两个不同式子相等. 重点难点本节的重点是:利用合并同类项、移项变号法则解方程.教学重点的解决方法:学生在整式加减中已经学会了合并同类项,通过观察类比得出合并同类项与移项的解法,学生积极动手、动脑、动口为主线来完成,设置由浅入深一些练习题,加深对概念的理解与把握.通过题组的学习和训练,归纳出用一元一次方程解题的一般步骤.体会方程是刻画现实世界数量关系的一个有效的数学模型,本节的难点是:找相等关系列一元一次方程教学难点的解决方法:要运用一元一次方程解决生活中的实际问题,首先必须了解一元一次方程的概念,而概念的教学又要从大量的实例出发.通过问题情境,建立一元一次方程的数学模型.(1)注意师生互动,提高学生的思维效率.(2)针对学生的盲区,出相应的练习巩固.教法导引本节的重点在于讨论解方程中的“合并同类项”和“移项”两个基本做法,这样就已经可解ax+b=cx+d 类型的一元一次方程.实际问题 一元一次方程 合并 移项 步骤 设未知数,列方程本节中对于“合并同类项”和“移项”的讨论,分别以问题1和问题2为出发点.以较为简单的实际问题作讨论方程解法的背景,一方面可使学生感觉到要讨论的解法来源于实际问题的需要,另一方面可使根据实际问题列方程贯穿于全章,将列方程的教学过程拉长.从而达到由简单问题到复杂问题地逐步提高学生列方程的能力的教学效果.本节首先提及在数学史上对解方程颇有影响的一部著作,即生活在约780~850年间的阿拉伯数学家阿尔—花拉子米所著的《对消与还原》一书,提问“对消”与“还原”是什么意思,以此作为后面内容的引子.本节在问题1和问题2之后,各安排了两道例题,其中前一例题是单纯解方程,其作用是巩固对相应解法的理解和掌握;后一例题是简单的实际问题,其作用有两个,一是巩固对相应解法的理解和掌握,二是逐步引导学生理解和掌握如何列方程.解方程和列方程是利用方程分析和解决实际问题的基本过程中不可或缺的两个环节.在教学中,要把数学思想和方法的教学贯穿于整个教学中,学生只有及早形成自己的思想和方法,才能学得轻松,从而更加爱学数学.同时及时找出课堂上出现的共性问题,利用辅导课及时纠正,然后做针对性练习来巩固盲区,强化课堂薄弱环节,使课堂走向优质高效化.学法建议通过回顾已学过的整式加减中的合并同类项和等式性质1这些已有知识,为后续的合并同类项与移项学习作好知识储备与铺垫,通过对实际问题的讨论与探究,激发起学生的强烈的求知欲和探索愿望,用方程思想从日常生活情境中借助等量关系,用一元一次方程表示出来,初步建立一元一次方程基本模型.让学生尝试进一步将所学知识运用到解方程中,最后体验到“合并同类项”和“移项”给解方程带来的便利性!并通过应用题组灵活运用所学知识形成技能技巧.让学生自己归纳出用一元一次方程解决实际问题的一般步骤,体会方程是刻画现实世界数量关系的一个有效的数学模型.。
初中数学系数和常数项如何与合并同类项和移项相关联初中数学中,系数和常数项与合并同类项和移项密切相关。
在解决一元一次方程的过程中,合并同类项和移项是常用的代数操作,可以帮助我们简化方程,使求解更加方便和直观。
一、合并同类项的概念合并同类项是将具有相同未知数的项合并为一个项的过程。
在一元一次方程中,合并同类项主要涉及到一次项。
例如,考虑方程2x + 3x = 5。
方程中有两个一次项,即2x和3x。
由于它们具有相同的未知数x,可以将它们合并为一个项,得到5x。
合并同类项后,方程变为5x = 5。
合并同类项使方程更加简洁,减少了方程中的项数,便于后续的运算和求解。
二、移项的概念移项是将方程中的项从一个侧移动到另一个侧的过程。
在一元一次方程中,移项主要涉及到将一次项和常数项分别移动到方程的两侧。
例如,考虑方程2x + 3 = 8。
我们可以通过移项将一次项2x移动到等号的另一侧,得到3 = 8 - 2x。
移项后,方程变为3 = -2x + 8。
移项的目的是为了将未知数单独放在方程的一侧,便于后续的求解和计算。
三、系数和常数项与合并同类项和移项的关系系数和常数项在合并同类项和移项的过程中起到重要的作用。
1. 合并同类项时,我们需要考虑一次项的系数。
只有当一次项的系数相同,才能合并为一个项。
例如,在方程2x + 3x = 5中,合并同类项时需要注意2x和3x 的系数都是1。
2. 移项时,我们需要考虑一次项和常数项的系数。
移项的目的是将一次项和常数项分别移到方程的两侧。
移项过程中,我们需要根据系数的正负来改变移动的方向。
例如,在方程2x + 3 = 8中,移项时需要将2x移动到等号的另一侧,并改变符号得到-2x = 8 - 3。
理解系数和常数项与合并同类项和移项的关系,可以帮助我们在解决一元一次方程时,正确进行合并和移项操作。
这样可以简化方程,使求解过程更加直观和简便。
同时,这也为我们后续的代数运算和解题提供了基础。
专题5.3 求解一元一次方程(一)-移项、合并同类项(知识讲解)【学习目标】1.会应用移项、合并同类项法则解一些简单的一元一次方程.2.通过具体的实例感知、归纳移项法则,进一步探索方程的解法.3.进一步认识解方程的基本变形,感悟解方程过程中的转化思想.【要点梳理】移项的概念:把等式一边的某项变号后移到另一边,叫做移项。
特别说明:通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。
移项、合并同类项解方程步骤:解方程的步骤及依据分别是:(1)移项(等式的性质1)(2)合并(分配律)(3)系数化为1(等式的性质2)【典型例题】知识点一、解方程1.解方程:(1)x-3=31;(2)4x=3x-5;(3)-7x=21;(4)-32x=32.【答案】(1)x=34;(2)x=-5;(3)x=-3;(4)-1.【分析】(1)(2)移项合并即可求出解;(3)(4)将x系数化为1,即可求出解.解:(1) 移项,得x=31+3,x=34;(2)移项,得4x-3x=-5,x=-5;(3) 系数化为1,得x=-3;(4)方程两边同时乘以23⎛⎫-⎪⎝⎭,得x=32×23⎛⎫-⎪⎝⎭=-1.故答案为:(1)x=34;(2)x=-5;(3)x=-3;(4)-1.【点拨】本题考查解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.举一反三:【变式1】 解方程(1) 4 2.5 1.515x x x -+= (2)5757x x -=+【答案】(1)5;(2)-6【分析】(1)直接合并同类项,系数化1即可解得方程;(2)利用移项,合并同类项,系数化1即可解得方程;解:(1)4 2.5 1.515x x x -+=, 合并同类项得:315x =,系数化1得:x=5;(2)5757x x -=+, 移项得:575+7x x -=, 合并同类项得:212x -=,系数化1得:-6x =【点拨】本题主要考查一元一次方程的解法,解一元一次方程的基本步骤有:去分母,去括号,移项,合并同类项,系数化1,根据方程的特点,灵活运用相应步骤解方程.【变式2】解方程:(1)36156x x -=--; (2)45173x x +=-; (3) 2.57.5516y y y --=-; (4)11481.5533z z +=-. 【答案】(1)1x =-;(2)66x =-;(3)56y =;(4)407z =- 【分析】(1)(2)(3)(4)先移项,再合并同类项,最后系数化为1即可.解:(1)移项,得36156x x +=-+.合并同类项,得99x =-.系数化为1,得1x =-.(2)移项,得41753x x -=--. 合并同类项,得1223x =-. 系数化为1,得66x =-.(3)移项,得 2.57.5165y y y --+=.合并同类项,得65y =.系数化为1,得56y =. (4)移项,得11841.5533z z -=--. 合并同类项,得7410z =-. 系数化为1,得407z =-. 【点拨】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 知识点二、一元一次方程中“纠错”题2.解方程:1145155x x +=--. 佳佳的解题过程如下:解:移项,得1145155x x +=-.① 合并同类项,得34x =.①系数化为1,得43x =.① 请问佳佳的解题步骤有误吗?如果有误,从第几步开始出错的?并且将正确答案写出来.【答案】有误,从第①步开始出错的.正确的解题过程见解析【分析】根据一元一次方程的解法步骤判断即可.解:有误,从第①步开始出错的.正确的解题过程:移项,得1145155x x +=--, 合并同类项,得36x =-,系数化为1,得2x =-. 【点拨】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.举一反三:【变式1】下面是两位同学的作业.请你用曲线把出错误的步骤画出来,并把正确的写在右边.(1) 解方程: 215x x -=-+.解:215x x -=+,6x =.(2)解方程:715y y =+. 解: 71y y =+,71y y -=,61y =,16y =. 【分析】根据解一元一次方程的步骤:移项,合并同类项,系数化为1,进行解方程即可求解. 解:①215x x -=+ 改正:215x x +=+ 2x =(2) 71y y =+ 改正:755y y =+ 52y = 【点拨】本题主要考查解一元一次方程的步骤,解决本题的关键是要熟练掌握解一元一次方程的步骤.【变式2】 下面是张铭同学今天做的家庭作业:问题:将等式5x ﹣3y=4x ﹣3y 变形.解:因为5x ﹣3y=4x ﹣3y ,所以5x=4x (第一步)所以5=4(第二步) 上述过程中,第一步是怎么得到的?第二步得出错误的结论,其原因是什么?【答案】第一步是两边都加3y ,第二步错误的原因是x=0时,两边都除以x 无意义 【解析】【分析】根据等式的性质逐步分析即可,等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.解:第一步是根据等式的性质1,把等式的两边都加3y ,第二步根据等式的性质2可知,错误的原因是x =0时,两边都除以x 无意义.【点拨】本题考查了等式的基本性质,熟练掌握等式的2条基本性质是解答本题的关键.【变式3】某同学解方程52486x x -=-的过程如下,请你指出他开始出错的一步及错误的原因,并改正.解:移项,得58624x x -=--,①合并同类项,得330x -=-,①方程两边同时除以-3,得10x =.①;【答案】该同学的移项是错误的,原因见解析.【分析】根据解一元一次方程的步骤及移项的定义进行分析,即可得到答案.解:该同学的移项是错误的,原因是-24进行移项后符号没有改变.根据移项的定义可知,正确移项是58624x x -=-+,合并同类项,得318x -=,方程两边同时除以-3, 得6x =-.【点拨】本题考查解一元一次方程——移项,解题的关键是熟练掌握移项.知识点三、一元一次方程中同解原理3、已知2(26)m -与|n+2|互为相反数,则求方程m x +3n=6的解. 【答案】4x =【分析】由题意可得()22620m n -++=,然后根据非负数的性质可求出m 、n ,代入原方程后再求解方程即可.解:由题意得:()22620m n -++=,所以260,20m n -=+=,解得3,2m n ==-,则方程mx+3n=6即为366x -=,移项、合并同类项,得3x=12,系数化为1,得x=4.【点拨】本题考查了非负数的性质和一元一次方程的解法,属于常考题型,正确理解题意、熟练掌握基本知识是解题的关键. 举一反三:【变式1】已知关于x 的方程3x+2a =x+7,某同学在解这个方程时,不小心把右端的+7抄成了-7,解得的结果为x =2,求原来方程的解.【答案】x =9【分析】根据方程的解满足方程,可得关于a 的方程,根据解方程,可得a 的值,根据移项、合并同类项、系数化为1,可得答案.解:将x=2代入3x+2a=x -7,得6+2a=-5,解得a=-112. 当a=-112时,原方程为3x -11=x+7, 移项、合并同类项,得2x=18,系数化为1,得x=9,原方程的解为x=9.【点拨】本题考查了一元一次方程的解,将方程的解代入方程得出a 的值是解题关键.【变式2】已知关于x 的方程130.58192x a a +=-与方程3122x x -=-的解互为相反数,求a 的值.【答案】3a =【分析】首先解得方程3122x x -=-的解,然后根据相反数的定义将方程3122x x -=-的解的相反数代入第一个方程来求a 的值即可.解:解方程3122x x -=-,得1x =-,∴方程130.58192x a a +=-的解是1x =把1x =代入130.58192x a a +=-,得130.58192a a , 解之得:3a = 【点拨】本题考查了一元一次方程的解的定义,熟悉相关性质是解题的关键.【变式3】已知关于x 的一元一次方程(m -6)x 2-2x+n=0与x -(3-x )=1的解相同,求m 、n 的值.【答案】m=6,n=4【分析】先根据等式的性质求出方程x -(3-x )=1的解;根据两个方程的解相同, 将求得的解代入到一元一次方程(m -6)x 2-2x+n=0中, 不难求出n 的值.解: 利用等式的基本性质求解方程,x -(3-x )=1, 可得x=2.因为方程(m -6)x2-2x+n=0为一元一次方程,得m -6=0,m=6,因为两方程的解相同,所以x=2也是方程(m -6)x2-2x+n=0的解.将x=2代入-2x+n=0可得: -4+n=0,解得n=4.故答案:m=6,n=4.【点拨】本题是一道关于解方程的问题, 解题的关键是求出第一个方程的解.知识点四、一元一次方程的创新题4、一般情况下a 2+b 3=a+b2+3不成立,但有些数可以使得它成立,例如:a =b =0,我们称使得a 2+b 3=a+b 2+3成立的一对数a ,b 为“相伴数对”,记为(a , b).(1)若(1 , b)是“相伴数对”,求b 的值;(2)若(m , n)是“相伴数对”,求代数式m −10n −2(5m −3n +1)的值.【答案】(1)−94;(2)-2【解析】(1)、首先根据“相伴数对”的定义列出关于b 的一元一次方程,从而求出b 的值;(2)、根据“相伴数对”的定义得出关于m 和n 的代数式,然后进行化简得出9m+4n=0,最后将所求的代数式进行化简,利用整体代入的思想进行求解.解 :(1)∵(1 , b)是“相伴数对”,∴12+b 3=1+b 2+3,解得:b =−94;(2)由(m , n)是“相伴数对”可得:m 2+n 3=m+n 2+3,则15m +10n =6m +6n ,即9m +4n =0,则原式=m −10n −10m +6n −2=−9m −4n −2=−2.举一反三:【变式1】数学课上,高老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、①、①,摆成如图所示的一个等式.然后翻开纸片①是4x 2+5x +6,翻开纸片①是-3x 2-x -2.解答下列问题:(1)求纸片①上的代数式;(2)若x 是方程2x =-x -9的解,求纸片①上代数式的值.【答案】(1)244x x ++;(2)1.【分析】(1)由①=①+①即可求解;(2)由方程2x =-x -9求出x 值,再代入纸片①上的代数式求值即可.解:(1)222456(32)44x x x x x x =+=+--=+-+①②③++,所以纸片①上的代数式为244x x ++;(2)解2x =-x -9得3x =-,将3x =-代入244x x ++得2(3)4(3)491241-+⨯-+=-+=,所以纸片①上代数式的值为1.【点拨】本题考查了整式的加减运算及代入求值,同时涉及了解一元一次方程,灵活掌握整式的加减运算是解题的关键.【变式2】下图是一个运算程序:(1)若2,3x y =-=,求m 的值;(2)若4x =,输出结果m 的值与输入y 的值相同,求y 的值.【答案】(1)-7;(2)-2 【分析】(1)根据x 、y 的值和运算程序得出3m x y =-,代入即可得出答案(2) 根据运算程序分4m >和4m ≤两种情况列出关于m 的方程,解方程即可得出y 的值解: (1)2,3x y =-=,x y ∴≤,32337m x y ∴=-=--⨯=-.(2)由己知条件可得4,x y m ==,当4m >时,由43m m +=,得2m =-,符合题意:当4m ≤时,由43m m -=得1m =,不符合题意,舍掉.2y ∴=-.【点拨】本题考查了代数式求值和一元一次方程的应用,把满足条件的字母的值代入计算得到对应的代数式的值.也考查了观察图表的能力.。
合并同类项与移项知识点总结
合并同类项与移项知识点总结
一、知识要点
1.合并同类项:合并同类项是将同类项的系数相加,字母和字母的指数不变。
例如,2a+3b+4a+5b=(2+4)a+(3+5)b=6a+8b。
2.移项:移项是将方程中的某一项从等号的一边移到另一边时,改变符号且不变号。
例如,3x-5=2x+7变形为3x-2x=7+5.
二、重难点精析
1.合并同类项时,需要注意以下几点:
(1) 准确识别同类项,即字母和字母的指数相同;
(2) 合并时,系数要相加,字母和字母的指数不变;
(3) 对于不能直接相加的项,需要先进行变形,化为完全相同的项再进行合并。
2.移项时,需要注意以下几点:
(1) 移项时要改变符号且不变号;
(2) 移项时要注意移动的项在等号两边是否同时进行移动;
(3) 对于含有未知数的项,移项后要注意保持相等关系。
1。
3.2解一元一次方程(一)合并同类项与移项(第一课时)教学设计【教学目标】(一)知识技能1.掌握解方程中的合并同类项.2.理解并掌握移项变号法则实行解方程.3.灵活的使用移项变号法则解决一些实际问题.(二)数学思考使学生在解决问题的过程中进一步体验方程是刻画现实世界的一个有效的模型,感受方程的作用.(三)解决问题能够用合并同类项和移项法则解相对应的一元一次方程;能够解决相关实际问题.(四)情感态度解方程时渗透数学变未知为已知的数学思想,培养学生独立思考问题的水平【教学重点】利用合并同类项、移项变号法则解方程.【教学难点】合并同类项、移项变号法则.【学习过程】一、新课导入1.约公元825年,数学家阿尔-花拉子米写了一本代数书,重点论述了怎样解方程.这本书的译本名称为《对消与还原》.“对消”“还原”是什么意思呢?我们先讨论下面的内容,然后再回答这个问题。
2.引导学生探索新知问题1:某校三年共买了新桌椅270套,去年买的数量是前年的2倍,今年又是去年的3倍,前年这个学校买了多少套桌椅?【师生活动】教师:同学们,在我们生活中存有很多这样的问题,请你帮助解决一下,你准备怎么做,谁能说一说自己的想法。
请说出你的理由?学生:我准备用方程解决这个问题。
用方程解比较简单,设出的未知数就能够当成已知的条件来用了。
教师:那我们就按这位同学的意思用方程的方法来解,哪位同学能说一下第一步理应先干什么呢?举手回答。
学生:先设出未知数,因数去年的数量和前年的数量相关,今年的数量又和去年数量相关,所以设前年购买新桌椅x套,能够表示出:去年购买了2x套,今年购买了6x套。
教师:未知数设了,下一步应该做什了呢?学生:列方程。
教师:列方程的根据是什么?学生:相等关系是,前年购买的桌椅+去年买的桌椅+今年买的桌椅=270套。
教师:谁说一下?学生:x+2x+6x=270教师:请同学们仔细观察等号左边的三个代数式有什么特点?学生:都含有字母x,并且x的指数相同都是1.教师:我们在第二章的内容中学习了,具有这们特点的式子我们把它们叫什么?学生:同类项。