生物化学 第5章 蛋白质结构与功能
- 格式:pdf
- 大小:3.55 MB
- 文档页数:85
生物化学蛋白质结构与功能蛋白质是生物体中必不可少的一类有机分子,它们在生命活动中担当着关键的角色。
蛋白质的结构与功能密不可分,只有了解其结构,才能深入理解其功能。
本文将介绍蛋白质的结构层次和功能,并探讨二者之间的关系。
一、一级结构——氨基酸序列蛋白质的结构层次可以从氨基酸序列开始。
氨基酸是构成蛋白质的基本单位,通过肽键连接在一起。
不同的氨基酸组合而成的序列决定了蛋白质的结构和功能。
在蛋白质家族中,氨基酸序列可以有很大的变化,导致不同结构和功能的蛋白质的形成。
二、二级结构——α-螺旋和β-折叠在氨基酸序列中存在着两种常见的二级结构:α-螺旋和β-折叠。
α-螺旋是由氢键相互作用形成的螺旋形结构,具有稳定性和韧性。
β-折叠是由氢键相互作用形成的平行或反平行的链状结构,具有稳定性和刚性。
不同氨基酸序列所形成的二级结构会决定蛋白质在空间立体结构中的排列方式。
三、三级结构——立体构象蛋白质的三级结构是指氨基酸序列在空间中的立体构象。
它的形成受到氢键、离子键、范德华力等多种相互作用力的调控。
蛋白质的三级结构决定了其最终的立体构象,从而影响其功能的表现。
不同的蛋白质通过三级结构的差异来实现其特定的功能,如酶的催化作用、抗体的识别能力等。
四、四级结构——多肽链聚合体在某些情况下,多个蛋白质可以相互结合形成一个更大的功能单位,这种现象被称为四级结构。
例如,红血球中的血红蛋白就是由四个亚单位组成的。
四级结构的形成使得蛋白质的功能更加多样化和复杂化。
蛋白质的结构与功能之间存在着密切的关系。
蛋白质的特定结构决定了其特定的功能,而功能的表现也要依赖于蛋白质的特定结构。
举例来说,酶作为一类具有催化作用的蛋白质,其特定的结构使得它可以与底物结合,并通过催化反应来转化底物。
同样,抗体作为一种免疫分子,其特定的结构允许它与抗原结合,并发挥识别和中和作用。
总结起来,蛋白质的结构与功能密不可分。
深入了解蛋白质的结构层次,有助于我们更好地理解其功能的表现。
生物化学中的蛋白质结构和功能蛋白质是生物体内最基本的组成成分之一,它们不仅以组成细胞及其器官的结构蛋白质的形式存在,还扮演着激素、酶、抗体等重要的生物功能。
在蛋白质结构方面,研究人员在过去的数十年中已经取得了长足的进展,但是尚存在一些问题迫切需要解决。
今天,我们将介绍蛋白质的结构与功能,探讨有关这方面基础研究领域的最新成果。
1. 蛋白质的结构蛋白质分为多种类型,其结构形态各异。
主要的类别包括纤维状蛋白质、球状蛋白质和膜状蛋白质。
纤维状蛋白质的分子结构外观类似于一条细长的线,其汇集成的结构可以形成胶原蛋白、骨胶原或者由透明质酸分泌的骨骼基质等纤维组织。
球状蛋白质则由大约60%的多肽链通过不规则的贡献得以互相缠结而成。
这使得球状蛋白质在空间结构方面具有极高的复杂性和五彩斑斓的外观。
球状蛋白质不仅构成人体骨骼肌纤维、胰岛素、载脂蛋白等基础蛋白质,还形成了各种酶如蛋白水解酶、细胞色素酶等。
膜状蛋白质则被包裹在细胞膜的两层磷脂双分子层当中。
这类蛋白质功能多样,包括跨膜蛋白质、刺突蛋白质和细胞膜上酶等。
此类蛋白质亦可构成各种细胞间的纽带,如胰岛素受体、细胞膜上的钠离子通道等。
蛋白质的功能和活性与其结构密切相关。
一个蛋白质的组成要素是其20种不同类型的氨基酸,并通过这些氨基酸形成了不同的二级结构如螺旋状、片层状、β折叠等,最终构成了具有特定功能的复杂三维结构。
2. 蛋白质的功能蛋白质是生命体系中不可或缺的重要物质,它们在生命的各个环节中起到了至关重要的作用。
酶是蛋白质家族中一个最值得注意的亚群。
它们是生物体的化学引擎,能够加速化学反应的速率并控制这些化学反应发生的时间和地点。
例如,胰蛋白酶能够消化胃中的蛋白质,同时对小肠肠壁的细胞进行保护,这是一种典型的胃肠道酶的例子。
抗体则是一种特殊类型的蛋白质,以其杀灭入侵病原体的能力而著名。
抗体由B淋巴细胞产生,在病原菌入侵机体时对之进行抵抗。
在抵抗过程中,抗体可以侦测出各种病原体并将其标记,然后排出机体体外。
大学生物化学教案:蛋白质的结构与功能第一部分:导言1.1 引言•蛋白质是生命体内最基本的分子,在维持生命活动中起着重要作用。
•本教案将介绍蛋白质的结构与功能,帮助学生全面理解蛋白质在生物体内的重要地位。
1.2 目标•了解蛋白质的基本概念和特点;•理解蛋白质多样性及其结构类型;•掌握蛋白质与功能之间的关系。
第二部分:蛋白质的基础知识2.1 蛋白质概述2.1.1 定义•蛋白质是由氨基酸组成的巨大有机分子,是生物体内最重要和最复杂的分子之一。
#### 2.1.2 功能•蛋白质可参与细胞结构形成、酶催化反应、信号传递等多种生物功能。
2.2 氨基酸与多肽链2.2.1 氨基酸分类•根据侧链的特性,氨基酸可分为极性、非极性和特殊氨基酸。
#### 2.2.2 蛋白质结构单元•多个氨基酸通过肽键连接形成多肽链,而多肽链组装在一起形成蛋白质。
2.3 蛋白质的结构级别2.3.1 一级结构:多肽链序列•一级结构是指蛋白质的氨基酸序列。
#### 2.3.2 二级结构:α-螺旋和β-折叠•α-螺旋由多个氨基酸残基沿着螺旋形排列而成;•β-折叠由相邻两条多肽链片段之间的氢键连接而成。
#### 2.3.3 三级结构:空间结构•蛋白质通过各种作用力(如静电相互作用、范德华力等)在三维空间中摆布而成。
#### 2.3.4 四级结构:亚单位•某些蛋白质由多个相同或不同的多肽链组装而成。
第三部分:蛋白质的功能与应用3.1 蛋白质的功能分类3.1.1 酶•酶是蛋白质中最常见的功能类别,用于催化生物体内的化学反应。
####3.1.2 结构蛋白•结构蛋白可以提供细胞和组织的支持和稳定性。
#### 3.1.3 运输蛋白•运输蛋白参与分子、离子等物质在生物体内的转运。
#### 3.1.4 抗体•抗体是免疫系统中的蛋白质,用于识别和消灭入侵的病原体。
#### 3.1.5 受体与信号传导蛋白•受体和信号传导蛋白参与细胞间的信号传递过程。
蛋白质的结构与功能蛋白质是生物体中最重要的宏观分子之一,是维持生命活动的基础。
它们在细胞结构、代谢调节、免疫和信号传递等方面发挥着重要作用。
蛋白质的结构与功能是相互关联的,不同的蛋白质结构决定了它们的功能。
一级结构是指蛋白质中氨基酸的线性排列方式。
氨基酸通过肽键连接形成多肽链,组成了蛋白质的一级结构。
一级结构对蛋白质的性质和功能起着决定性作用。
二级结构是指多肽链上相邻的氨基酸通过氢键形成的局部空间排列方式。
常见的二级结构包括α-螺旋和β-折叠。
α-螺旋是一种右旋的螺旋结构,其中氢键固定螺旋的形成。
β-折叠是由平行或反平行的β链排列而成,通过氢键连接起来形成稳定的结构。
三级结构是指蛋白质中氨基酸侧链的相互作用所形成的立体结构。
它由非共价键和共价键相互作用而形成。
非共价键主要包括氢键、疏水作用、电荷作用等。
这些相互作用使蛋白质折叠成特定的立体结构。
四级结构是指多个多肽链相互作用而形成的复合物。
蛋白质可以由单个多肽链组成,也可以由多个多肽链组成。
四级结构对于蛋白质的功能起着重要作用,它决定了多肽链之间的相互作用和空间结构。
蛋白质的功能与其结构密切相关。
蛋白质的结构决定了它们的功能。
不同的蛋白质具有不同的功能,包括催化反应、传输物质、结构支持、免疫调节等。
催化反应是蛋白质最常见的功能之一、酶是一类具有催化反应的蛋白质,它们能够加速生物体内化学反应的速率。
酶通过与底物结合形成酶底物复合物,使底物分子转变为产物,然后释放产物,完成催化反应。
传输物质是蛋白质的另一个重要功能。
例如,血红蛋白是一种负责将氧气从肺部运输到全身组织的蛋白质。
血红蛋白通过与氧气结合形成氧合血红蛋白,然后将氧气释放给组织细胞。
蛋白质还担负着结构支持的功能。
例如,胶原蛋白是一种主要存在于结缔组织中的蛋白质,它能够提供组织的结构框架,并增加组织的强度和柔韧性。
免疫调节是蛋白质的另一个重要功能。
抗体是一类能够与抗原特异性结合的蛋白质,它们能够识别并结合入侵病原体或异常细胞,并协助免疫系统清除它们。
第五章蛋白质结构和功能的关系
一、
、肌红蛋白的结构与功能:
1、肌红蛋白的三级结构
哺乳动物肌肉中储氧的蛋白质。
由一条多肽链(珠蛋白,153个aa残基)和一个血红素辅基组成。
亚铁离子形成六个配位健,四个与N原子,一个与组氨酸,一个与氧配位。
球状分子,单结构域。
8段直的α-螺旋组成,分别命名为A、B、C…H,
拐弯处是由1~8个氨基酸组成的松散肽段(无规卷曲)。
4个Pro残基各自处在一个拐弯处,另外4个是Ser、Thr、Asn、Ile。
血红素辅基
血红素辅基,扁平状,结合在肌红蛋白表面的一个洞穴内。
CO 中毒CO 与肌红蛋白有更高的亲和性
2、肌红蛋白的氧合曲线
O
Mb 解离平衡常数:]
[]][[22MbO K =][2PO Mb K ∙=]
[2MbO 氧饱和度:[]2MbO Y =]
[][2Mb MbO +PO 2Y =2PO K +
Y=0.5时,肌红蛋白的一半被饱和,PO 2=K =P 50=2.8t torr
(托)解离常数K 也称为P 50,即肌红蛋白一半被饱和时的氧压。
3、Hill 曲线和Hill 系数
Y
Y K PO Y
K PO Y log log 1log 122-=-=
-Hill
曲线
Log[Y/(1-Y)]=0时的斜率称Hill 系数(n H )肌红蛋白的n H =1
二血红蛋白的结构与功能蛋白的结构与功能
1、血红蛋白的结构:
成人
成人:HbA:α
2β
2
98%,a亚基(141),
β亚基(146)
HbA
2:α
2
δ
2
2%
胎儿:HbFα
2γ2
早期胚胎:α
2ε2
▲接近于球体,4个亚基分别在四面体的四个角上,每个亚基上有一个血红素辅基。
▲α、β链的三级结构与肌红蛋白的很相似,一级结构具有同源性。
氧合造成盐桥断裂
4
2、血红蛋白的氧合曲线
四个亚基之间具有正协同效应因此它的氧合曲四个亚基之间具有正协同效应,因此,它的氧合曲线是S 型曲线。
Hill 曲线和Hill 系数。
协同效应可增加血红蛋白在肌肉中的卸氧量,使它能有效地输送氧气。
血红蛋白P
50
=26torr,
肺泡氧压:Po
2=100torr,
Y=0.97
肌肉毛细血管:Po
2=20torr,
Y025
Y=0.25
释放氧
释放氧:△Y=0.97—0.25=0.72
肌红蛋白(无协同效应)△肌红蛋白(无协同效应):△Y 不足0.1
n H=1,无协同性
n>1,正协同性H
<1,负协同性
1
n
H
BPG:二磷酸甘油酸
1、波耳效应及其生理意义
血红蛋白上有结合部位因此血红CO 2和BPG 结合部位,因此,血红蛋白还能运输CO 2。
HbO2+H+=HbH++O2
波耳效应增加的浓度降低H 波耳效应:增加CO 2的浓度、降低pH 能显著降低血红蛋白亚基间的协同效应,降低血红蛋白对O 2的亲和力,促进O 2的+释放,反之,高浓度的O2也能促使血红蛋白释放H 和CO 2。
2、BPG 的别构效应
23-)是血红蛋白的负效应物BPG (2,3-二磷酸甘油酸)是血红蛋白的负效应物。
★协同效应、波耳效应、别构效应使血红蛋白的★协同效应波耳效应别构效应使蛋白的输氧能力达到最高效率
无BPG 时,P 50=1torr ,
BPG=4.5mM 时,P =26torr
50BPG 进一步提高了血红蛋白的输氧效率。
在肺部,P O2超过100torr ,因此,即使有BPG ,血红蛋白也能被饱和,在组织中低降低血红蛋白的氧亲和力加在组织中,P O2低,BPG 降低血红蛋白的氧亲和力,加大血红蛋白的卸氧量。
)高山适应和肺气肿的生理补偿变化升高
(1)高山适应和肺气肿的生理补偿变化;BPG 升高。
(2)血库储血时加入肌苷和BPG 。
治疗:KCNO 氰酸钾
四、免疫系统和免疫球蛋白
先天性免疫和后天性(获得性)免疫
记忆细胞
B 细胞淋巴细胞
浆细胞(效应)
T
细胞
T 助细胞
免疫反应T 胞毒细胞
巨嗜细胞
B 细胞体液免疫
T 细胞
MHC: major histocompatibility complex 主要组织相容性复合体
抗原与抗体
★抗原是指进入异体机体后,能致敏淋巴细胞产生特异抗体,并能与抗体发生特异结合的物质(主要有蛋白质、核酸及其它高分子化合物)。
★抗原性包括免疫原性和抗原特异性。
★免疫原性是指诱导特异免疫反应的能力。
★抗原特异性是指与抗体特异结合的能力。
抗原决定簇抗原性由抗原分子表面特殊的化学团决★抗原决定簇:抗原性由抗原分子表面特殊的化学基团决定(一级结构或空间结构),这种决定或控制抗原性的化学基团称抗原决定簇。
学基团称抗原决定簇
★抗原决定簇的作用:
①被免疫活性细胞识别,从而激活免疫活性细胞产生抗体。
①被免疫活性细胞识别从而激活免疫活性细胞产生抗体
②与相应抗体的Fab结合。
免
★抗体是在对抗原刺激的免疫应答中,B淋巴细胞产生的一类糖蛋白,它是能与相应抗原特异性结合、产生免疫反应的球蛋白,称免疫球蛋白。
反应的球蛋白称免疫球蛋白
★抗体具有两个特点:
★抗体具有两个特点
①高度特异性
②多样性
几乎所有的外源蛋白都能诱导相应的特异性抗体,人体内任时刻约有10000种抗体存在。
任一时刻约有种抗体存在。