5-气体力学基础-2016
- 格式:pdf
- 大小:1.99 MB
- 文档页数:78
第十二章 气体动理论§12-1 平衡态 气体状态方程【基本内容】热力学:以观察和实验为基础,研究热现象的宏观规律,总结形成热力学三大定律,对热现象的本质不作解释。
统计物理学:从物质微观结构出发,按每个粒子遵循的力学规律,用统计的方法求出系统的宏观热力学规律。
分子物理学:是研究物质热现象和热运动规律的学科,它应用的基本方法是统计方法。
一、平衡态 状态参量1、热力学系统:由大量分子组成的宏观客体(气体、液体、固体等),简称系统。
外界:与系统发生相互作用的系统以外其它物体(或环境)。
从系统与外界的关系来看,热力学系统分为孤立系统、封闭系统、开放系统。
2、平衡态与平衡过程平衡态:在不受外界影响的条件下,系统的宏观热力学性质(如P 、V 、T )不随时间变化的状态。
它是一种热动平衡,起因于物质分子的热运动。
热力学过程:系统从一初状态出发,经过一系列变化到另一状态的过程。
平衡过程:热力学过程中的每一中间状态都是平衡态的热力学过程。
3、状态参量系统处于平衡态时,描述系统状态的宏观物理量,称为状态参量。
它是表征大量微观粒子集体性质的物理量(如P 、V 、T 、C 等)。
微观量:表征个别微观粒子状况的物理量(如分子的大小、质量、速度等)。
二、理想气体状态方程1、气体实验定律(1)玻意耳定律:一定质量的气体,当温度保持不变时,它的压强与体积的乘积等于恒量。
即PV =恒量,亦即在一定温度下,对一定量的气体,它的体积与压强成反比。
(2)盖.吕萨克定律: 一定质量的气体,当压强保持不变时,它的体积与热力学温度成正比。
即V T =恒量。
(3)查理定律: 一定质量的气体,当体积保持不变时,它的压强与热力学温度成正比,即P T=恒量。
气体实验定律的适用范围:只有当气体的温度不太低(与室温相比),压强不太大(与大气压相比)时,方能遵守上述三条定律。
2、理想气体的状态方程(1)理想气体的状态方程在任一平衡态下,理想气体各宏观状态参量之间的函数关系;也称为克拉伯龙方程M PV RT RT νμ==(2)气体压强与温度的关系 P nkT =玻尔兹曼常数23/ 1.3810A k R N -==⨯J/K ;气体普适常数8.31/.R J mol K = 阿伏加德罗常数236.02310/A N mol =⨯质量密度与分子数密度的关系nm ρ=分子数密度/n N V =,ρ气体质量密度,m 气体分子质量。
0. 绪论流体力学是研究流体运动规律及其力学规律的一门科学。
流体力学按研究内容可以分为流体力学和工程流体力学。
流体力学研究流体的受力平衡和运动规律,工程流体力学研究流体平衡理论和运动规律的工程技术应用。
流体力学按照研究方法还可分为理论流体力学和计算流体力学。
随着计算机科学与技术的发展,计算流体力学得到迅速发展和广泛应用。
流体力学还可按照流体流动的性质和形态具有某些方面的专门研究,例如粘性流体力学,湍流等。
流体力学按照研究流体介质分类,又分为水力学和气体力学。
由于研究的对象不同,研究的方法和范围也有所区别。
水力学主要研究液体和具有一定限制条件在某种状态下的气体,作为不可压缩流体的平衡、运动和液体与固体相互作用的受力规律。
气体力学主要研究气体的平衡、运动和气体与固体相互作用的受力规律。
气体力学比气体动力学研究的范畴大,气体动力学只研究可压缩气体的运动规律和受力状况。
气体是一种流体,虽然与液体一样它具有连续性、易流动性和粘性,但与液体相比具有特殊的性能:第一,气体的体积随着压力变化有很大的变化。
液体的体积受压力变化的影响很小,因此可被看做不可压缩性流体;第二,气体的体积受温度的影响很大,气体的体积随着温度的增大,密度要减小,因此压力不变的条件下体积要增大。
液体的体积受温度的影响很小;第三,气体在容器中,由于分子间的引力很小,不会像液体那样形成自由表面,而会充满容器的空间;第四,气体的粘度随温度的升高而增大。
在一般情况下这与液体的粘度随温度升高而减小的规律正好相反。
由此可见,由于气体的特性所致,它的运动学和动力学规律与液体相比,具有一定的特殊性。
气体力学是研究气体平衡和气体运动规律的一门科学。
本书将从工程实际出发,重点介绍热工气体力学的理论及应用,强调工程性和实用性,作为工程流体力学的一种补充。
这里所涉及的内容主要用于工业热工、热能及动力工程、冶金工程等领域的实际应用。
1.气体的特性和基本方程气体和液体统称为流体。
气体动力学的基本原理气体动力学是研究气体在运动中的物理性质和行为的学科,其基本原理涉及气体的压力、体积、温度以及分子运动等方面。
本文将介绍气体动力学的基本原理,包括理想气体状态方程、分子速度分布和碰撞等相关内容。
一、理想气体状态方程理想气体状态方程是描述气体状态的基本关系式,表达为PV = nRT,其中P表示气体的压力,V表示气体的体积,n表示气体的摩尔数量,R表示气体常量,T表示气体的温度。
根据理想气体状态方程,可以推导出布尔定律、盖-吕萨克定律以及查理定律等气体性质和规律。
二、分子速度分布气体分子在运动中具有不同的速度分布,其分子速度与温度有关。
根据麦克斯韦分布定律(麦分布),分子速度分布可以用麦克斯韦-玻尔兹曼速度分布函数来描述。
该函数表示各个速度分量的分布概率密度,可以用于计算气体中分子的平均速度、最概然速度和均方根速度等重要参数。
三、碰撞气体分子之间的碰撞是气体动力学中重要的研究内容。
分子之间的碰撞导致气体分子的运动方向和速度发生变化,从而实现了气体的传导、散射和扩散等现象。
碰撞模型可通过玻尔兹曼方程进行描述,该方程反映了气体分子数密度随时间和空间变化的关系,是研究气体动力学的重要工具。
四、气体扩散气体扩散是气体动力学的重要研究内容之一,涉及气体分子的运动和传播过程。
根据菲克定律,气体在压力差驱动下会自然地由高压区向低压区扩散。
扩散速率与温度、压力以及气体分子的大小和形状等因素有关,可通过斯托克斯-爱因斯坦方程进行定量计算。
总结:本文介绍了气体动力学的基本原理,包括理想气体状态方程、分子速度分布和碰撞以及气体扩散等方面。
这些原理为我们理解和解释气体的运动和行为提供了基础,也为相关领域的应用提供了理论支持。
理解气体动力学的基本原理对于工程技术和科学研究都具有重要意义。
气体动力学基础气体动力学是研究气体的运动规律以及与能量、力学和热学等的关系的学科。
它是物理学的一个重要分支,具有广泛的应用领域,涵盖了气象学、空气动力学、燃烧学等多个领域。
本文将介绍气体的基本概念、物理性质和运动规律。
一、气体的基本概念气体是物态的一种,具有以下特性:1.分子间间距较大,相互之间几乎没有相互作用力。
2.分子间的运动是随机的,具有高度的自由度。
3.气体的体积能够随环境条件的变化而变化。
二、气体的物理性质气体的物理性质包括压力、温度和体积。
下面将逐一进行介绍。
1. 压力压力是单位面积上施加的力的大小。
根据理想气体状态方程可以得知,气体的压力与温度、体积、分子数之间存在一定的关系。
2. 温度温度是气体分子热运动的一种度量,通常使用开尔文温标来进行表示。
根据理想气体状态方程,温度与气体的压力、体积、分子数之间存在一定的关系。
3. 体积气体的体积是指气体所占据的空间。
根据理想气体状态方程,气体的体积与压力、温度、分子数之间存在一定的关系。
三、气体的运动规律气体的运动规律主要包括玻意耳-马略特定律、查理定律和盖-吕萨克定律。
1. 玻意耳-马略特定律玻意耳-马略特定律也称为定容气体定律,它表明,在恒定体积下,气体的压力与温度成正比。
即P/T=常数。
2. 查理定律查理定律也称为定压气体定律,它表明,在恒定压力下,气体的体积与温度成正比。
即V/T=常数。
3. 盖-吕萨克定律盖-吕萨克定律也称为理想气体状态方程,它表明,在恒定的摩尔数下,气体的压力、体积和温度之间存在一定的关系。
即P*V/T=常数。
四、气体动力学的应用气体动力学具有广泛的应用领域,以下是几个应用领域的简要介绍。
1. 气象学气象学研究大气的运动规律以及与气候、天气等的关系。
气体动力学为气象学提供了重要的理论基础,可以用来解释大气循环、风、气压等现象。
2. 空气动力学空气动力学研究物体在气流中运动时的力学规律,对于飞机、汽车等交通工具的设计和性能研究具有重要意义。
气体动力学基础笔记手写一、气体动力学基本概念1. 气体:由大量分子组成的混合物,其分子在不断地运动和碰撞。
2. 温度:气体分子平均动能的量度,与分子平均动能成正比。
3. 压力:气体对容器壁的压强,由大量气体分子对容器壁的碰撞产生。
4. 密度:单位体积内的气体质量,与分子数和分子质量有关。
5. 流场:描述气体流动的空间和时间的函数,由速度、压力、密度等物理量描述。
二、理想气体状态方程1. 理想气体状态方程:pV = nRT,其中p为压力,V为体积,n为摩尔数,R为气体常数,T为温度。
2. 实际气体与理想气体的关系:实际气体在一定条件下可以近似为理想气体,但在某些情况下需要考虑分子间相互作用和分子内能等效应。
三、气体流动的基本方程1. 连续性方程:质量守恒方程,表示单位时间内流入流出控制体的质量流量相等。
2. 动量守恒方程:牛顿第二定律,表示单位时间内流入流出控制体的动量流量等于作用在控制体上的外力之和。
3. 能量守恒方程:热力学第一定律,表示单位时间内流入流出控制体的热量流量等于控制体内能的变化率加上作用在控制体上的外力所做的功。
四、一维定常流1. 一维流:流场中所有点的流速方向都在同一直线上。
2. 定常流:流场中各物理量不随时间变化而变化的流动。
3. 声速:气体中声速与温度和气体种类有关,是气体的特征速度。
4. 马赫数:流场中任意一点上流速与当地声速之比,是描述流动状态的重要参数。
五、膨胀波与压缩波1. 膨胀波:由于流体受压缩而产生的波,传播方向与流体运动方向相反,波前压力低于波后压力。
2. 压缩波:由于流体受扩张而产生的波,传播方向与流体运动方向相同,波前压力高于波后压力。