一般地,我们有: 相似三角形对应线段的比等于相似比.
新知讲解
探究
如图,△ABC ∽△A′B′C′,相似比为 k,它们对应周长的比
是多少? A
A'
B
C
B'
C'
新知讲解
因为 △ABC ∽△A'B'C',相似比为 k,那么
AB BC CA k, A'B' B'C ' C ' A'
因此 AB=k A'B',BC=kB'C',CA=kC'A', 从而
新知讲解
解:1
CD C ' D'
AB A' B '
,C 'D'
8 cm
2
CABC C A' B'C '
AB 1 20 A'B' 2 CA'B'C'
CA'B'C' =40 cm
3
SABC S A' B'C '
AB A' B'
2
,
1 4
SABC 64
SABC 16 cm2
∴BC∥AD,BC=AD.
∴△BEF∽△DAF. ∵BE= 1 EC,
2
∴BE∶DA=BE∶BC=1∶3.
∴△BEF的周长与△AFD的周长之比为1∶3. (2)由(1)可知△BEF与△AFD的相似比为 1
3
∴S△BEF∶S△AFD=1∶9. 又∵S△BEF=6 cm2,∴S△AFD=54 cm2.
课堂总结
∴ AE : EC=2:3, 则 AE : AC =2 : 5, ∴ S△ADE : S△ABC = 4 : 25,∴ S△ABC = 25.