第三章 模型中误差项假定的诸问题
- 格式:doc
- 大小:632.50 KB
- 文档页数:28
计量经济学试题误差项的假设检验在计量经济学中,我们经常需要对模型中的误差项进行假设检验。
误差项是指模型中未能被解释的变异部分,它们可能包含一些结构性偏差或者随机误差。
这些误差项对于我们准确度量经济变量之间的关系至关重要,因此需要进行假设检验以确认我们的模型是否准确和可靠。
本文将就计量经济学试题中的误差项假设检验进行讨论。
一、误差项的常见假设在计量经济学中,误差项通常被假设满足一些基本条件,包括:1. 零均值假设:误差项的平均值应该为零,即E(ε) = 0。
2. 同方差假设:误差项的方差应该是常数,即Var(ε) = σ^2。
3. 独立性假设:误差项之间应该是相互独立的,即Cov(ε_i, ε_j) = 0(i ≠ j)。
4. 正态性假设:误差项应该服从正态分布,即ε ~ N(0, σ^2)。
保证这些假设成立非常重要,因为它们是许多计量经济学方法和模型的基础。
接下来,我们将对这些假设进行具体的假设检验。
二、误差项假设检验方法1. 零均值检验零均值检验用于检验误差项的均值是否为零。
常见的假设检验方法包括t检验和F检验。
在t检验中,我们假设:H0:E(ε) = 0Ha:E(ε) ≠ 0通过计算误差项的平均值的t统计量,然后与t分布进行比较,可以得出是否拒绝零均值的结论。
在F检验中,我们假设:H0:E(ε) = 0Ha:E(ε) ≠ 0通过计算误差项平方和的F统计量,然后与F分布进行比较,可以得出是否拒绝零均值的结论。
2. 同方差检验同方差检验用于检验误差项的方差是否是常数。
常见的假设检验方法包括BP检验和Goldfeld-Quandt检验。
在BP检验中,我们假设:H0:Var(ε) = σ^2Ha:Var(ε) ≠ σ^2通过计算残差平方和的BP统计量,然后与卡方分布进行比较,可以得出是否拒绝同方差的结论。
在Goldfeld-Quandt检验中,我们假设:H0:Var(ε) = σ^2Ha:Var(ε) ≠ σ^2通过计算不同组别间残差平方和的比值,然后与F分布进行比较,可以得出是否拒绝同方差的结论。
第三章 一元经典线性回归模型的基本假设与检验问题 3.1TSS,RSS,ESS 的自由度如何计算?直观含义是什么?答:对于一元回归模型,残差平方和RSS 的自由度是(2)n -,它表示独立观察值的个数。
对于既定的自变量和估计量1ˆβ和2ˆβ,n 个残差2ˆˆˆi i i iu Y X ββ=-- 必须满足正规方程组。
因此,n 个残差中只有(2)n -个可以“自由取值”,其余两个随之确定。
所以RSS 的自由度是(2)n -。
TSS 的自由度是(1)n -:n 个离差之和等于0,这意味着,n 个数受到一个约束。
由于TSS=ESS+RSS ,回归平方和ESS 的自由度是1。
3.2 为什么做单边检验时,犯第一类错误的概率的评估会下调一半?答:选定显著性水平α之后,对应的临界值记为/2t α,则双边检验的拒绝区域为/2||t t α≥。
单边检验时,对参数的符号有先验估计,拒绝区域变为/2t t α≥或/2t t α≤-,故对犯第I 类错误的概率的评估下下降一半。
3.3 常常把高斯-马尔科夫定理简述为:OLS 估计量具有BULE 性质,其含义是什么? 答:含义是:(1)它是线性的(linear ):OLS 估计量是因变量的线性函数。
(2)它是无偏的(unbiased ):估计量的均值或数学期望等于真实的参数。
比如22ˆ()E ββ=。
(3)它是最优的或有效的(Best or efficient ):如果存在其它线性无偏的估计量,其方差必定大于OLS 估计量的方差。
3.4 做显著性检验时,针对的是总体回归函数(PRF )的系数还是样本回归函数(SRF )的系数?为什么?答:做显著性检验时,针对的是总体回归函数(SRF )的系数。
总体回归函数是未知的,也是研究者所关心的,所以只能利用样本回归函数来推测总体回归函数,后者是利用样本数据计算所得,是已知的,无需检验。
(习题)3.5 以下陈述正确吗?不论正确与否,请说明理由。
第三章 模型中误差项假定的诸问题第一节 广义最小二乘法前面的分析知道,多元线性回归的数学模型可以表示为:12233t t t k kt tY X X X ββββμ=+++⋅⋅⋅++(t=1,2,3,…,n )其中t μ是随机误差项,它代表的是对于t Y 的变化,it X 不能解释的微小变动的全部。
用矩阵表示,则上述回归模型可以表示为:Y X U β=+其中,123n Y Y Y Y Y ⎛⎫ ⎪ ⎪ ⎪= ⎪⎪⎪⎝⎭,123k βββββ⎛⎫⎪⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,213112232223111k k n nkn X X X X X X X X X X ⋅⋅⋅⎛⎫ ⎪⋅⋅⋅⎪= ⎪ ⎪⋅⋅⋅⎝⎭,123n u u U u u ⎛⎫⎪⎪ ⎪= ⎪ ⎪ ⎪⎝⎭运用最小二乘准则,我们得到的参数的估计量为:()1''ˆX X X Y β-=对于随机误差项t μ,我们所做的假定有三个:零均值、同方差和非自相关。
这三个假定的矩阵表述为:()()()()()12300000n E u E u E U E u E u ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,()()()()()()()()()()()11212122122222'2var cov ,cov ,cov ,var cov ,var cov ,cov ,var 100000001000000001000n n n n n u u uu n u u u u u u u u u u u U u u u u u I E UU σσσσσ⋅⋅⋅⎛⎫⎪⋅⋅⋅ ⎪= ⎪ ⎪⎪⋅⋅⋅⎝⎭⎛⎫⎛⎫⎪ ⎪⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 在上述假定条件下,我们得出的参数估计值具有最优线性无偏估计特性。
现实情况的偏离:1、随机扰动项均值不为零时,通过将随机扰动项与常数项结合,不会对估计产生影响。
§5.3 模型设定偏误问题到目前为止,经典计量经济模型的回归分析,都是对模型的估计以及对基本假设的相关检验,而较少关注模型的具体设定形式。
如果模型通过了所有相关检验,就认为得到了一个“满意”的模型估计结果,从而可以进一步用于经济分析与预测。
然而,如果我们设定了一个“错误的”或者说是“有偏误的”模型,即使所有的基本假设都满足,得到的估计结果也会与“实际”有偏误,这种偏误称为模型设定偏误。
一、模型设定偏误的类型模型设定偏误主要有两大类,一类是关于解释变量选取的偏误,主要包括漏选相关变量和多选无关变量,另一类是关于模型函数形式选取的偏误。
1、相关变量的遗漏(omitting relevant variables )在建立模型时,由于人们认识上的偏差、理论分析的缺陷、或者是有关统计数据的限制,可能有意或无意地忽略了某些重要变量。
例如,如果“正确”的模型为μβββ+++=22110X X Y (5.3.1)而我们将模型设定为v X Y ++=110αα (5.3.2)也就是说,设定模型时漏掉了一个相关的解释变量。
这类错误称为遗漏相关变量。
由于“正确”模型可能包含有被解释变量Y 与解释变量X 的滞后项,即为自回归分布滞后模型,因此,遗漏相关变量可能表现为对Y 或X 滞后项的遗漏。
这类模型设定偏误也称为动态设定偏误(dynamic mis-specification )。
2、无关变量的误选(including irrevelant variables)无关变量的误选是指在设定模型时,包括了无关解释变量。
例如,如果(5.3.1)仍为“真”,但我们将模型设定为v X X X Y ++++=3322110αααα (5.3.3)也就是说,设定模型时,多选了一个无关解释变量。
3、错误的函数形式(wrong functional form )错误的函数形式是指在设定模型时,选取了不正确的函数形式。
最常见的就是当“真实”的函数形式为非线性时,却选取了线性的函数形式。
说明回归模型的假设及这些假设不成立时应对方法回归模型是一种用于建模变量之间关系的统计工具。
在许多回归模型中,通常有一些关键的假设。
以下是多元线性回归模型的主要假设:
1. 线性关系:模型假设自变量和因变量之间存在线性关系。
这意味着因变量的期望值是自变量的线性组合。
2. 独立性:模型假设观测值之间是相互独立的。
即,一个观测值的变化不会直接导致其他观测值的变化。
3. 同方差性(等方差性):模型假设误差项在所有自变量的取值范围内具有相同的方差。
这意味着误差的方差在整个数据集中是恒定的。
4. 正态性:模型假设误差项是正态分布的。
这对于进行统计推断和置信区间的计算非常重要。
当这些假设不成立时,可能会导致模型的不准确性,因此需要采取相应的方法来处理:
1. 非线性关系:如果自变量和因变量之间的关系不是线性的,可以尝试对变量进行变换(如对数、平方根)或引入交互项。
2. 相关性/独立性问题:如果观测值之间存在相关性,可以考虑采用时间序列模型或者使用更复杂的方法,如面板数据模型,以处理数据之间的相关性。
3. 异方差性问题:异方差性可以通过进行加权最小二乘回归(Weighted Least Squares Regression)来处理,或者通过变量转换来稳定方差。
4. 非正态分布:如果误差项不符合正态分布假设,可以使用非参数方法,或者对因变量进行转换,以适应更接近正态分布的形状。
总体而言,检验这些假设是否成立,并在需要时进行适当的调整,是回归分析中至关重要的步骤。
在进行模型诊断和验证时,统计工具和图形分析通常是帮助确定是否需要对模型进行调整的有用手段。
第三章 模型中误差项假定的诸问题第一节 广义最小二乘法前面的分析知道,多元线性回归的数学模型可以表示为:12233t t t k kt tY X X X ββββμ=+++⋅⋅⋅++(t=1,2,3,…,n )其中t μ是随机误差项,它代表的是对于t Y 的变化,it X 不能解释的微小变动的全部。
用矩阵表示,则上述回归模型可以表示为:Y X Uβ=+其中,123n Y Y Y Y Y ⎛⎫⎪ ⎪ ⎪= ⎪ ⎪⎪⎝⎭M ,123k βββββ⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪⎝⎭M ,213112232223111k k n n kn X X X X X X X X X X ⋅⋅⋅⎛⎫ ⎪⋅⋅⋅⎪= ⎪ ⎪⋅⋅⋅⎝⎭M M M M ,123n u u U u u ⎛⎫⎪⎪ ⎪= ⎪⎪ ⎪⎝⎭M运用最小二乘准则,我们得到的参数的估计量为:()1''ˆX X X Y β-=对于随机误差项t μ,我们所做的假定有三个:零均值、同方差和非自相关。
这三个假定的矩阵表述为:()()()()()12300000n E u E u E U E u E u ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭M M ,()()()()()()()()()()()11212122122222'2var cov ,cov ,cov ,var cov ,var cov ,cov ,var 10000001000000001000n n n n n u u uu n u u u u u u u u u u u U u u u u u I E UU σσσσσ⋅⋅⋅⎛⎫ ⎪⋅⋅⋅ ⎪= ⎪ ⎪ ⎪⋅⋅⋅⎝⎭⎛⎫⎛⎫⎪ ⎪⎪ ⎪==== ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭M M M M M M M M M M M 在上述假定条件下,我们得出的参数估计值具有最优线性无偏估计特性。
现实情况的偏离:1、随机扰动项均值不为零时,通过将随机扰动项与常数项结合,不会对估计产生影响。
2、同方差和非自相关假设不满足时,会对最小二乘估计产生重要影响。
因此,不满足假定条件的分析可以归结为同方差和非自相关的偏离。
用矩阵来表示为:()'2uE UU σ=Ω,其中,Ω为n 阶正定矩阵。
当正定对称矩阵已知时,可以通过对给出的模型做变换,使得变换后的模型满足标准线性回归模型的条件,进而,运用最小二估计准则,求出满足最优线性无偏估计特性的参数估计量。
假设有模型YX Uβ=+,其中随机扰动项不满足同方差和非自相关条件,即有()'2uE UU σ=Ω因此,不能直接用最小二乘估计准则进行估计。
现在,由于Ω为n 阶对称正定矩阵,故存在可逆矩阵D 使得下述式子成立:'DD Ω=对原有模型Y X Uβ=+进行变换,即等式两边同时左乘矩阵1D-有:111Y X UD Y D X D Uββ---=+⇒=+令:111,,Y D Y X D X U D U ***---===。
从而,原有模型YX Uβ=+转换为:Y X U β***=+,新模型中的随机扰动项的协方差矩阵为:()()()()()()()()()()()()()'1111111212112111111''''''''''''u u u nn Var U E U U E D U D U E D UU D D E UU D D D D D I DD D D D DD D D D I σσσ***----------------=====Ω=Ω=⎛⎫Ω=⇒Ω= ⎪ ⎪⇒Ω=⎝⎭这样,就可以运用最小二乘法进行估计,并得出参数估计值:()1''ˆX X X Y β*-****=将111,,Y D Y X D X U D U ***---===代入得到: ()()()()()()()()()11''''11111'11'111'1'1ˆ''X X X Y D X D X D X D Y X DD XX D D YX X X Yβ*------****--------====ΩΩ因此,这里我们得出的ˆβ*称为参数的广义最小二乘估计量,很明显,ˆβ*具有最优线性无偏估计量特征。
上述在随机扰动项不满足假定条件的情况下,我们仍然能够得到参数的最优线性无偏估计量的关键是,误差项协方差矩阵 Ω已知,进而我们通过变换和处理使其化为满足假定条件的模型。
现实情况是误差项协方差矩阵 Ω未知。
因此,必须首先对Ω进行讨论。
第二节 序列相关随机扰动项不满足同方差和非自相关条件,即有()'2uE UU σ=Ω。
如果Ω已知,我们仍然能够得到最优线性无偏估计量,在现实情况下,Ω通常未知,首先应该对其进行分析讨论。
因此,对随机扰动项假设不满足的条件的讨论分为两个方面:一个是同方差是否满足,一个是非自相关是否满足。
这两个方面用数学语言来说明,就是讨论误差项协方差矩阵Ω,因为,此矩阵上的主对角线上的元素是方差;非主对角线的元素是协方差,说明的就是误差项之间的关系。
本节先讨论误差项非自相关不满足的情况。
一、误差项之间产生序列相关的原因序列相关的定义:模型中随机误差项不满足关系式:()0t s E μμ=这时称误差项之间存在着序列相关。
误差项存在自相关,主要有如下几个原因。
(1) 模型的数学形式不妥。
若所用的数学模型与变量间的真实关系不一致,误差项常表现出自相关。
比如平均成本与产量呈抛物线关系,当用线性回归模型拟合时,误差项必存在自相关。
(2) 惯性。
大多数经济时间序列都存在自相关。
其本期值往往受滞后值影响。
突出特征就是惯性与低灵敏度。
如国民生产总值,固定资产投资,国民消费,物价指数等随时间缓慢地变化,从而建立模型时导致误差项自相关。
(3) 回归模型中略去了带有自相关的重要解释变量。
若丢掉了应该列入模型的带有自相关的重要解释变量,那么它的影响必然归并到误差项u t 中,从而使误差项呈现自相关。
当然略去多个带有自相关的解释变量,也许因互相抵消并不使误差项呈现自相关。
二、序列相关存在时的回归分析结果与主要影响 1、序列相关的主要形式: 一阶自回归模型:1t t t t t tY X u u u αβρε-=++=+其中,t ε满足条件:()()()2200t tt s E E E εεεσεε===上述模型成为随机误差项的一阶自回归模型(?),是一种重要的自相关模型。
2、序列相关的表现形式:1t t t u u ρε-=+。
分三种情况:相关系数ρ的符号而定。
3、序列相关的回归分析()()12211221322312323123t t tt t t t t t t t t t t t t t t t t t t t t u u u u u u u u u ρερρεεερερερερρεερερερερερερε--------------=+=++=++=+++=+++=++++LL又因为有:()()()2200t t t s E E E εεεσεε===所以有:()()231230t t t t t E u E ερερερε---=++++=L()()()()231232222211t t t t t Var u Var εεερερερεσρρσρ---=++++=+++=-L K进一步,我们可以得到U 的协方差矩阵:212'221231...1...E() =........1n n uu n n n UU ρρρρρρσσρρρ-----⎡⎤⎢⎥⎢⎥=Ω⎢⎥⎢⎥⎣⎦这里有()2221uεσσρ=-。
4、序列存在自相关时,如果继续采用最小二乘法,对模型的估计与检验到来以下的后果: 1、参数估计不再具有最小方差性;2、序列正相关时,即ρ为正值时,最小二乘法估计时的方差偏小,从而t 检验值变大,容易出现拒零假设,从而造成解释变量的人为保留,导致伪回归的危险增大。
3、t 检验和F 检验不能用。
三、序列自相关的检验 1、图示法图示法就是依据残差e t 对时间t 的序列图作出判断。
由于残差e t 是对误差项ut 的估计,所以尽管误差项u t 观测不到,但可以通过e t 的变化判断u t 是否存在自相关。
图示法的具体步骤是,(1) 用给定的样本估计回归模型,计算残差e t , (t = 1, 2, … T),绘制残差图;(2) 分析残差图。
说明是属于:不存在自相关、存在正自相关、存在负自相关。
需要说明的是,经济变量由于存在惯性,所以经济变量的变化常表现为正自相关。
2、DW (Durbin-Watson )检验法DW 检验是J. Durbin, G. S. Watson 于1950,1951年提出的。
它是利用残差e t 构成的统计量推断误差项u t 是否存在自相关。
使用DW 检验,应首先满足如下三个条件。
误差项u t 的自相关为一阶自回归形式。
因变量的滞后值y t-1不能在回归模型中作解释变量。
样本容量应充分大(T > 15) DW 检验步骤如下。
给出假设 H 0: ρ = 0 (u t 不存在自相关) H 1: ρ ≠ 0 (u t 存在一阶自相关) 用残差值 e t 计算统计量DW 。
21221()nt t t n t t e e DW e -==-=∑∑其中分子是残差的一阶差分平方和,分母是残差平方和。
把上式展开,得2211222212nnnt t t t t t t nt t e e e e DW e --====+-=∑∑∑∑.因为有2221221nnntt tt t t eee -===≈≈∑∑∑所以2111222221122222121nnnt t t t t t t t nn t t t t ee e e e DW ee ρ---∧===--==⎛⎫- ⎪⎛⎫ ⎪≈=-=- ⎪⎝⎭ ⎪⎪⎝⎭∑∑∑∑∑因为 ρ 的取值范围是 [-1, 1],所以DW 统计量的取值范围是 [0, 4]。
ρ 与DW 值的对应关系见下表表 ρ 与DW 值的对应关系及意义ρ DWu t 的表现 ρ = 0 DW = 2 u t 非自相关 ρ = 1 DW = 0 u t 完全正自相关 ρ = -1 DW = 4 u t 完全负自相关0 < ρ < 1 0 < DW < 2 u t 有某种程度的正自相关 -1 < ρ < 02 < DW < 4u t 有某种程度的负自相关实际中DW = 0, 2, 4 的情形是很少见的。