指数函数的概念及其性质(含答案)
- 格式:doc
- 大小:506.50 KB
- 文档页数:6
1•指数函数概念-般地,函数叫做指数函数,其中x是自变量,函数的定义域为&•指数函数函数性质:i•对数函数定义一般地,函数尸叫做对数函数,其中x是自变量,函数的定义域■.对数函数性质:一、选择题2. 函数 f{x) =x —bx+c 满足 /*(l+x) =/(l —x)且 /(0) =3,则 fllf)与 f^c)的大小 关系是()A. f ⑹Wf (刃B.B. f(lf) >MC. 大小关系随x 的不同而不同3. 函数y=\2x-l\在区间(k —\, &+1)内不单调,则g 的取值范围長() A. (―1, +°°) B. ( — 8, 1) C. (-1,1) D. (0,2)4. 设函数f(x)=ln[(x —1)(2—0]的定义域是力,函数g(0=lg (、厨二刁一1)的定义域是5若AUB,则正数2的取值范围()A. a>3B.C. a>y[5I 3 a x^~ 3 75•已知函数f{x) =\ — . _若数列&}满足0=f(z?)(刀WN*),且&}la , x>l.是递增数列,则实数曰的取值范围是()9 9 A.环 3) B. (-, 3) C. (2,3)D. (1,3)6. 已知日>0且Q HI, A A ) =x —a,当1,1)时,均有/(A )<|,则实数爲的取值范围是()A. (0, U [2, +8)B. 1)U(1,4]C. [|, 1)U(1,2]D. (0, |) U [4, +8)二、填空题7. 函数y=a(a>0,且日Hl)在[1,2]上的最大值比最小值大彳,则日的值是 _____________.1.定义运算曰□方=“\baWb,则函数f(x)=lD2x的图象大致为()丿y y \ y/ \1y% OA兀O B 兀O C X)a>b8.若曲线|y|=2^+l与直线尸b没有公共点,则方的取值范围是_____________ ・9.(2011 •滨州模拟)定义:区间[山,益](孟〈益)的长度为X2—X1.已知函数y=2ul的定义域为冷,b]9值域为[1,2],则区间",刃的长度的最大值与最小值的差为__________ .三、解答题10.求函数尸2—U+的定义域、值域和单调区间.11.(2011 -银川模拟)若函数y=a2x+2a x-l(a>0且aHl)在圧[一1,1]上的最大值为14,求a的值.12.已知函数f{x) =3\ f@+2)=18, g{x) = A• 3^-4x的定义域为[0,1].(1)求日的值;(2)若函数g(x)在区间[0,1]上是单调递减函数,求实数人的取值范围.1.解析:由$□冷:» 得f(x)=iD2"=f '[b a>b[1 x>Q ・答案:A2.解析:•.•f(l+x)=f(l—x), ・•・/*(%)的对称轴为直线x=l,由此得b=2.又f(0) =3,・:c=3・・"3在(一8, 1)上递减,在(1, +8)上递增.若Q0,则3仝2仝1,・・・f(3J)Mf(2J)・若X0,则3X2X1,・•・ f (3”) >/*(2")・答案:A3•解析:由于函数y=|2x-l|在(一8, 0)内单调递减,在(0, +8)内单调递增,而函数在区间0~1, *+1)内不单调,所以有A-i<oa+i,解得一1〈从1・答案:C4.解析:由题意得:J= (1,2), a—2x> 1且£>2,由A Q B知2"> 1在(1,2)上恒成立, 即a x—2x—l>0 在(1,2)上恒成立,令u{x) =a x—2x—l,则/ (力=aTna—2Tn2>0,所以函数u(力在(1,2)上单调递增,则如>曲)=a-3,即妙3.答案:B5.解析:数列UJ满足aS (nW则函数fS)为增函数,a>l3-a>0,解得 2<a<3.a 8_6> 3-a X7-3答案:C6. 解析:考查函数尸W 与尸*的图象,当a>l 时,必有 訂冷 即1X2, 当 0<a<l 时,必有 即综上,或1〈日W2. 答案:CO Q7. 解析:当$>1时,y=W 在[1,2]上单调递增,故a —a=^9得a=-当0<吕<1时,y O 1 1 Q=才在[1,2]上单调递减,故a —a=~9得a=~故2=9或1 Q 答案:2^*2&解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y|=2^+1与直线尸b 的图象如图所示,由图象可得:如果|y|=r+1与直线y =0没有公共点,则b 应满足的条件是方丘[ — 1,1]・ 答案:[—1,1]9. 解析:如图满足条件的区间[Q , b ],当a= —1,方=0或a=0, 6=1时区间长 度最小,最小值为1,当a=-l, 时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需一#—3x+4M0,即#+3x —4W0,解得一4WV1. ・••函数的定义域为胡一4W 穴1}・3 95令 t=—x —3x+4,则 £=_#_3x+4=_ (x+矿+才,95 3・:当一4W 点1时,t^=—,此时X=—九in=O,此时X=—4或x=\.{25 i ------------ 5・:0W 方W~^~. .•.OW#—3x+4W°.・••函数尸(*)4s 的值域为[平,1].Q 9R由£=—#—3x+4=—(卄詳+刁~(—4W点1)可知,当一4W穴一寸时,广是增函数,3 当一㊁W穴1时,点是减函数.根据复合函数的单调性知:尸(£)一仁士4在[_£ —肖上是减函数,在[—£ 1]上是增函数.2 Z Z・•・函数的单调增区间是[一务1],单调减区间是[一4, 一自.11.解:令a = t, :. t>09则尸#+2广一1=(方+1)2—2,其对称轴为t=-l.该二次函数在[―1, +8)上是增函数.①若已>1, [ — 1,1], /. t=a^ [-, a],故当t=a,即x=l 时,y^=a-\-2a—\= 14,解得a=3(a= —5 舍去).②若0<a<l, m-1,1],/. t=a^ [a, ~],故当t=~9即x= —1 时,a ay^=(丄+1)2—2 = 14 ・aa=| 或一£(舍去).综上可得a=3或扌.12.解:法一:仃)由已知得3a+2=18=>3a=2=»a=log32.(2)此时g(x)= A • 2X-4X,设OWxK/Wl,因为g(x)在区间[0,1]上是单调减函数,所以gCn)—gg) = (2xi—2^2)(人一2卫一2xi)>0恒成立,即久〈2卫+2川恒成立.由于2卫+2石>2°+2°=2,所以实数人的取值范围是人W2.法二:(1)同法一.(2)此时g{x) = A・2*—0,因为g(力在区间[0,1]上是单调减函数,所以有g‘ U)= Aln2• 2x-ln4 • 4x=ln2[-2 • (2于+久・2”]W0 成立.设2”="G[1,2],上式成立等价于一2tf+A 0恒成立.因为日1,2],只需A^2u 恒成立, 所以实数久的取值范围是久W2.一、选择题1、已知3" = 2 ,那么log 38-21og 36用Q 表示是()I已知log 7[log 3(log 2x)] = 0,那么存等于(对称7、函数y = log (2x“)丁3兀-2的定义域是(A. a-2B 、5ci— 2C N 3d —(1 + G )~D、3a-a 22. A、 2 log “ (M - 2N) = log “ M + log “ N ,丄4B 、4则竺的值为(NC 、1D 、4 或 13、已知 x 2 + y 2 =l,x>0,y>0 ,且 log a (1 + x) = m.log则log/等于A、4、C^ £•(加+ 川)D 、 *(〃2 — 比)如果方程Ig 2x+(lg5 + lg7)lgx+lg5ag7 = 0的两根是a,0 ,则切的值B> m-nA、lg5Qg7 B 、lg35 C 、35D、 1 355、 C 、1 2V26、函数y = lg -1的图像关于(1 +兀丿 A 、x 轴对称B 、y 轴对称C 、原点对称若log /n 9 < log… 9 < 0 ,那么加满足的条件是(在(0,2)上为增函数的是(B 、y = log 2 Vx 2 -1D> y = log j (x 2-4x + 5)7212、已知 g (兀) = log/x+l| (d>0 且 gl)在(-1,0)上有 g (兀)>0,则 /(x) = a是( )A 、在(-。
课时 4 指数函数一 . 指数与指数幂的运算( 1)根式的观点①假如xna, a R, x R, n 1,且 nN ,那么 x 叫做 a 的 n 次方根. 当 n 是奇数时, a 的 n 次方根用符号 na 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号na 表示,负的 n 次方根用符号na表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当n 为奇数时, a 为随意实数;当 n 为偶数时, a.③根式的性质: (na )n a ;当 n 为奇数时, n a n a ;当 n 为偶数时, n a n | a |a (a 0) .a (a 0)( 2)分数指数幂的观点mna m (a①正数的正分数指数幂的意义是:a n 0, m,n N , 且 n 1) .0 的正分数指数幂等于0.②m(1m1 ) m( a正数的负分数指数幂的意义是:a n)n n (0, m, n N , 且 n1) .0 的负分数指aa数幂没存心义. 注意口诀: 底数取倒数,指数取相反数.( 3)分数指数幂的运算性质①a r a s a r s (a 0, r , s R)② (ar) sa rs (a 0, r , s R)③(ab)ra rb r (a0,b 0, rR)二 . 指数函数及其性质( 4)指数函数函数名称指数函数定义函数 ya x (a 0 且 a1) 叫做指数函数a 1a 1yy a xya xy图象y1y1(0,1)(0,1)OxOx定义域 R值域(0,+ ∞)过定点 图象过定点(0,1 ),即当 x=0 时, y=1.奇偶性非奇非偶单一性在 R 上是增函数在 R 上是减函数函数值的 y > 1(x > 0), y=1(x=0), 0< y < 1(x < 0)y > 1(x < 0), y=1(x=0), 0< y < 1(x > 0)变化状况a 变化对在第一象限内, a 越大图象越高,越凑近 y 轴; 在第一象限内, a 越小图象越高,越凑近 y 轴; 图象影响在第二象限内,a 越大图象越低,越凑近x 轴.在第二象限内,a 越小图象越低,越凑近x 轴.三 .例题剖析1.设 a 、 b 知足 0<a<b<1,以下不等式中正确的选项是 ( C)A.a a <a bB.b a <b bC.a a <b aD.b b <a b 分析: A 、B 不切合底数在 (0,1) 之间的单一性 ; C 、 D 指数同样 , 底小值小 . 应选 C. 2.若 0<a<1,则函数 y=a x 与 y=(a-1)x 2 的图象可能是 (D )分析: 当 0<a<1 时 ,y=a x 为减函数 ,a-1<0, 因此 y=(a-1)x2张口向下 , 应选 D.3.设指数函数 f(x)=a x (a>0 且 a ≠ 1),则以下等式中不正确的选项是 ( D )A.f(x+y)=f(x)f(y)f (x)B.f(x-y)=f ( y)C.f(nx)= [ f(x) ] nD.f [ (xy) n ] =[ f(x) ] n [ f(y) ] n (n ∈ N * )分析: 易知 A 、 B 、 C 都正确 .对于 D,f [(xy)n] =a (xy)n , 而[ f(x) ] n ·[f(y) ] n =(a x ) n ·(a y ) n =a nx+ny , 一般状况下 D 不建立 .11 34.设 a= ( 3) 3,b= ( 4)4,c= ( 3) 4,则 a 、b 、 c 的大小关系是 ( B )43 2A.c<a<b3分析: a= ( )B.c<b<aC.b<a<cD.b<c<a1 111(8133( 4)3 ( 4) 4=b, b=(4) 4)4(3) 4 =c.∴ a>b>c.3 332725.设 f(x)=4 x -2x+1,则 f -1 (0)=______1____________. 分析: 令 f -1 (0)=a, 则 f(a)=0 即有 4a -2 · 2a =0.2a · (2 a -2)=0, 而 2a >0,∴ 2a =2 得 a=1.6.函数 y=a x-3 +4(a>0 且 a ≠ 1)的反函数的图象恒过定点 ______(5,3)____________.分析: 因 y=a x 的图象恒过定点 (0,1), 向右平移 3 个单位 , 向上平移 4 个单位获得 y=a x-3 +4 的图象 , 易知恒过定点 (3,5).故其反函数过定点 (5,3).10 x 10 x.证明 f(x) 在 R 上是增函数 .7.已知函数 f(x)=x10 x10x1010x102x1,设 x 1<x 2∈ R,则f(x 1)-f(x2)=10x 1 1010x 1 10x 110x 210 x 2102 x 11 102 x 21 2(102 x 1102 x2).x 110x2 10x2 102 x1 1102 x21(102 x11)(102 x 2 1)∵ y=10 x是增函数 ,∴ 10 2x 1 10 2x 2 <0.而 10 2x 1 +1>0, 102 x 2 +1>0,故当 x <x 时 ,f(x)-f(x )<0,1212即 f(x 1)<f(x 2). 因此 f(x) 是增函数 .8.若定义运算 a b=b, ab,则函数 f(x)=3 x3-x 的值域为 ( A )a, a b,A.(0,1]B. [ 1,+∞ )C.(0,+ ∞ )D.(- ∞ ,+∞ )分析: 当 3x ≥3-x , 即 x ≥ 0 时 ,f(x)=3-x∈(0,1 ] ;x-x, 即 x<0 时 ,f(x)=3x∈ (0,1).3 x , x 0, 当 3<3∴ f(x)=x值域为 (0,1).3x ,0,9.函数 y=a x 与 y=-a -x (a>0,a ≠1) 的图象 ( C )A. 对于 x 轴对称B.对于 y 轴对称C.对于原点对称D.对于直线 y=-x 对称分析: 可利用函数图象的对称性来判断两图象的关系.10.当 x ∈[ -1,1]时 ,函数 f(x)=3 x-2 的值域为 _______[ -5,1 ] ___________.3分析: f(x) 在[ -1,1 ]上单一递加 .11.设有两个命题 :(1)对于 x 的不等式 x 2+2ax+4>0对全部 x ∈ R 恒建立 ;(2) 函数 f(x)=-(5-2a) x是减函数 .若命题 (1)和 (2)中有且仅有一个是真命题 ,则实数 a 的取值范围是 _______(- ∞ ,-2)__________.分析: (1) 为真命题=(2a) 2-16<0-2<a<2. (2)为真命题 5-2a>1 a<2.若 (1) 假 (2) 真 , 则 a ∈ (- ∞ ,-2]. 若 (1) 真 (2) 假, 则 a ∈ (-2,2)∩[ 2,+ ∞]=.故 a 的取值范围为 (- ∞ ,-2).12.求函数 y=4 -x -2-x +1,x ∈[ -3,2]的最大值和最小值 .解: 设 2-x=t, 由 x ∈[ -3,2 ]得 t ∈[ 1,8 ] , 于是 y=t 2-t+1=(t-1)2+3. 当 t= 1时 ,y3 .424有最小值 这时 x=1.当 t=8 时 ,y 有最大值57.这时 x=-3.2413.已知对于 x 的方程 2a2x-2-7a x-1 +3=0 有一个根是 2,求 a 的值和方程其他的根 . 解: ∵ 2 是方程 2a2x-2-9a x-1+4=0 的根 , 将 x=2 代入方程解得 a= 1或 a=4.2(1) 当 a= 1时 , 原方程化为 2· ( 1)2x-2-9(1) x-1 +4=0.①222x-1 2令 y=( 1) , 方程①变成 2y -9y+4=0,2解得 y 1=4,y 2= 1.∴ ( 1) x-1 =42x=-1,2( 1 ) x-1 = 1x=2.22(2) 当 a=4 时 , 原方程化为 2· 42x-2 -9 · 4x-1 +4=0. ②令 t=4 x-1 , 则方程②变成 2t 2-9t+4=0. 解得 t 1=4,t 2= 1.x-12=4x=2,∴44x-1 = 1x=- 1 .22故方程此外两根是当 a= 1时 ,x=-1;1 .2当 a=4 时 ,x=-214.函数 y= (1) 3 4xx 2的单一递加区间是 ( D )3A. [ 1,2]B.[ 2,3]C.(-∞ ,2]D.[ 2,+∞ )分析: 由于 y=3x2-4x+3 , 又 y=3t 单一递加 ,t=x 2-4x+3 在 x ∈[ 2,+ ∞ ) 上递加 , 故所求的递加区间为[ 2,+ ∞ ).15.已知 f(x)=3 x-b (2≤ x ≤ 4,b 为常数 ) 的图象经过点 (2,1), 则 F(x)=f 2(x)-2f(x) 的值域为 ( B )A. [ -1,+∞ )B. [ -1,63)C.[ 0,+∞ )D.(0,63 ]分析: 由 f(2)=1, 得 32-b =1,b=2,f(x)=3 x-2.∴ F (x)= [ f(x)-1 ]2-1=(3 x-2 -1) 2-1. 令 t=3 x-2 ,2 ≤x ≤4.2∴g(t)=(t-1) - 1,t ∈[ 1,9 ].2.1 指数函数练习1.以下各式中建立的一项A . ( n)71n 7 m 7B .12 ( 3)433m3C . 4 x 3y 3( x y) 4D .393321111 1 52.化简 (a 3 b 2 )( 3a 2 b 3 ) ( a 6 b 6 ) 的结果3D . 9a 2 A . 6aB . aC . 9a3.设指数函数 f ( x)a x ( a 0, a1) ,则以下等式中不正确的选项是f (x) A . f(x+y)=f(x) ·f(y)B . f ( x y )f ( y)C . f (nx)[ f ( x)]n (nQ )D . f ( xy) n [ f ( x)] n ·[f ( y)] n1 4.函数 y (x5) 0 ( x 2)2A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}()()()(n N )( )5.若指数函数 y a x 在 [- 1,1]上的最大值与最小值的差是1,则底数 a 等于 ()A .15 B .1 5 C .15D .5 122 226.当 a0 时,函数 y axb 和 yb ax 的图象只可能是()7.函数 f ( x)2 |x| 的值域是()A . (0,1]B . (0,1)C . (0, )D . R8.函数 f ( x)2 x 1, x 0,知足 f ( x)1的 x 的取值范围1x 2 , x()A . ( 1,1)B . ( 1, )C . { x | x 0或 x2}D . { x | x 1或 x1}9.函数 y(1) x 2x2得单一递加区间是2()A .[ 1,1]B . ( , 1]C .[2,)D .[ 1,2]2exe x210.已知 f ( x)()2 ,则以下正确的选项是A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.已知函数 f (x)的定义域是(1, 2),则函数 f (2 x ) 的定义域是.12.当 a >0 且 a ≠1 时,函数 f (x)=a x -2- 3 必过定点.三、解答题:13.求函数 y1的定义域 .x5 x 1114.若 a >0, b > 0,且 a+b=c ,求证: (1) 当r >1时, a r +b r < c r ; (2) 当r < 1时, a r +b r > c r .a x 1 15.已知函数 f ( x)(a >1) .a x1( 1)判断函数 f (x) 的奇偶性;( 2)证明 f (x)在 (-∞, +∞ )上是增函数 .xa16.函数 f(x) = a (a>0 ,且 a ≠1) 在区间 [1,2] 上的最大值比最小值大2,求 a 的值.参照答案一、 DCDDD AADDA二、 11. (0,1);12. (2,- 2) ;三、 13. 解:要使函数存心义一定:x 1 0x 1x0 x 0x 1∴ 定义域为 : x xR 且 x0, x 1a rrrb r此中a1,0b114. 解:ba,c rcccc.r >1 ,a rb ra b 1,r r r当因此+b< c ;时c c c crrrrr当 r < 1 时, aba b1, 因此 a +b >c .ccc c15. 解 :(1)是奇函数 .(2) 设x <x ,则 f (x 1 )ax11 ax21 。
指数函数专题指数函数及其性质知 识 梳 理要点一、指数函数的概念:函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R.要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23xy =⋅,12xy =,31x y =+等函数都不是指数函数.(2)为什么规定底数a 大于零且不等于1:① 如果0a =,则000x x ⎧>⎪⎨≤⎪⎩xx时,a 恒等于,时,a 无意义.② 如果1a =,则11x y ==是个常量,就没研究的必要了.(1)当底数大小不确定时,必须分“1a >”和“01a <<”两种情形讨论。
(2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。
当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。
当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。
(3)指数函数x y a =与1xy a ⎛⎫= ⎪⎝⎭的图象关于y 轴对称。
要点三、指数函数底数变化与图像分布规律 (1)① xy a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数112,3,(),()23x x x x y y y y ====的图像:要点四、指数式大小比较方法(1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法比较法有作差比较与作商比较两种,其原理分别为:①若0A B A B ->⇔>;0A B A B -<⇔<;0A B A B -=⇔=;②当两个式子均为正值的情况下,可用作商法,判断1A B >,或1AB<即可.辨 析 感 悟 对指数函数的理解(1)函数y =3·2x 是指数函数.(×) (2)y =⎝ ⎛⎭⎪⎫1a x是R 上的减函数.(×)(3)(2013·金华调研改编)已知函数f (x )=4+a x -1(a >0且a ≠1)的图象恒过定点P ,则点P 的坐标是(1,5).(√)【典型例题】类型一、指数函数的概念例1.函数2(33)x y a a a =-+是指数函数,求a 的值. 【解析】由2(33)x y a a a =-+是指数函数,可得2331,0,1,a a a a ⎧-+=⎨>≠⎩且解得12,01,a a a a ==⎧⎨>≠⎩或且,所以2a =.【总结升华】判断一个函数是否为指数函数:(1)切入点:利用指数函数的定义来判断;(2)关键点:一个函数是指数函数要求系数为1,底数是大于0且不等于1的常数,指数必须是自变量x .举一反三:【变式1】指出下列函数哪些是指数函数?(1)4x y =;(2)4y x =;(3)4x y =-;(4)(4)x y =-;(5)1(21)(1)2x y a a a =->≠且;(6)4x y -=.【答案】(1)(5)(6)【解析】(1)(5)(6)为指数函数.其中(6)4x y -==14x⎛⎫⎪⎝⎭,符合指数函数的定义,而(2)中底数x 不是常数,而4不是变数;(3)是-1与指数函数4x 的乘积;(4)中底数40-<,所以不是指数函数.类型二、函数的定义域、值域例2.求下列函数的定义域、值域.(1)313x x y =+;(2)y=4x -2x +1;【解析】(1)函数的定义域为R (∵对一切x ∈R ,3x ≠-1).∵ (13)1111313x x xy +-==-++,又∵ 3x >0, 1+3x >1, ∴ 10113x <<+, ∴ 11013x-<-<+, ∴ 101113x<-<+, ∴值域为(0,1). (2)定义域为R ,43)212(12)2(22+-=+-=x x x y ,∵ 2x >0, ∴ 212=x 即x=-1时,y 取最小值43,同时y 可以取一切大于43的实数,∴ 值域为[+∞,43).(3)要使函数有意义可得到不等式211309x --≥,即21233x --≥,又函数3x y =是增函数,所以212x -≥-,即12x ≥-,即1,2⎡⎫-+∞⎪⎢⎣⎭,值域是[)0,+∞.举一反三:【变式1】求下列函数的定义域: (1)2-12x y =(2)y =(3)y =0,1)y a a =>≠ 【答案】(1)R ;(2)(]-3∞,;(3)[)0,+∞;(4)a>1时,(]-0∞,;0<a<1时,[)0+∞,【解析】(1)R(2)要使原式有意义,需满足3-x ≥0,即3x ≤,即(]-3∞,.(3) 为使得原函数有意义,需满足2x -1≥0,即2x ≥1,故x ≥0,即[)0,+∞ (4) 为使得原函数有意义,需满足10x a -≥,即1x a ≤,所以a>1时,(]-0∞,;0<a<1时,[)0+∞,.类型三、指数函数的单调性及其应用例3.讨论函数221()3x xf x -⎛⎫= ⎪⎝⎭的单调性.解:∵函数()f x 的下义域为R ,令u=x 2-2x ,则1()3uf u ⎛⎫= ⎪⎝⎭.∵u=x 2―2x=(x ―1)2―1,在(―∞,1]上是减函数,1()3uf u ⎛⎫= ⎪⎝⎭在其定义域内是减函数,∴函数()f x 在(-∞,1]内为增函数.又1()3uf u ⎛⎫= ⎪⎝⎭在其定义域内为减函数,而u=x 2―2x=(x ―1)2―1在[1,+∞)上是增函数,∴函数()f x 在[1,+∞)上是减函数.举一反三:1.求函数2323x x y -+-=的单调区间.【答案】3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减. 14(0,3]【解析】[1]复合函数——分解为:u=-x 2+3x-2, y=3u ;[2]利用复合函数单调性判断方法求单调区间; [3]求值域. 设u=-x 2+3x-2, y=3u ,其中y=3u 为R 上的单调增函数,u=-x 2+3x-2在3(,]2x ∈-∞上单增,u=-x 2+3x-2在3[,)2x ∈+∞上单减,则2323x x y -+-=在3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减.【变式1】求函数2-2()(01)x x f x a a a =>≠其中,且的单调区间.【解析】当a>1时,外层函数y=a u 在()-∞+∞,上为增函数,内函数u=x 2-2x在区间(1)-∞,上为减函数,在区间[)1+∞,上为增函数,故函数2-2()(-1)x x f x a =∞在区间,上为减函数,在区间[)1+∞,上为增函数; 当0<a<1时,外层函数y=a u 在()-∞+∞,上为减函数,内函数u=x 2-2x 在区间(1)-∞,上为减函数,在区间[)1+∞,上为增函数,故函数2-2()xxf x a =在区间(1)-∞,上为增函数,在区间[)1,+∞上为减函数.例4.(2014年河南郑州月考)已知函数, 2()(3)2,2x a x f x a x x ⎧≥=⎨-+<⎩为R 上的增函数,则实数a 取值的范围是 .【思路点拨】由题意可得2130(3)22a a a a ⎧>⎪->⎨⎪≥-⋅+⎩,由此解得a 的范围.【答案】[2,3)【解析】由于函数, 2()(3)2,2x a x f x a x x ⎧≥=⎨-+<⎩为R 上的增函数,可得 2130(3)22a a a a ⎧>⎪->⎨⎪≥-⋅+⎩,解得2≤a <3,故答案为[2,3).例5.判断下列各数的大小关系:(1)1.8a与1.8a+1; (2)24-231(),3,()331(3)22.5,(2.5)0, 2.51()2(4)0,1)a a >≠【思路点拨】利用指数函数的性质去比较大小。
指数函数的概念定义: 叫做指数函数,其中是自变量,函数的定义域是.【例2π11a>10<a<1 图象性质①定义域,值域,值域②图象都过点②图象都过点③当x>0时,y;当x<0时,y③当x>0时,y;当x<0时,y④④对称性指数函数y=a x和y=èæøö1ax(a>0,且a≠1)的图象关于对称对称y=(3-1)x在R上是() A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c析规律 底数的变化对函数图象的影响 当指数函数底数大于1时,图象上升,且当底数越大,图象向上越靠近于y 轴,当底数大于0小于1时,图象下降,底数越小,图象向下越靠近于x 轴,简称x >0时,底大图象高.3.指数型函数模:设原有值为N ,平均增长率为p ,则经过x 次增长,该量增长到y ,则(2)指数型函数:形如y =k ·a x (k ÎR ,且k ≠0;a >0,且a ≠1)的函数称为指数型函数.的函数称为指数型函数.【例3】某乡镇现在人均一年占有粮食360 kg ,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x 年后若人均一年占有y kg 粮食,求y 关于x 的函数解析式.的函数解析式.点技巧 指数增长模型的计算公式 在实际问题中,经常会遇到指数增长模型:设基数为N ,平均增长率为p ,则对于经过时间x 后的总量y 可以用y =N (1+p )x来表示.这是非常有用的函数模型.4.利用待定系数法求指数函数的解析式已知函数模型求函数的解析式,一般采用待定系数法,即设出函数的解析式,然后利用已知条件,求出解析式中的未知参数,从而得出函数的解析式.知参数,从而得出函数的解析式.在指数函数的概念中,只有形如y =a x (a >0,且a ≠1)的函数才是指数函数,除此之外的函数都不是指数函数,所以设指数函数的解析式时,只能设成y =a x (a >0,且a ≠1)的形式,而不是其他形式.同时,指数函数的解析式中只含有一个常数a ,由此只需一个条件就可确定指数函数的解析式.例如:若指数函数f (x )的图象经过点(2,9),求f (x ).【例4-1】指数函数y =f (x )的图象经过点(π,e),则f (-π)=__________.【例4-2】已知指数函数f (x )的图象经过点12,16æö-ç÷èø,试求f (-1)和f (3).点技巧 关于a 的方程a m =n 的解法 方法一:可以先把n 化为以m 为指数的指数幂的形式n =k m ,即a m =k m ,则可得a =k .方法二:由a m =n 得到11()m mman =,即1ma n =,再利用指数幂的运算性质化简1mn .5.与指数函数有关的定义域指数函数常与一次函数、反比例函数、二次函数结合构成指数型复合函数.求定义域的方法如下 ①函数y =a f (x )(a >0,且a ≠1)的定义域与函数y =f (x )的定义域相同.的定义域相同. ②函数y =f (a x )的定义域与函数y =f (x )的定义域不一定相同.例如,函数f (x )=x 的定义域为[0,+∞),而函数f (x )=x a 的定义域则为R .求函数y =f (a x )的定义域时,可由函数f (x )的定义域与g (x )=a x 的等价性,建立关于x 的不等式,利用指数函数的相关性质求解.指数函数的相关性质求解.【例5-1】求下列函数的定义域:求下列函数的定义域:(1)12xy=-;(2)22312x xy--æö=ç÷èø.解:6.指数函数的图象及定点问题(1)与指数函数有关的函数图象过定点的问题指数函数y=a x(a>0,且a≠1)过定点(0,1),即对任意的a>0,且a≠1,都有a0=1.这是解决与指数函数有关的函数图象恒过定点问题的关键.图象恒过定点问题的关键.一般地,对于函数y=ka f(x)+b(k≠0),可令f(x)=0,解方程得x=m,则该函数的图象恒过定点(m,k+b).(2)指数函数的图象变换的问题的图象变换的问题【例6-1】若函数f(x)=2a x-1+3(a>0,且a≠1)的图象恒过定点P,则点P的坐标是__________.【例6-2】若函数y=a x+b-1(a>0,且a≠1)的图象经过第二、三、四象限,则一定有() A.0<a<1,且b>0 B.a>1,且b>0 C.0<a<1,且b<0 D.a>1,且b<0 7.幂的大小比较问题两个指数幂的大小的比较有以下几种情况:(1)底数相同,指数不同.比较同底数(是具体的数值)幂大小,构造指数函数,利用指数函数的单调性比较大小.要注意:明确所给的两个值是哪个指数函数的两个函数值;明确指数函数的底数与1的大小关系;最后根据指数函数的单调性判断大小.当底数中含有字母时要注意分底数大于0小于1和底数大于1两种情况讨论.两种情况讨论.(2)底数不同,指数相同.若幂式的底数不同而指数相同时,可以利用指数函数的图象解决.在同一平面直角坐标系内画出各个函数的图象,依据指数函数的图象随底数的变化规律,观察指数所取值对应的函数值即可.(3)底数不同,指数也不同.幂式的底数不同且指数也不同时,则需要引入中间量.这个中间量可以是1,其中一个大于1,另一个小于1;也可以是一个幂式,这个幂式可以以其中一个的底为底,以另一个的指数为指数,比如a c与b d,可以取a d为中介,前者比较用单调性,后者用图象.【例7-1】比较下列各题中两个值的大小:比较下列各题中两个值的大小:(1)1.857-æöç÷èø,2.557-æöç÷èø;(2)0.523-æöç÷èø,0.534-æöç÷èø;(3)0.70.8,0.80.7.分析:(1)中两个指数式的底数同、指数不同,可直接应用指数函数的单调性判断;(2)中两个指数式的底数不同、指数同,可构造函数,根据函数的图象观察;(3)中两个指数式的底数、指数均不同,因而要引入中间数进行比较,并结合函数的图象观察.【例7-2】试比较a1.3与a2.5(a>0,且a≠1)的大小.的大小.8.指数方程、指数不等式的求解问题根据指数函数的单调性,当a>0,且a≠1时,有:时,有:①a f(x)=a g(x)Ûf(x)=g(x);②当a>1时,a f(x)>a g(x)Ûf(x)>g(x);当0<a<1时,a f(x)>a g(x)Ûf(x)<g(x).注意:利用指数函数的单调性是解题的关键,根据所给的已知信息,构造合适的指数函数,为了便于解题,通常要尽可能地将含指数幂的式子进行统一底数.【例8-1】已知3x≥30.5,求实数x的取值范围;的取值范围;【例8-2】设23-2x<0.53x-4,则x的取值范围是__________.【例8-3】设y1=a3x+1,y2=a-2x,其中a>0,且a≠1,试确定x为何值时,有:(1)y1=y2;(2)y1>y2.点技巧指数不等式的求解技巧(1)形如a f(x)>a g(x)的不等式,借助于函数y=a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论;(2)形如a f(x)>b的不等式,注意将b转化为以a为底数的指数幂的形式,再借助于函数y=a x的单调性求解.10.与指数函数有关的函数的奇偶性综合问题判断与指数函数有关的函数的奇偶性步骤是:(1)求函数的定义域,当定义域关于原点不对称时,则此函数既不是奇函数也不是偶函数,当定义域关于原点对称时,判断f(-x)与f(x)或-f(x)是否相等;是否相等;(2)当f(-x)=f(x)时,此函数是偶函数;当f(-x)=-f(x)时,此函数是奇函数;时,此函数是奇函数;(3)当f(-x)=f(x)且f(-x)=-f(x)时,此函数既是奇函数又是偶函数;时,此函数既是奇函数又是偶函数;(4)当f(-x)≠f(x)且f(-x)≠-f(x)时,此函数既不是奇函数也不是偶函数.【例10】已知函数11 ()212xf x=+-.(1)求f(x)的定义域;的定义域; (2)讨论f(x)的奇偶性.的奇偶性.分析:(1)根据求函数定义域的方法求解;(2)利用函数奇偶性的定义来判断.检测题一、选择题1.下列各函数中,是指数函数的是() A.y=(-3)x B.y=-3x C.y=3x-1D.y=3x2.已知函数y =(a 2-3a +3)a x是指数函数,则a 的值为( ) A .1 B .2 C .1或2 D .任意值.任意值3.函数y =4-2x的定义域是( ) A .(0,2] B .(-∞,2] C .(2,+∞) D .[1,+∞) 4.(2012~2013广安中学月考试题)函数y =a x-2+2(a >0,且a ≠1)的图象必经过点( ) A .(0,1) B .(1,1) C .(2,2) D .(2,3) 5.已知a =0.80.7,b =0.80.9,c =1.20.8,则a 、b 、c 的大小关系是( ) A .a >b >c B .b >a >c C .c >b >a D .c >a >b6.函数y =a |x|(0<a <1)的图象是( ) 7.函数y =a x在[0,1]上的最大值与最小值的和为3,则a 等于( ) A.12 B .2 C .4 D.148.函数①y =3x ;②y =2x ;③y =(12)x;④y =(13)x.的图象对应正确的为() A .①a ②b ③c ④dB .①c ②d ③a ④bC .①c ②d ③b ④aD .①d ②c ③a ④b 二、填空题9.函数y =(19)x-1的定义域为________.10.指数函数y =f (x )的图象经过点(2,4),那么f (2)·f (4)=________ 11.(2012~2013重庆市南开中学期中试题)函数f (x )=2-|x |的值域是________.12.(2012~2013·大连高一检测)已知y =f (x )是奇函数,当x >0时,f (x )=4x,则f (-12)=________. 三、解答题13.已知f (x )=12(a x -a -x ),g (x )=12(a x +a -x),求证:[f (x )]2+[g (x )]2=g (2x ).14.分别把下列各题中的三个数按从小到大的顺序用不等号连接起来.a上的最大值比最小值大2,求1. [答案] D 2. [解析] ∵y =(a 2-3a +3)a x 是指数函数.∴îíìa 2-3a +3=1a >0且a ≠1∴a =2.2. [ [答案答案] B 3. [解析] ∵4-2x ≥0,2x≤4=22,∴x ≤2.2. [ [答案答案] B 4. [解析] 代入验证,当x =2时,y =a 2-2+2=1+2=3.3. [ [答案] D 5. [解析] ∵y =0.8x 是减函数,∴a =0.80.7>0.80.9=b ,且1>a >b .又c =1.20.8>1,∴c >a >b . [答案] D 6. [解析] y =îïíïìa x (x ≥0)èçæø÷ö1a x(x <0),∵0<a <1,∴在[0,+∞)上单减,在(-∞,0)上单增,且y ≤1,故选C. [点评] 可取a =12画图判断.画图判断.7. [解析] 当a >1时,y min =a 0=1;y max=a 1=a ,由1+a =3,所以a =2.2. [ [答案答案] B 当0<a <1时,y max =a 0=1,y min =a 1=a .由1+a =3,所以a =2矛盾,综上所述,有a =2. 8.8. [ [答案答案] B 9. [解析]y =(19)x -1有意义满足(19)x -1≥0,即(19)x ≥(19)0,∴x ≤0,定义域为(-∞,0]10. [解析] 由已知函数图象过(2,4),令y =a x,得a 2=4,∴a =2,∴f (2)·f (4)=22×24=64. [答案] 64 11. [解析] ∵|x |≥0,∴-|x |≤0,∴0<2-|x |≤1,∴函数y =2-|x |值域为(0,1].[答案] (0,1] 12. [解析] f (x )为奇函数,∴f (-12)=-f (12)=-412=-2.2. [ [答案答案] -2 13. [证明] f 2(x )+g 2(x )=14(a x -a -x )2+14(a x +a -x )2=14(2a 2x +2a -2x )=12(a 2x +a -2x )=g (2x )成立.14. [解析]15. [解析] 由f (x )>g (x )得a 3x -4>a 2x -2. 当a >1时,3x -4>2x -2,∴x >2; 当0<a <1时,3x -4<2x -2,∴x <2. ∴当a >1时,x 的范围是(2,+∞);当0<a <1时,x 的范围是(-∞,2).16. [解析] 当a >1,f (x )=a x在[1,2]上为增函数,由题意a 2-a =a 2,即a 2-3a 2=0,∵a >1,∴a =32. 当0<a <1时,f (x )=a x在[1,2]上为减函数.由题意a -a 2=a 2,即a 2-a 2=0,∵0<a <1,∴a =12. 综上所述,a =32或12. 。
+⎩ + 指数函数2.1.1 指数与指数幂的运算〔1〕根式的概念 ①如果 xn= a , a ∈ R , x ∈ R , n > 1,且 n ∈ N ,那么 x 叫做 a 的 n 次方根.当 n 是奇数时,a 的 n 次 方根用符号 n a 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号 n a 表示,负的 n 次方根用符号 - na表示;0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当 n 为奇数时, a 为任意实数;当 n 为偶数时, a ≥ 0 .nnn n⎧a (a ≥ 0)③根式的性质:( a ) = a ;当 n 为奇数时, a = a ;当 n 为偶数时,=| a |= ⎨-a .(a < 0)〔2〕分数指数幂的概念m①正数的正分数指数幂的意义是: a n= n a m(a > 0, m , n ∈ N , 且 n > 1) .0 的正分数指数幂等于 0.②- m1 m1正数的负分数指数幂的意义是: an= ( ) n = n ( )m (a > 0, m , n ∈ N + , 且 n > 1) .0 的负分数指a a数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 〔3〕分数指数幂的运算性质①a r ⋅ a s = a r +s (a > 0,r , s ∈ R )②(a r )s = a rs (a > 0, r , s ∈ R )③(ab )r = a r b r (a > 0, b > 0, r ∈ R )2.1.2 指数函数及其性质〔4〕指数函数 函数名称 指数函数定义函数 y = a(a > 0 且 a ≠ 1)叫做指数函数图象a > 10 < a < 1y = 1 yOy = ax(0, 1)xy = a xy = 1Oy( 0 , 1 )x定义域 R值域 〔0,+∞〕过定点 图象过定点〔0,1〕,即当 x=0 时,y=1.奇偶性 非奇非偶单调性在 R 上是增函数在 R 上是减函数函数值的变化情况y >1(x >0), y=1(x=0), 0<y <1(x <0)y >1(x <0), y=1(x=0), 0<y <1(x >0)a 变化对图象影响在第一象限内, a 越大图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴.在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越小图象越低,越靠近 x 轴.n a n39 1 + 5 1 ± 5 12.1 指数函数练习1.以下各式中成立的一项〔〕A . ( n )7 = n 7m 7mB . 12(-3)4 =C . 4x 3+ y 33(x + y )4D .=2 11 1 1 1 52.化简(a 3 b 2)(-3a 2 b 3) ÷ ( 3a 6b 6 )的结果〔〕A . 6aB . - aC . - 9aD . 9a23.设指数函数 f (x ) = a x(a > 0, a ≠ 1) ,那么以下等式中不正确的选项是〔 〕A .f (x +y )=f(x )·f (y )B . f 〔x - y 〕=f (x )f ( y )C . f (nx ) = [ f (x )]n(n ∈ Q )- 1D . f (xy )n= [ f (x )]n·[ f ( y )]n(n ∈ N + )4.函数 y = (x - 5)0+ (x - 2)2A .{x | x ≠ 5, x ≠ 2} C .{x | x > 5}〔〕B .{x | x > 2}D .{x | 2 < x < 5或x > 5}5.假设指数函数 y = a x在[-1,1]上的最大值与最小值的差是1,那么底数a 等于 〔〕A .B . 2 2C .D .2 26.当 a ≠ 0 时,函数 y = ax + b 和 y = b ax的图象只可能是〔〕7.函数 f (x ) = 2-|x |的值域是〔 〕A . (0,1]B . (0,1)⎧⎪2- x- 1, x ≤ 0 C . (0,+∞)D .R8.函数 f (x ) = ⎨ 1 ,满足 f (x ) > 1的 x 的取值范围⎪⎩x 2 , x > 0〔 〕A . (-1,1)B . (-1,+∞)C .{x | x > 0或x < -2}D .{x | x > 1或x < -1}9.函数 y = ( 1 ) 2- x 2 + x +2 得单调递增区间是〔 〕11A . [-1, ]2B . (-∞,-1]C . [2,+∞)D . [ 2,2]3 - 33 3- 1 + 5 5 ± 1⎩ x e x - e - x10. f (x ) =,那么以下正确的选项是 〔 〕2A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.函数 f (x )的定义域是〔1,2〕,那么函数 f (2 x) 的定义域是 .12.当 a >0 且 a ≠1 时,函数 f (x )=a x -2-3 必过定点 .三、解答题:13.求函数 y = 1的定义域.5 x -1 - 114.假设a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.函数 f (x ) =a x - 1 a x + 1(a >1).〔1〕判断函数f (x )的奇偶性;〔2〕证明f (x )在(-∞,+∞)上是增函数.16.函数 f(x)=a x (a>0,且 a ≠1)在区间[1,2]上的最大值比最小值大 a,求 a 的值. 2参考答案一、DCDDDAAD D A二、11.(0,1);12.(2,-2);三、13. 解:要使函数有意义必须:⎧x - 1 ≠ 0⎧x ≠ 1⎪x ⇒⎨ ≠ 0 ⎩ x - 1⎨x ≠ 0∴定义域为: {x x ∈ R 且x ≠ 0, x ≠ 1}⎪1 a +1 a +12 14. 解: a r + br⎛ a ⎫r⎛ b ⎫r,其中 0 < a < 1,0 < b < 1.= ⎪ c rc + ⎪c ⎝ ⎭ ⎝ ⎭ 当r >1时,⎛ a ⎫ r ⎛ b ⎫r a b ,所以a r+b r <c r ;⎪ + ⎪ < + = 1⎝ c ⎭ ⎝ c ⎭ c c当 r <1 时,⎛ a ⎫r⎛ b ⎫ra b,所以 a r +b r >c r . ⎪ + ⎪ > + = 1 ⎝ c ⎭ ⎝ c ⎭ c c15.解:(1)是奇函数.(2) x <x ,a x 1 -1 a x2 -1 。
指数函数1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为。
2。
指数函数函数性质:函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2。
对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,。
奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小。
指数函数习题一、选择题1.定义运算a⊗b=错误!,则函数f(x)=1⊗2x的图象大致为()2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是()A.(-1,+∞) B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(错误!-1)的定义域是B,若A⊆B,则正数a的取值范围( )A.a〉3 B.a≥3C.a〉 5 D.a≥错误!5.已知函数f(x)=错误!若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是()A.[错误!,3) B.(错误!,3)C.(2,3) D.(1,3)6.已知a〉0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<错误!,则实数a的取值范围是( )A.(0,错误!]∪[2,+∞) B.[错误!,1)∪(1,4]C.[错误!,1)∪(1,2] D.(0,错误!)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大错误!,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1〈x2)的长度为x2-x1。
课件•指数函数基本概念与性质•指数函数运算规则与技巧•指数函数在生活中的应用举例•指数函数与对数函数关系探讨目录•指数方程和不等式求解技巧•总结回顾与拓展延伸01指数函数基本概念与性质指数函数定义及图像特点指数函数定义形如y=a^x(a>0且a≠1)的函数称为指数函数。
指数函数图像特点当a>1时,图像上升;当0<a<1时,图像下降。
图像均经过点(0,1),且y轴为渐近线。
指数函数性质分析指数函数的值域为(0,+∞)。
当a>1时,指数函数在R上单调递增;当0<a<1时,指数函数在R上单调递减。
指数函数既不是奇函数也不是偶函数。
指数函数没有周期性。
值域单调性奇偶性周期性常见指数函数类型及其特点自然指数函数底数为e(约等于2.71828)的指数函数,记为y=e^x。
其图像上升速度最快,常用于描述自然增长或衰减现象。
幂指数函数形如y=x^n(n为实数)的函数,当n>0时图像上升,当n<0时图像下降。
特别地,当n=1时,幂指数函数退化为线性函数y=x。
对数指数函数底数为a(a>0且a≠1)的对数函数和指数函数的复合函数,记为y=log_a(a^x)=x。
其图像为一条直线,斜率为1,表示输入与输出之间呈线性关系。
复合指数函数由多个基本指数函数通过四则运算组合而成的复杂函数。
其性质取决于各基本函数的性质及组合方式。
02指数函数运算规则与技巧$a^m times a^n =a^{m+n}$,同底数幂相乘,底数不变,指数相加。
乘法法则除法法则幂的乘方法则$a^m div a^n =a^{m-n}$,同底数幂相除,底数不变,指数相减。
$(a^m)^n =a^{m times n}$,幂的乘方,底数不变,指数相乘。
030201同底数指数运算法则$a^m times b^m =(a times b)^m$,不同底数幂相乘,指数不变,底数相乘。
乘法法则$a^m div b^m =(a div b)^m$,不同底数幂相除,指数不变,底数相除。
第四章 指数函数与对数函数知识点一、指数及指数幂的运算 1.根式的概念a 的n 次方根的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈当n 为奇数时,正数的n 次方根为正数,负数的n 次方根是负数,当n 为偶数时,正数的n次方根有两个,这两个数互为相反数可以表示为 负数没有偶次方根,0的任何次方根都是0.n 叫做根指数,a 叫做被开方数. 2.n 次方根的性质:(1)当n a =;当n ,0,,0;a a a a a ≥⎧==⎨-<⎩(2)na =3.分数指数幂的意义:)0,,,1m na a m n N n =>∈>;()10,,,1m nm naa m n N n a-=>∈>要点诠释:0的正分数指数幂等于0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:()0,0,,a b r s Q >>∈(1)r s r s a a a += (2)()r srsa a = (3)()rr rab a b =知识点二、指数函数及其性质 1.指数函数概念一般地,函数()0,1x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数函数性质:1.对数的定义(1)若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.2.几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.3.常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 4.对数的运算性质如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈④log a NaN =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且知识点四:对数函数及其性质 1.对数函数定义一般地,函数()log 0,1a y x a a =>≠且叫做对数函数,其中x 是自变量,函数的定义域()0,+∞. 2.对数函数性质:1.函数零点的判定(1)利用函数零点存在性的判定定理如果函数()y f x =在一个区间[]a b ,上的图象不间断,并且在它的两个端点处的函数值异号,即()()0f a f b <,则这个函数在这个区间上,至少有一个零点,即存在一点()0x a b ∈,,使()00f x =,这个0x 也就是方程()0f x =的根.要点诠释:①满足上述条件,我们只能判定区间内有零点,但不能确定有几个.若函数在区间内单调,则只有一个;若不单调,则个数不确定.②若函数()f x 在区间[],a b 上有()()0f a f b ⋅>,()f x 在(,)a b 内也可能有零点,例如2()f x x =在[]1,1-上,2()23f x x x =--在区间[]2,4-上就是这样的.故()f x 在(),a b 内有零点,不一定有()()0f a f b ⋅<.③若函数()f x 在区间[],a b 上的图象不是连续不断的曲线,()f x 在(),a b 内也可能是有零点,例如函数1()1f x x=+在[]2,2-上就是这样的. (2)利用方程求解法求函数的零点时,先考虑解方程()0f x =,方程()0f x =无实根则函数无零点,方程()0f x =有实根则函数有零点.(3)利用数形结合法函数()()()F x f x g x =-的零点就是方程()()f x g x =的实数根,也就是函数()y f x =的图象与()y g x =的图象交点的横坐标.2.用二分法求函数零点的一般步骤: 已知函数()y f x =定义在区间D 上,求它在D 上的一个零点x 0的近似值x ,使它满足给定的精确度. 第一步:在D 内取一个闭区间[]00,a b D ⊆,使()0f a 与()0f b 异号,即()()000f a f b ⋅<,零点位于区间[]00,a b 中.第二步:取区间[]00,a b 的中点,则此中点对应的坐标为()()0000001122x a b a a b =+-=+. 计算()0f x 和()0f a ,并判断:①如果()00f x =,则0x 就是()f x 的零点,计算终止;②如果()()000f a f x ⋅<,则零点位于区间[]00,a x 中,令1010,a a b x ==;③如果()()000f a f x ⋅>,则零点位于区间[]00,x b 中,令1010,a x b b == 第三步:取区间[]11,a b 的中点,则此中点对应的坐标为()()1111111122x a b a a b =+-=+. 计算()1f x 和()1f a ,并判断:①如果()10f x =,则1x 就是()f x 的零点,计算终止;②如果()()110f a f x ⋅<,则零点位于区间[]11,a x 中,令2121,a a b x ==;③如果()()110f a f x ⋅>,则零点位于区间[]11,x b 中,令2121,a x b b ==;……继续实施上述步骤,直到区间[],n n a b ,函数的零点总位于区间[],n n a b 上,当n a 和n b 按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数()y f x =的近似零点,计算终止.这时函数()y f x =的近似零点满足给定的精确度.要点诠释:(1)第一步中要使:①区间长度尽量小;②()f a 、()f b 的值比较容易计算且()() <0f a f b .(2)根据函数的零点与相应方程的根的关系,求函数的零点和求相应方程的根式等价的.对于求方程()()f x g x =的根,可以构造函数()()()F x f x g x =-,函数()F x 的零点即为方程()()f x g x =的根. 知识点六:函数的实际应用求解函数应用题时一般按以下几步进行: 第一步:审题弄清题意,分清条件和结论,理顺数量关系,初步选择模型. 第二步:建模在细心阅读与深入理解题意的基础上,引进数学符号,将问题的非数学语言合理转化为数学语言,然后根据题意,列出数量关系,建立函数模型.这时,要注意函数的定义域应符合实际问题的要求.第三步:求模运用数学方法及函数知识进行推理、运算,求解数学模型,得出结果. 第四步:还原把数学结果转译成实际问题作出解答,对于解出的结果要代入原问题中进行检验、评判,使其符合实际背景.上述四步可概括为以下流程:实际问题(文字语言)⇒数学问题(数量关系与函数模型)⇒建模(数学语言)⇒求模(求解数学问题)⇒反馈(还原成实际问题的解答).类型一:指数、对数运算 例1.计算(1) 2221log log 12log 422-; (2)33lg 2lg 53lg 2lg5++; (3)222lg5lg8lg5lg 20lg 23+++;(4)lg0.7lg20172⎛⎫⋅ ⎪⎝⎭【思路点拨】运算时尽量把根式转化为分数指数幂,而小数也要化为分数为好. 【答案】(1)12-;(2)1;(3)3;(4)14。
A 基础练习2.1.2指数函数(1时) 1.下列函数是指数函数的是( ) A .y =-2xB .y =2x +1 C .y =2-x D .y =1x【解析】 y =2-x=⎝⎛⎭⎫12x,符合指数函数的定义,故选C.【答案】 C 2.函数y =(a -2)x 在R 上为增函数,则a 的取值范围是( )A .a>0且a ≠1B .a>3C .a<3D .2<a<3【解析】 由指数函数单调性知,底数大于1时为增函数,∴a -2>1,∴a>3,故选B. 【答案】 B 3.已知a =5-12,函数f(x)=a x ,若实数m 、n 满足f(m)>f(n),则m 、n 的大小关系为________.【解析】 ∵a =5-12∈(0,1), 故a m >a n ⇒m<n. 【答案】 m<n4.已知指数函数f(x)的图象过点(2,4),求f(-3)的值.【解析】 设指数函数f(x)=a x (a>0且a ≠1),由题意得a 2=4,∴a =2,∴f(x)=2x , ∴f(-3)=2-3=18.B 综合应用一、选择题(每小题5分,共20分) 1.函数y =a x -2+1(a>0,a ≠1)的图象必经过点( )A .(0,1)B .(1,1)C .(2,0)D .(2,2)【解析】 由于函数y =a x 经过定点(0,1),所以函数y =a x-2经过定点(2,1),于是函数y =a x -2+1经过定点(2,2).【答案】 D2.f(x)=⎝⎛⎭⎫12|x|,x ∈R ,那么f(x)是( ) A .奇函数且在(0,+∞)上是增函数 B .偶函数且在(0,+∞)上是增函数 C .奇函数且在(0,+∞)上是减函数 D .偶函数且在(0,+∞)上是减函数 【解析】因为函数f(x)= |x|= 图象如右图. 由图象可知答案显然是D. 【答案】 D3.下列四个函数中,值域为(0,+∞)的函数是( )A .y =21x B .y =2x -1C .y =2x +1D .y =⎝⎛⎭⎫122-x【解析】 在A 中,∵1x ≠0,∴21x≠1,即y =21x的值域为(0,1)∪(1,+∞).在B 中,2x -1≥0,∴y =2x -1的值域为[0,+∞). 在C中,∵2x >0,∴2x +1>1.∴y =2x +1的值域为(1,+∞). 在D 中,∵2-x ∈R ,∴y =⎝⎛⎭⎫122-x>0. ∴y =⎝⎛⎭⎫122-x 的值域为(0,+∞).故选D.【答案】 D 4.方程4x -1=116的解为( ) A .2 B .-2 C .-1 D .1 【解析】 ∵4x -1=116=4-2,∴x -1=-2,∴x =-1.故选C. 【答案】 C二、填空题(每小题5分,共10分) 5.函数y =a x -1的定义域是(-∞,0],则实数a 的取值范围为________.【解析】 由a x -1≥0,得a x ≥1=a 0,因为x ∈(-∞,0],由指数函数的性质知0<a<1.【答案】 (0,1)6.函数f(x)=⎝⎛⎭⎫13x-1,x ∈[-1,2]的值域为________.【解析】 函数y =⎝⎛⎭⎫13x 在区间[-1,2]上是减函数,所以⎝⎛⎭⎫132≤⎝⎛⎭⎫13x ≤⎝⎛⎭⎫13-1,即19≤⎝⎛⎭⎫13x ≤3, 于是19-1≤f(x)≤3-1,即-89≤f(x)≤2.【答案】 [-89,2]三、解答题(每小题10分,共20分) 7.已知函数f(x)=a x -2(x ≥0)的图象经过点⎝⎛⎭⎫4,19,其中a>0且a ≠1. (1)求a 的值;(2)求函数y =f(x)(x ≥0)的值域. 【解析】 (1)函数图象过点⎝⎛⎭⎫4,19, 所以a 4-2=19=⎝⎛⎭⎫132,∴a =13,(2)f(x)=⎝⎛⎭⎫13x -2(x ≥0), 由x ≥0,得x -2≥-2, ∴0<⎝⎛⎭⎫13x -2≤⎝⎛⎭⎫13-2=9,∴函数y =f(x)(x ≥0)的值域为(0,9]. 8.画出下列函数的图象,并说明它们是由函数f(x)=2x 的图象经过怎样的变换得到的.(1)y =2x -1;(2)y =2x +1;(3)y =2|x|; (4)y =-2x .【解析】 如图所示.y=2x-1的图象是由y=2x 的图象向右平移1个单位得到;y=2x+1的图象是由y=2x 的图象向上平移1个单位得到;y=2|x|的图象是由y=2x 的y 轴右边的图象和其关于y 轴对称的图象组成的;y=-2x 的图象与y=2x 的图象关于x 轴对称.9.(10分)函数f(x)=a x (a>0,且a ≠1)在区间[1,2]上的最大值比最小值大a2,求a的值.【解析】 (1)若a>1,则f(x)在[1,2]上递增,∴a 2-a =a 2,即a =32或a =0(舍去).(2)若0<a<1,则f(x)在[1,2]上递减, ∴a -a 2=a 2,即a =12或a =0(舍去),综上所述,所求a 的值为12或32.2.1.2指数函数(2时) A 基础练习1.已知集合M ={-1,1},N =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x +1<4,x ∈Z ,则M ∩N 等于( ) A .{-1,1} B .{-1} C .{0} D .{-1,0} 【解析】 因为N ={x|2-1<2x +1<22,x ∈Z },又函数y =2x 在R 上为增函数, ∴N ={x|-1<x +1<2,x ∈Z } ={x|-2<x<1,x ∈Z }={-1,0}. ∴M ∩N ={-1,1}∩{-1,0}={-1}.故选B.【答案】 B2.设14<⎝⎛⎭⎫14b <⎝⎛⎭⎫14a<1,那么( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a【解析】 由已知及函数y =⎝⎛⎭⎫14x是R 上的减函数, 得0<a<b<1.由y =a x (0<a<1)的单调性及a<b ,得a b <a a .由0<a<b<1知0<a b <1.∵⎝⎛⎭⎫a b a <⎝⎛⎭⎫a b 0=1.∴a a <b a.故选C. 也可采用特殊值法,如取a =13,b =12.【答案】 C3.已知函数f(x)=a -12x +1,若f(x)为奇函数,则a =________.【解析】 解法1:∵f(x)的定义域为R ,又∵f(x)为奇函数,∴f(0)=0,即a -120+1=0.∴a =12.解法2:∵f(x)为奇函数,∴f(-x)=-f(x),即a -12-x +1=12x +1-a ,解得a =12.【答案】 124.函数y =2-x 2+ax -1在区间(-∞,3)内递增,求a 的取值范围.【解析】 对u =-x 2+ax -1=-⎝⎛⎭⎫x -a 22+a 24-1,增区间为⎝⎛⎦⎤-∞,a 2,∴y 的增区间为⎝⎛⎦⎤-∞,a2,由题意知3≤a2,∴a ≥6. ∴a 的取值范围是a ≥6. B 综合应用一、选择题(每小题5分,共20分) 1.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2 【解析】 y 1=40.9=21.8,y 2=80.48=21.44,y 3=(12)-1.5=21.5,∵y =2x 在定义域内为增函数, 且1.8>1.5>1.44, ∴y 1>y 3>y 2. 【答案】 D2.若⎝⎛⎭⎫142a +1<⎝⎛⎭⎫143-2a,则实数a 的取值范围是( )A.⎝⎛⎭⎫12,+∞B.()1,+∞ C .(-∞,1) D.⎝⎛⎭⎫-∞,12 【解析】 函数y =⎝⎛⎭⎫14x在R 上为减函数,∴2a +1>3-2a ,∴a>12.故选A.【答案】 A3.设函数f(x)定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f(x)=3x -1,则有( )A .f(13)<f(32)<f(23)B .f(23)<f(32)<f(13)C .f(23)<f(13)<f(32)D .f(32)<f(23)<f(13)【解析】 因为f(x)的图象关于直线x =1对称,所以f(13)=f(53),f(23)=f(43),因为函数f(x)=3x -1在[1,+∞)上是增函数,所以f(53)>f(32)>f(43),即f(23)<f(32)<f(13).故选B.【答案】 B4.如果函数f(x)=(1-2a)x 在实数集R 上是减函数,那么实数a 的取值范围是( )A .(0,12)B .(12,+∞)C .(-∞,12)D .(-12,12)【解析】 根据指数函数的概念及性质求解.由已知得,实数a 应满足⎩⎪⎨⎪⎧1-2a>01-2a<1,解得⎩⎪⎨⎪⎧a<12a>0,即a ∈(0,12).故选A.【答案】 A二、填空题(每小题5分,共10分) 5.设a>0,f(x)=e x a +ae x (e>1),是R 上的偶函数,则a =________.【解析】 依题意,对一切x ∈R ,都有f(x)=f(-x),∴e x a +a e x =1ae x +ae x , ∴(a -1a )(e x -1e x )=0.∴a -1a =0,即a 2=1.又a>0,∴a =1. 【答案】 16.下列空格中填“>、<或=”. (1)1.52.5________1.53.2,(2)0.5-1.2________0.5-1.5.【解析】 (1)考察指数函数y =1.5x . 因为1.5>1,所以y =1.5x 在R 上是单调增函数.又因为2.5<3.2,所以1.52.5<1.53.2. (2)考察指数函数y =0.5x .因为0<0.5<1,所以y =0.5x 在R 上是单调减函数.又因为-1.2>-1.5,所以0.5-1.2<0.5-1.5.【答案】 <,<三、解答题(每小题10分,共20分) 7.根据下列条件确定实数x 的取值范围:a<⎝⎛⎭⎫1a 1-2x(a>0且a ≠1).【解析】 原不等式可以化为a 2x -1>a 12,因为函数y =a x (a>0且a ≠1)当底数a 大于1时在R 上是增函数;当底数a 大于0小于1时在R 上是减函数,所以当a>1时,由2x -1>12,解得x>34;当0<a<1时,由2x -1<12,解得x<34.综上可知:当a>1时,x>34;当0<a<1时,x<34.8.已知a>0且a ≠1,讨论f(x)=a -x 2+3x +2的单调性.【解析】 设u =-x 2+3x +2=-⎝⎛⎭⎫x -322+174, 则当x ≥32时,u 是减函数,当x ≤32时,u 是增函数.又当a>1时,y =a u 是增函数,当0<a<1时,y =a u 是减函数,所以当a>1时,原函数f(x)=a -x 2+3x +2在⎣⎡⎭⎫32,+∞上是减函数,在⎝⎛⎦⎤-∞,32上是增函数.当0<a<1时,原函数f(x)=a -x 2+3x +2在⎣⎡⎭⎫32,+∞上是增函数,在⎝⎛⎦⎤-∞,32上是减函数.9.(10分)已知函数f(x)=3x +3-x . (1)判断函数的奇偶性;(2)求函数的单调增区间,并证明.【解析】 (1)f(-x)=3-x +3-(-x)=3-x+3x =f(x)且x ∈R ,∴函数f(x)=3x +3-x是偶函数.(2)由(1)知,函数的单调区间为(-∞,0]及[0,+∞),且[0,+∞)是单调增区间.现证明如下:设0≤x 1<x 2,则f(x 1)-f(x 2)=3x 1+3-x 1-3x 2-2-x 2=3x 1-3x 2+13x 1-13x 2=3x 1-3x 2+3x 2-3x 13x 13x 2=(3x 2-3x 1)·1-3x 1+x 23x 1+x 2.∵0≤x 1<x 2,∴3x 2>3x 1,3x 1+x 2>1, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), ∴函数在[0,+∞)上单调递增, 即函数的单调增区间为[0,+∞).。
第四章基本初等函数章末总结【要点归纳】一、指数与指数运算1.根式的概念2.两个重要公式(1)na n=⎩⎪⎨⎪⎧a,n =2k-1k∈Z,|a|,n=2k k∈Z.(2)(na)n=a (a必须使na有意义).3.分数指数幂的意义(1)a mn=na m(a>0,m、n∈N*,n>1);(2)a-mn=1amn=1na m(a>0,m、n∈N*,n>1).4.有理数指数幂的运算性质(1)a r·a s=a r+s(a>0,r,s∈Q);(2)(a r)s=a rs(a>0,r,s∈Q);(3)(ab)r=a r b r(a>0,b>0,r∈Q).二、指数函数及其性质1.指数函数的概念:函数y=a x(a>0且a≠1)叫做指数函数,其中指数x是自变量,函数的定义域是R,a是底数.说明:形如y=ka x,y=a x+k(k∈R且k≠0,a>0且a≠1)的函数叫做指数型函数.2.指数函数的图象和性质三、对数与对数运算1.对数的概念一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.由此可得对数式与指数式的互化:a x =N ⇔log a N =x .2.对数的性质对于a >0,a ≠1,有下列结论:(1) 负数和零没有对数;log a 1=0,log a a =1. (2) 对数恒等式a log a N =N (N >0). 3.对数的换底公式换底公式:log a b =log c blog c a(a >0,且a ≠1;c >0,且c ≠1;b >0).四、对数函数及其性质1.对数函数的概念函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).2.对数函数的图象和性质五、幂函数的图像特征及性质:1.幂函数在第一象限内的图像,在经过点(1,1)且平行于y轴的直线的右侧,按幂指数由小到大的关系幂函数的图像从下到上分布.2.当α>0时,图像过点(1,1),(0,0)且在第一象限随x的增大而上升,函数在区间[0,+∞)上是单调增函数.3.当α<0时,幂函数的图像,过点(1,1),且在第一象限随x的增大而下降,函数在区间(0,+∞)上是单调减函数,且向右无限接近x轴,向上无限接近y轴.4.当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.【考点整合】【考点一】指数、对数的运算【典型例题1】(2022•全国高三专题练)(1)计算:1294⎛⎫-⎪⎝⎭(﹣9.6)0﹣22327283--⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭;(2)已知1122a a-+=3,求22112a aa a--++++的值.【解析】(1)原式32=-1﹣233393242⎛⎫⨯- ⎪⎝⎭⎛⎫+=-⎪⎝⎭149839436-+=,(2)∵1122a a-+=3,∴a+a﹣1=(1122a a-+)2﹣2=7,∴a2+a﹣2=(a+a﹣1)2﹣2=47,∴原式4714816 7293+===+.【答案】(1)8336;(2)163.【归纳总结】1.指数的运算(1)要注意化简的顺序,一般负指数先转化为正指数,根式先化为分数指数幂.(2)若出现分式,则要注意分子、分母因式分解,以达到约分的目的.(3)进行指数运算时,需要注意根式的两个重要结论以及运算性质的灵活应用.2.对数的运算(1)要注意公式应用过程中范围的变化前后要等价.(2)要注意对数的三个运算法则及对数恒等式、换底公式的灵活应用.(3)底数相同的对数式化简时常用方法:①“拆”:将积(商)的对数拆成同底的对数的和(差);②“收”:将同底的两个对数的和(差)收成积(商)的对数.【考点二】函数图像与性质【典型例题2】方程a-x=log a x (a>0且a≠1)的实数解的个数为()A.0B.1C.2D.3【解析】本例可用数形结合法画出y=a-x与y=log a x的图象,观察交点个数,要注意对a分a>1与0<a<1两种情况讨论.当a>1时,在同一坐标系中画出y1=log a x的图象和y2=a-x的图象如图(1),由图象知两函数图象只有一个交点;同理,当0<a<1时,由图象(2)知,两图象也只有一个交点.因此,不论何种情况,方程只有一个实数解.【答案】 B【归纳总结】1.指数函数、对数函数及幂函数性质的对比(1)指数函数与对数函数的图像与性质都与底数a 的取值密切相关,而幂函数的图像与性质与指数α密切相关.底数相同的指数函数、对数函数互为反函数,其单调性相同.(2)指数函数图像过定点(0,1),对数函数图像过定点(1,0),幂函数图像过定点(1,1),并且在指数α>0时过(0,0),(1,1).2.含有对数式的函数最值的求法含有对数式的函数最值问题,首先考虑函数的定义域,在函数定义域的制约之下,利用换元法将问题转化为一个函数在一个区间上的最值问题.【考点三】 利用函数的性质对数的大小比较【典型例题3】 (1)(2021·德州模拟)已知a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则( ) A .a <b <c B .c <b <a C .c <a <bD .b <c <a(2)设0.12a =,0.212b -⎛⎫= ⎪⎝⎭,2log 0.3c =,则( )A .a b c >>B .a c b >>C .b c a >>D .b a c >>【解析】 (1)因为y =⎝⎛⎭⎫25x 在R 上为减函数,35>25,所以b <c .又因为y =x 25在(0,+∞)上为增函数,35>25,所以a >c ,所以b <c <a .故选D.(2)由题意得:0.20.010.2221221a b -⎛⎫= ⎪⎝⎭=>=>=,22log 0.3log 10c =<=,b ac ∴>>,故选:D【答案】 (1)D (2)D 【归纳总结】1.数(式)的大小比较及常用的方法比较两数(式)或几个数(式)大小问题是本章的一个重要题型,主要考查指数函数、对数函数、幂函数图像与性质的应用.常用的方法有单调性法、图像法、中间量法、作差法、作商法等.2.数的大小比较常用的技巧(1)当需要比较大小的两个实数均是指数幂或对数式时,可将其看成某个指数函数、对数函数的函数值,然后利用该函数的单调性比较.(2)比较多个数的大小时,先利用“0”和“1”作为分界点,即把它们分为“小于0”“大于等于0小于等于1”“大于1”三部分,然后再在各部分内利用函数的性质比较大小.【考点四】 换元法在指数函数、对数函数中的应用【典型例题4】 已知函数f(x)=m·4x +12x -m(m ∈R).(1)若函数f (x )有零点,求实数m 的取值范围;(2)若对任意的x ∈[-1,0],都有0≤f (x )≤1,求实数m 的取值范围.【解析】 (1)由函数f (x )有零点得:关于x 的方程m ·4x -m ·2x +1=0(m ∈R )有解. 令t =2x ,则t >0,于是有,关于t 的方程mt 2-mt +1=0有正根.设g (t )=mt 2-mt +1,则函数g (t )的图象恒过点(0,1)且对称轴为t =12.当m <0时,g (t )的图象开口向下,故g (t )=0恰有一正数解. 当m =0时,g (t )=1≠0,不合题意.当m >0时,g (t )的图象开口向上,故g (t )=0有正数解的条件是g ⎝⎛⎭⎫12=1-m4≤0. 解得m ≥4.综上可知,实数m 的取值范围是(-∞,0)∪[4,+∞). (2)由“当x ∈[-1,0]时,都有0≤f (x )≤1”得: 0≤m ·4x +12x-m ≤1,x ∈[-1,0],∵2x >0,故上式变形为:0≤m ·(4x -2x )+1≤2x . 当x =0时,不等式简化为0≤1≤1,此时实数m ∈R . 当x ∈[-1,0)时,有1-2x >0. ∴4x -2x =2x (2x -1)<0, ∴12x ≤m ≤12x -4x,x ∈[-1,0), ∵当x ∈[-1,0)时,1<12x ≤2,12x -4x =12x (1-2x )≥4[2x +(1-2x )]2=4.当且仅当x =-1时取等号, ∴2≤m ≤4.综上可知,实数m 的取值范围是[2,4].【答案】 (1) (-∞,0)∪[4,+∞) (2) [2,4]【考点五】 分类讨论思想【典型例题5】 (2022•北京高三专题练)若不等式2log 0a x x -<在10,2⎛⎫⎪⎝⎭内恒成立,则a 的取值范围是( )A .1116a ≤< B .1116a << C .1016a <≤D .1016a <<【解析】 当1a >时,由1(0,)2x ∈,可得log 0a x <,则log 0a x ->, 又由20x >,此时不等式2log 0a x x -<不成立,不合题意; 当01a <<时,函数log a y x =在1(0,)2上单调递减, 此时函数log a y x =-在1(0,)2上单调递增,又由2y x =在1(0,)2上单调递增,要使得不等式2log 0a x x -<在1(0,)2内恒成立, 可得211()log 022a -≤,解得1116a ≤<. 故选:A. 【答案】 A【归纳总结】 分类讨论思想在指数函数和对数函数中的应用 (1)原理:底数大于1时,指数函数与对数函数均是增函数; 底数大于0小于1时,指数函数与对数函数均是减函数. (2)步骤:①确定底数的大小;②根据底数的大小,依据单调性及定义域列出不等式(组); ③解所列出的不等式(组)求得参数的范围.【考点六】 函数与方程的思想【典型例题6】(2022•湖南·长沙一中高三阶段练习)已知m 为常数,函数()2,0,()21ln ,0x x f x g x mx x x x +⎧≤⎪==++⎨⎪>⎩,若函数()()y f x g x =-恰有四个零点,则实数m 的值可以是( )A .2-B .1-C .31e D .21e 【解析】 由题意,函数()2,0,()21ln ,0x x f x g x mx x x x +⎧≤⎪==++⎨⎪>⎩,当0x =时,可得()22,(2)2f g ==,此时0x =是函数的一个零点; 当0x ≠时,令()()0f x g x -=转化为()m h x =,其中()1,01ln 2,01ln 2,1x x x h x x x x x x ⎧-<⎪+⎪-⎪=-<≤⎨⎪-⎪≥⎪⎩,要是使得()m h x =有三个零点, 只需y m =和()y h x =的图象有三个不同的交点, 作出函数()y h x =的图象,如图所示, 结合图象,可得当1e m -<<-或31m e =. 结合选项,实数m 的值可以是2-和31e.故选:AC.【答案】 AC 【归纳总结】 1.函数与方程的关系(1)函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题.(2)方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解.(3)通过函数与方程的互相转化,达到解决问题的目的.2.应用函数思想的几种常见题型(1)遇到变量,构造函数关系解题.(2)有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析.(3)含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系.。
第5讲 指数与指数函数, [同学用书P31])1.根式(1)根式的概念①若x n =a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,x =±n a ,当n 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,n >1).②n a n =⎩⎪⎨⎪⎧a ,n 为奇数,|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a m n=na m (a >0,m ,n ∈N *,且n >1);②负分数指数幂:a -mn =1a m n =1n a m (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质①a r a s =a r +s (a >0,r ,s ∈Q ); ②(a r )s =a rs (a >0,r ,s ∈Q ); ③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质y =a x a >10<a <1图象定义域 R 值域 (0,+∞) 性质过定点(0,1)当x >0时,y >1; 当x <0时,0<y <1 当x >0时,0<y <1; 当x <0时,y >1 在R 上是增函数在R 上是减函数1.辨明三个易误点(1)指数幂的运算简洁消灭的问题是误用指数幂的运算法则,或在运算变换中方法不当,不留意运算的先后挨次等.(2)指数函数y =a x (a >0,a ≠1)的图象和性质与a 的取值有关,要特殊留意区分a >1或0<a <1. (3)在解形如a 2x +b ·a x +c =0或a 2x +b ·a x +c ≥0(≤0)的指数方程或不等式时,常借助换元法解决,但应留意换元后“新元”的范围.2.指数函数图象画法的三个关键点画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a .1.教材习题改编 化简[(-2)6]12-(-1)0的结果为() A .-9 B .7 C .-10 D .9 [答案] B2.教材习题改编 设x +x -1=3,则x 2+x -2的值为( ) A .9 B .7 C .5 D .3 B [解析] 由于x +x -1=3.所以(x +x -1)2=9,即x 2+x -2+2=9,所以x 2+x -2=7.3.函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( ) A .y =1-x B .y =|x -2|C .y =2x-1 D .y =log 2(2x ) A [解析] 由f (x )=a x -1(a >0,a ≠1)的图象恒过点(1,1),又0=1-1,知(1,1)不在y =1-x 的图象上.4.教材习题改编 若a >1且a 3x +1>a -2x ,则x 的取值范围为________.[解析] 由于a >1,所以y =a x 为增函数,又a 3x +1>a -2x ,所以3x +1>-2x ,即x >-15.[答案] ⎝⎛⎭⎫-15,+∞ 5.若指数函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________. [解析] 由题意知0<a 2-1<1,即1<a 2<2, 得-2<a <-1或1<a < 2. [答案] (-2,-1)∪(1,2)指数幂的运算[同学用书P32][典例引领]化简下列各式:(1)⎝⎛⎭⎫2350+2-2·⎝⎛⎭⎫214-12-(0.01)0.5; (2)56a 13·b -2·⎝⎛⎭⎫-3a -12b -1÷()4a 23·b-312. 【解】 (1)原式=1+14×⎝⎛⎭⎫4912-⎝⎛⎭⎫110012=1+14×23-110=1+16-110=1615.(2)原式=-52a -16b -3÷⎝⎛⎭⎫4a 23·b -312=-54a -16b -3÷⎝ ⎛⎭⎪⎫a 13b -32=-54a -12·b -32=-54·1ab 3=-5ab 4ab 2.指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答. [留意] 运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一.化简下列各式:(1)(0.027)23+⎝⎛⎭⎫27125-13-⎝⎛⎭⎫2790.5; (2)⎝⎛⎭⎫14-12·(4ab -1)3(0.1)-1·(a 3·b -3)12.[解] (1)原式=0.32+⎝⎛⎭⎫1252713- 259=9100+53-53=9100. (2)原式=2(4ab -1)3210a 32b -32=16a 32b -3210a 32b -32=85. 指数函数的图象及应用[同学用书P32][典例引领](1)函数f (x )=a x -b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0(2)若方程|3x -1|=k 有一解,则k 的取值范围为________.【解析】 (1)由f (x )=a x -b 的图象可以观看出函数f (x )=a x -b 在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0.(2)函数y =|3x -1|的图象是由函数y =3x 的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k =0或k ≥1时,直线y =k 与函数y =|3x -1|的图象有唯一的交点, 所以方程有一解.【答案】 (1)D (2){0}∪[1,+∞)若将本例(2)变为函数y =|3x-1|在(-∞,k ]上单调递减,则k 的取值范围如何?[解] 由本例(2)作出的函数y =|3x -1|的图象知,其在(-∞,0]上单调递减,所以k ∈(-∞,0].指数函数的图象及应用(1)与指数函数有关的函数图象的争辩,往往利用相应指数函数的图象,通过平移、对称、翻折变换得到其图象.(2)一些指数型方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解. [通关练习]1.函数f (x )=1-e |x |的图象大致是( )A [解析] 将函数解析式与图象对比分析,由于函数f (x )=1-e |x |是偶函数,且值域是(-∞,0],只有A 满足上述两共性质.2.若关于x 的方程|a x -1|=2a (a >0,且a ≠1)有两个不等实根,则a 的取值范围是________.[解析] 方程|a x -1|=2a (a >0,且a ≠1)有两个不等实根转化为函数y =|a x -1|与y =2a 有两个交点. (1)当0<a <1时,如图①,所以0<2a <1,即0<a <12;(2)当a >1时,如图②,而y =2a >1不符合要求.所以0<a <12.[答案] ⎝⎛⎭⎫0,12 指数函数的性质及应用(高频考点)[同学用书P33]指数函数的性质主要是其单调性,特殊受到高考命题专家的青睐,常以选择题、填空题的形式消灭. 高考对指数函数的性质的考查主要有以下四个命题角度: (1)比较指数幂的大小;(2)解简洁的指数方程或不等式; (3)争辩指数型函数的性质;(4)求解指数型函数中参数的取值范围. [典例引领](1)(2022·高考全国卷丙)已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b(2)(2021·福州模拟)已知实数a ≠1,函数f (x )=⎩⎪⎨⎪⎧4x ,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.(3)若偶函数f (x )满足f (x )=2x -4(x ≥0),则不等式f (x -2)>0的解集为________.【解析】 (1)由于a =243=1613,b =425=1615,c =2513,且幂函数y =x 13在R 上单调递增,指数函数y =16x在R 上单调递增,所以b <a <c .(2)当a <1时,41-a =21,所以a =12;当a >1时,代入不成立. (3)f (x )为偶函数,当x <0时,f (x )=f (-x )=2-x -4.所以f (x )=⎩⎪⎨⎪⎧2x -4,x ≥0,2-x -4,x <0,当f (x -2)>0时,有⎩⎪⎨⎪⎧x -2≥0,2x -2-4>0或⎩⎪⎨⎪⎧x -2<0,2-x +2-4>0,解得x >4或x <0.所以不等式的解集为{x |x >4或x <0}.【答案】 (1)A (2)12 (3){x |x >4或x <0}有关指数函数性质的问题类型及解题思路(1)比较指数幂大小问题,常利用指数函数的单调性及中间值(0或1).(2)求解简洁的指数不等式问题,应利用指数函数的单调性,要特殊留意底数a 的取值范围,并在必要时进行分类争辩.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析推断,最终将问题归结为内层函数相关的问题加以解决.[留意] 在争辩指数型函数单调性时,当底数与“1”的大小关系不明确时,要分类争辩. [题点通关]角度一 比较指数幂的大小1.设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A .a <b <c B .a <c <b C .b <a <c D .b <c <a C [解析] 由于指数函数y =0.6x 在(-∞,+∞)上为减函数, 所以0.60.6>0.61.5,即a >b ,又0<0.60.6<1,1.50.6>1,所以a <c ,故选C. 角度二 解简洁的指数方程或不等式2.(2021·高考江苏卷)不等式2x 2-x <4的解集为________.[解析] 由于2x2-x <4,所以2x2-x <22,所以x 2-x <2,即x 2-x -2<0,所以-1<x <2. [答案] {x |-1<x <2}(或(-1,2)) 角度三 争辩指数型函数的性质3.(2021·太原模拟)函数y =2x -2-x 是( ) A .奇函数,在区间(0,+∞)上单调递增 B .奇函数,在区间(0,+∞)上单调递减 C .偶函数,在区间(-∞,0)上单调递增 D .偶函数,在区间(-∞,0)上单调递减A [解析] 令f (x )=2x -2-x ,则f (-x )=2-x -2x =-f (x ),所以函数f (x )是奇函数,排解C 、D.又函数y =-2-x ,y =2x 均是R 上的增函数,故y =2x -2-x 在R 上为增函数.角度四 求解指数型函数中参数的取值范围4.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.[解析] 当a >1时,函数f (x )=a x +b 在[-1,0]上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0无解.当0<a <1时,函数f (x )=a x +b 在[-1,0]上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.[答案] -32,[同学用书P34])——利用换元法求解指数型函数的值域问题函数f (x )=⎝⎛⎭⎫14x-⎝⎛⎭⎫12x+1在x ∈[-3,2]上的值域是________.【解析】 由于x ∈[-3,2],若令t =⎝⎛⎭⎫12x ,则t ∈⎣⎡⎦⎤14,8.y =t 2-t +1=⎝⎛⎭⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57.所以函数f (x )的值域为⎣⎡⎦⎤34,57.【答案】 ⎣⎡⎦⎤34,57 (1)此题利用了换元法,把函数f (x )转化为y =t 2-t +1,其中t ∈⎣⎡⎦⎤14,8,将问题转化为求二次函数在闭区间上的最值(值域)问题,从而削减了运算量.(2)对于同时含有a x 与a 2x (log a x 与log 2a x )(a >0且a ≠1)的函数、方程、不等式问题,通常令t =a x(t =log a x )进行换元巧解,但肯定要留意新元的范围.已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )在x ∈[-3,0]上的值域; (2)若关于x 的方程f (x )=0有解,求a 的取值范围. [解] (1)当a =1时,f (x )=2·4x -2x -1=2(2x )2-2x -1, 令t =2x ,x ∈[-3,0],则t ∈⎣⎡⎦⎤18,1. 故y =2t 2-t -1=2⎝⎛⎭⎫t -142-98,t ∈⎣⎡⎦⎤18,1,故值域为⎣⎡⎦⎤-98,0.(2)关于x 的方程2a (2x )2-2x -1=0有解,等价于方程2am 2-m -1=0在(0,+∞)上有解. 记g (m )=2am 2-m -1, 当a =0时,解为m =-1<0,不成立. 当a <0时,开口向下, 对称轴m =14a <0,过点(0,-1),不成立,当a >0时,开口向上,对称轴m =14a>0,过点(0,-1)必有一个根为正, 所以a >0.综上所述,a 的取值范围是(0,+∞)., [同学用书P243(独立成册)])1.化简(a 23·b -1)-12·a -12·b136a ·b 5(a >0,b >0)的结果是( )A .aB .abC .a 2bD .1aD 解析] 原式=a -13b 12·a -12b 13a 16b56=a -13-12-16·b 12+13-56=1a . 2.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( ) A .[9,81] B .[3,9] C .[1,9] D .[1,+∞)C [解析] 由f (x )过定点(2,1)可知b =2,由于f (x )=3x -2在[2,4]上是增函数,所以f (x )min =f (2)=1,f (x )max =f (4)=9,可知C 正确.3.函数y =a x -1a(a >0,a ≠1)的图象可能是( )D [解析] 当a >1时函数单调递增,且函数图象过点⎝⎛⎭⎫0,1-1a ,由于0<1-1a<1,故A ,B 均不正确;当0<a <1时,函数单调递减,且函数图象恒过点⎝⎛⎭⎫0,1-1a ,由于1-1a<0,所以选D. 4.(2021·德州模拟)已知a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则( ) A .a <b <c B .c <b <a C .c <a <b D .b <c <aD [解析] 由于y =⎝⎛⎭⎫25x 为减函数,所以b <c ,又由于y =x 25在(0,+∞)上为增函数,所以a >c ,所以b <c <a ,故选D.5.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)C [解析] 当a <0时,不等式f (a )<1可化为⎝⎛⎭⎫12a -7<1,即⎝⎛⎭⎫12a <8,即⎝⎛⎭⎫12a <⎝⎛⎭⎫12-3,由于0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1, 所以0≤a <1.故a 的取值范围是(-3,1).6.若函数f (x )=a |2x -4|(a >0,a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]B [解析] 由f (1)=19得a 2=19,所以a =13或a =-13(舍去),即f (x )=⎝⎛⎭⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减,故选B.7.若函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a =________.[解析] 当a >1时,f (x )=a x -1在[0,2]上为增函数, 则a 2-1=2,所以a =±3,又由于a >1,所以a = 3. 当0<a <1时,f (x )=a x -1在[0,2]上为减函数, 又由于f (0)=0≠2,所以0<a <1不成立. 综上可知,a = 3. [答案]38.已知函数f (x )=e x -e -x e x +e -x ,若f (a )=-12,则f (-a )=________.[解析] 由于f (x )=e x -e -x e x +e -x,f (a )=-12,所以e a -e -a e a +e -a=-12.所以f (-a )=e -a -e a e -a +e a =-e a -e -ae a +e -a=-⎝⎛⎭⎫-12=12. [答案] 129.(2021·济宁月考)已知函数f (x )=(a -2)a x (a >0,且a ≠1),若对任意x 1,x 2∈R ,f (x 1)-f (x 2)x 1-x 2>0,则a 的取值范围是________.[解析] 当0<a <1时,a -2<0,y =a x 单调递减,所以f (x )单调递增;当1<a <2时,a -2<0,y =a x 单调递增,所以f (x )单调递减;当a =2时,f (x )=0;当a >2时,a -2>0,y =a x 单调递增,所以f (x )单调递增.又由题意知f (x )单调递增,故a 的取值范围是(0,1)∪(2,+∞).[答案] (0,1)∪(2,+∞)10.(2021·安徽江淮十校第一次联考)已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |,e |x -2|},则f (x )的最小值为________.[解析] 由于f (x )=max{e |x |,e |x -2|}=⎩⎨⎧e x ,x ≥1,e 2-x ,x <1.当x ≥1时,f (x )≥e ,且当x =1时,取得最小值e ; 当x <1时,f (x )>e. 故f (x )的最小值为f (1)=e.[答案] e11.已知函数f (x )=b ·a x (其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24).若不等式⎝⎛⎭⎫1a x+⎝⎛⎭⎫1b x-m ≥0在x ∈(-∞,1]上恒成立,求实数m 的取值范围.[解] 把A (1,6),B (3,24)代入f (x )=b ·a x,得⎩⎪⎨⎪⎧6=ab ,24=b ·a 3,结合a >0,且a ≠1,解得⎩⎪⎨⎪⎧a =2,b =3.所以f (x )=3·2x .要使⎝⎛⎭⎫12x +⎝⎛⎭⎫13x ≥m 在x ∈(-∞,1]上恒成立,只需保证函数y =⎝⎛⎭⎫12x +⎝⎛⎭⎫13x 在(-∞,1]上的最小值不小于m 即可.由于函数y =⎝⎛⎭⎫12x+⎝⎛⎭⎫13x在(-∞,1]上为减函数,所以当x =1时,y =⎝⎛⎭⎫12x +⎝⎛⎭⎫13x 有最小值56.所以只需m ≤56即可.即m 的取值范围为⎝⎛⎦⎤-∞,56.12.已知实数a ,b 满足等式⎝⎛⎭⎫12a=⎝⎛⎭⎫13b,下列五个关系式: ①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b . 其中不行能成立的关系式有( )A .1个B .2个C .3个D .4个B [解析] 函数y 1=⎝⎛⎭⎫12x与y 2=⎝⎛⎭⎫13x的图象如图所示.由⎝⎛⎭⎫12a =⎝⎛⎭⎫13b得,a <b <0或0<b <a 或a =b =0. 故①②⑤可能成立,③④不行能成立.13.已知函数f (x )=⎝⎛⎭⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.[解] (1)当a =-1时,f (x )=⎝⎛⎭⎫13-x 2-4x +3,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝⎛⎭⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞), 单调递减区间是(-∞,-2). (2)令g (x )=ax 2-4x +3,f (x )=⎝⎛⎭⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎨⎧a >0,3a -4a =-1,解得a =1,即当f (x )有最大值3时,a 的值为1.14.已知定义在R 上的函数f (x )=2x -12|x |,(1)若f (x )=32,求x 的值;(2)若2tf (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. [解] (1)当x <0时,f (x )=0,无解;当x ≥0时,f (x )=2x -12x ,由2x -12x =32,得2·22x -3·2x -2=0,将上式看成关于2x 的一元二次方程,解得2x =2或2x =-12,由于2x >0,所以x =1.(2)当t ∈[1,2]时,2t ⎝⎛⎭⎫22t -122t +m ⎝⎛⎭⎫2t -12t ≥0, 即m (22t -1)≥-(24t -1),由于22t -1>0, 所以m ≥-(22t +1),由于t∈[1,2],所以-(22t+1)∈[-17,-5],故实数m的取值范围是[-5,+∞).。
第1页共6页
指数函数的概念及其性质
一、单选题(共11道,每道9分)
1.若函数满足,则的值为( )
A.B.
C.D.
答案:C
解题思路:
试题难度:三颗星知识点:指数函数的解析式及运算
2.若函数是指数函数,则的值为( )
A.2 B.
C.D.-2
答案:B
解题思路:
第2页共6页
试题难度:三颗星知识点:指数函数的解析式及运算
3.函数的定义域是( )
A.(-∞,2] B.["0,2"]
C.(-∞,2) D.(0,2]
答案:A
解题思路:
试题难度:三颗星知识点:指数函数的定义域
4.函数的值域是( )
A.B.
C.D.
答案:C
解题思路:
第3页共6页
试题难度:三颗星知识点:指数函数的值域
5.若,则函数的值域是( )
A.B.
C.D.
答案:B
解题思路:
试题难度:三颗星知识点:指数函数的值域
6.若函数的图象恒过定点(1,2),则b的值
第4页共6页
为( )
A.0 B.1
C.2 D.3
答案:C
解题思路:
试题难度:三颗星知识点:指数函数的图象与性质
7.不论a是何值,函数恒过一定点,这个定点坐标是( )
A.B.
C.D.
答案:C
解题思路:
试题难度:三颗星知识点:指数函数的图象与性质
8.若函数的图象在第一、三、四象限,则有
第5页共6页
( )
A.,B.,
C.,D.,
答案:D
解题思路:
试题难度:三颗星知识点:指数函数的图象与性质
9.函数在上是( )
A.单调递减无最小值 B.单调递减有最小值
C.单调递增无最大值 D.单调递增有最大值
答案:A
解题思路:
第6页共6页
试题难度:三颗星知识点:指数函数单调性的应用
10.函数在上的最小值为( )
A.-1 B.0
C.2 D.10
答案:C
解题思路:
试题难度:三颗星知识点:指数函数单调性的应用
11.已知函数,,若有,则b的取值范围是
( )
A.B.
C.D.
答案:B
解题思路:
试题难度:三颗星知识点:指数函数综合题