C51矩阵键盘的检测
- 格式:ppt
- 大小:226.50 KB
- 文档页数:20
C51矩阵键盘的检测要求:扫描矩阵键盘,并将对应按键的值显示在LED上方法一(传统检测):#include<reg52.h>#define uint unsigned int#define uchar unsigned charsbit dula=P2^6;sbit wela=P2^7;//sbit key1=P3^4;uchar code table[]={//共阳极LED数码管显示数字0~F0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e};uchar num,temp,num1;void delay(uint z){uint x,y;for(x=z;x>0;x--)for(y=110;y>0;y--);}uchar keyscan();void display(uchar aa);void main(){while(1){display(keyscan());}}void display(uchar aa){/*先送数,后选通,延时以后,将所有端口都不选通,这样,拖影就消失了*/ dula=1;P0=table[aa-1];dula=0;wela=1;P0=0x01;wela=0;delay(5);wela=1;P0=0x00;wela=0;}uchar keyscan(){P3=0xfe;temp=P3;temp=temp&0xf0;while(temp!=0xf0){delay(5);temp=P3;temp=temp&0xf0;while(temp!=0xf0){temp=P3;switch(temp){case0xee:num=1;break;case0xde:num=2;break;case0xbe:num=3;break;case0x7e:num=4;break;}while(temp!=0xf0){temp=P3;temp=temp&0xf0;}}}P3=0xfd;temp=P3;temp=temp&0xf0;while(temp!=0xf0){delay(5);temp=P3;temp=temp&0xf0;while(temp!=0xf0){temp=P3;switch(temp){case0xed:num=5;break;case0xdd:num=6;break;case0xbd:num=7;break;case0x7d:num=8;break;}while(temp!=0xf0){temp=P3;temp=temp&0xf0;}}}P3=0xfb;temp=P3;temp=temp&0xf0;while(temp!=0xf0){delay(5);temp=P3;temp=temp&0xf0;while(temp!=0xf0){temp=P3;switch(temp){case0xeb:num=9;break;case0xdb:num=10;break;case0xbb:num=11;break;case0x7b:num=12;break;}while(temp!=0xf0){temp=P3;temp=temp&0xf0;}}}P3=0xf7;temp=P3;temp=temp&0xf0;while(temp!=0xf0){delay(5);temp=P3;temp=temp&0xf0;while(temp!=0xf0){temp=P3;switch(temp){case0xe7:num=13;break;case0xd7:num=14;break;case0xb7:num=15;break;case0x77:num=16;break;}while(temp!=0xf0){temp=P3;temp=temp&0xf0;}}}return num;}方法二(技巧检测):#include<reg51.h>#include<intrins.h>sbit dula=P2^6;sbit wela=P2^7;#define uint unsigned int#define uchar unsigned char//uchar code table[10]={0x03,0x9f,0x25,0x0d,0x99,0x49,0x41,0x1f,0x01, 0x09};uchar code table[]={//共阳极LED数码管显示数字0~F0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e};uchar Key_Value;void Delay_1ms(uint x){uchar i,j;for(i=0;i<x;i++)for(j=0;j<=148;j++);}void Getkey(){uchar i,j,temp,num,Key_Temp1,Key_Temp2,Buffer[4]={0xfe,0xfd,0xfb, 0xf7};for(j=0;j<4;j++)//循环四次{P3=Buffer[j];_nop_();_nop_();temp=0x10;for(i=0;i<4;i++)//循环四次{if(!(P3&temp)){num=i+j*4;//返回取得的按键值}temp<<=1;//换左边一位}}P3=0xff;Key_Temp1=num;//读入按键if(Key_Temp1<16)//有键按下{Delay_1ms(5);//延时消抖Key_Temp2=num;//再读一次if(Key_Temp1==Key_Temp2)//两次相等Key_Value=Key_Temp1;//就确认下来}}void Display(uchar k){dula=1;P0=table[k];dula=0;wela=1;P0=0x01;wela=0;Delay_1ms(5);wela=1;P0=0x00;wela=0;}void Main(void){while(1){Getkey();Display(Key_Value);//显示键值}}。
51键盘矩阵扫描程序假设按下的是S1键进行如下检测(4*4键盘)先在P3口输出p3 00001111低四位行会有变化cord_h =00001111&00001110 =00001110if !=00001111延时0.1uscord_h=00001110&00001111=00001110if !=00001111P3再输出11111110P3 =00001110|11110000=11111110输出高四位cord_l=P3&0xf0 //此时P3口就是(实际值)输入值01111110 而不是上面的11111110cord_l=01111110&11110000=01110000cord_h+cord_l=00001110+01110000=01111110=0x7e //此编码即为S1的编码#include <reg52.h>//包含头文件#define uchar unsigned char#define uint unsigned intunsigned char consttable[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};//0-Fuchar keyscan(void);void delay(uint i);void main(){uchar key;P2=0x00;//1数码管亮按相应的按键,会显示按键上的字符while(1){key=keyscan();//调用键盘扫描,switch(key){case 0x7e:P0=table[0];break;//0 按下相应的键显示相对应的码值case 0x7d:P0=table[1];break;//1case 0x7b:P0=table[2];break;//2case 0x77:P0=table[3];break;//3case 0xbe:P0=table[4];break;//4case 0xbd:P0=table[5];break;//5case 0xbb:P0=table[6];break;//6case 0xb7:P0=table[7];break;//7case 0xde:P0=table[8];break;//8case 0xdd:P0=table[9];break;//9case 0xdb:P0=table[10];break;//acase 0xd7:P0=table[11];break;//bcase 0xee:P0=table[12];break;//ccase 0xed:P0=table[13];break;//dcase 0xeb:P0=table[14];break;//ecase 0xe7:P0=table[15];break;//f}}}uchar keyscan(void)//键盘扫描函数,使用行列反转扫描法{uchar cord_h,cord_l;//行列值P3=0x0f; //行线输出全为0cord_h=P3&0x0f; //读入列线值if(cord_h!=0x0f) //先检测有无按键按下{delay(100); //去抖cord_h=P3&0x0f; //读入列线值if(cord_h!=0x0f){P3=cord_h|0xf0; //输出当前列线值cord_l=P3&0xf0; //读入行线值return(cord_h+cord_l);//键盘最后组合码值}}return(0xff); //返回该值}void delay(uint i)//延时函数{while(i--);}。
实验6 矩阵键盘的检测一、实验目的1、掌握七段数码管显示的软件译码方法;2、掌握矩阵键盘的使用。
二、实验内容矩阵键盘来控制数码管显示:实验板上电时,数码管不显示,顺序按下4*4矩阵键盘后,在数码管上依次显示0-F,6个数码管同时静态显示即可。
三、实验方法和手段多媒体教学、演示、讲练结合、软件仿真、实物焊接四、实验条件实验指导书、计算机、Proteus软件、Keil C51软件、耗材、电烙铁五、实验学时2学时六、实验步骤1、Proteus设计电路原理图(1)按照图6-1,在Proteus软件中绘制好电路原理图。
图6-1 电路原理图说明:矩阵键盘行线接P3口低4位(第一行P3.0),列线接P3口高4位(第一列接P3.4)。
(2)电路原理图中所需要的元件见表6-1。
表6-1 元件列表元件名称型号数量Proteus中的名称单片机芯片AT89C51 1个AT89C51 晶振12MHz 1个CRYSTAL电容22PF 2个CAP电解电容22uF/16V 1个CAP-ELEC电阻1K 1个RES排阻1K 1个RESPACK_8 六位一体共阴极数码管1个7SEG-MPX6_CC 锁存芯片74HC573 2个74HC573按键开关16个BUTTON 2、编程控制在Keil软件中进行程序编制,完成目标:顺序按下4*4矩阵键盘后,6个数码管同时静态依次显示0-F。
将下面的参考程序补充完整,也可自行编写新程序。
参考程序代码如下:3、仿真调试将生成的HEX文件加载到Proteus中,进行软件仿真,查看效果。
4、实物调试(1)程序烧制(2)使用焊接成功的电路板,通电调试,查看效果。
七、思考题1、如果采用双数码管显示按键值(0-15),应如何修改程序代码?2、如果行线接P3口低4位,列线接P2口低4位,程序代码如何修改?。
51单⽚机矩阵键盘⾏扫描————————————————————————————————————————————分类:按结构原理分:触点式开关按键⽆触点开关按键接⼊⽅式独⽴式按键矩阵式键盘————————————————————————————————————————————矩阵式键盘识别⽅法(⾏扫描法)检测列线的状态:列线Y4~Y7置⾼电平,⾏线Y0~Y3置低电平。
只要有⼀列的电平为低,则表⽰键盘该列有⼀个或多个按键被按下。
若所有列线全为⾼电平,则键盘中⽆按键按下。
判断闭合按键所在的位置:⾏线置⾼电平,列线置低电平。
检测⾏线的状态。
举例:当按下第⼀⾏第⼀列的按键时⾏扫描,⾏线为低电平,列线为⾼电平,得到 1110 0000列扫描,⾏线为⾼电平,列线为低电平,得到 0000 1110将得到的结果进⾏或运算,得到 1110 1110,对应第⼀⾏第⼀列,⼗六进制为0xEE按键表⾏列bin hex111110 11100xEE121101 11100xDE131011 11100xBE140111 11100x7E211110 11010xED221101 11010xDD231011 11010xBD240111 11010x7D311110 10110xEB321101 10110xDB331011 10110xBB340111 10110x7B411110 01110xE7421101 01110xD7431011 01110xB7440111 01110x77————————————————————————————————————————————矩阵式键盘应⽤实例实现结果:通过4*4矩阵键盘对应数码管显⽰0~F设计思路:当检测到按键被按下时,将此时⾏扫描的结果存⼊临时变量,再进⾏列扫描,得到的结果和临时变量进⾏或运算。
通过数组存放按键和数码管编码,⾏列扫描得到结果后遍历数组,找到对应的编码位置并显⽰数码管编码实现代码:1 #include <reg52.h>2 typedef unsigned char uchar;3 typedef unsigned int uint;4 uchar code KEY_TABLE[] =5 {60xEE, 0xDE, 0xBE, 0x7E,70xED, 0xDD, 0xBD, 0x7D,80xEB, 0xDB, 0xBB, 0x7B,90xE7, 0xD7, 0xB7, 0x7710 };11 uchar code TABLE[] =12 {130x3F, 0x06, 0x5B, 0x4F,140x66, 0x6D, 0x7D, 0x07,150x7F, 0x6F, 0x77, 0x7C,160x39, 0x5E, 0x79, 0x71,17 };18void Delay(uchar m)19 {20 --m;21 }22void main()23 {24 uchar temp, key, i;25while(1)26 {27 P3 = 0xF0;28if (P3 != 0xF0)29 {30 Delay(2000);31if (P3 != 0xF0)32 {33 temp = P3;34 P3 = 0x0F;35 key = temp | P3;36for (i = 0; i < 16; ++i)37if (key == KEY_TABLE[i])38break;39 P2 = TABLE[i];40 }41 }42 }43 }。
ORG 0000HLJMP MAINORG 0100HMAIN: ACALL KEYSCAN ;调用子函数MOV A,30H ;从30H单元取相应的数值MOV DPTR,#TABLEMOVC A,@A+DPTRMOV P2,AACALL DELAY20MSSJMP MAINMOV P1,#0FH ;线反转法MOV A,P1ANL A,#0FHMOV B,AMOV P1,#0F0HMOV A,P1ANL A,#0F0HORL A,BMOV 30H,ACJNE A,#0FFH, MASKVIB ;有键按下转去抖动RETMASKVIB: ACALL DELAY20MSMOV P1,#0FH ;再次检测MOV A,P1ANL A,#0FHMOV B,AMOV P1,#0F0HMOV A,P1ANL A,#0F0HORL A,BCJNE A,30H, QUITKEY;比较两次扫描键值RELEASE: MOV P1,#0FFH ;释放检测MOV A,P1CJNE A,#0FFH, RELEASE ;等待释放KEYPRO: MOV B,30H ;键值处理程序MOV DPTR,#KEYV ALUEMOV R7,#0FFHKEY1: INC R7MOV A,R7MOVC A,@A+DPTRCJNE A,B,KEY2MOV A, R7MOV 30H,A;键码保存SETB 20H ;键值有效标志位RETKEY2: CJNE A,#00H,KEY1 ;扫描键值结束标志QUITKEY: RET ;键扫描无效退出DELAY20MS: ;延时20MS子程序,使用40,41,42单元MOV 40H,#20 ;NEXT1: MOV 41H,#20NEXT2: MOV 42H,#248DJNZ 42H,$DJNZ 41H,NEXT2DJNZ 40H,NEXT1RETKEYV ALUE: DB 77H,7BH,7DH,7EH ;键码表DB 0B7H,0BBH,0BDH,0BEHDB 0D7H,0DBH,0DDH,0DEHDB 0E7H,0EBH,0EDH,0EEHDB 00HTABLE: DB 0C0H,0F9H,0A4H,0B0H ;共阳数码管编码表DB 99H,92H,82H,0F8HDB 80H,90H,88H,83HDB 0C6H,0A1H,86H,8EHEND矩阵键盘扫描子程序,使用P1口。
实验四单片机矩阵键盘检测和液晶仿真实验(4学时)一、实验任务利用51单片机实现4X4矩阵键盘和LCD1602液晶显示人机交互系统,编程实现:(1)按键扫描(1、2、……9、A、B、C、D、E、F)和LCD1602显示按键的键号,格式为:KEYNUM+按键号;(2)LCD1602的第一行显示加1功能,初始数字为980,显示位置自己确定,每次按下某一个按键,数字加1,范围为15---20;二、实验目的1、掌握仿真软件Proteus和单片机联调的方法;2、掌握矩阵键盘扫描检测的原理,并且编程实现键盘按键的检测;3、掌握LCD1602液晶显示的原理,并且编程实现LCD1602的显示功能;4、掌握利用单片机实现键盘检测和液晶显示的功能组合,并掌握独立编程控制的能力。
三、实验设备电脑、Proteus软件、Keil软件四、实验原理(一)矩阵键盘扫描检测原理按照按键结构原理可分为两类,一类是触点式开关按键,如机械式开关、导电橡胶式开关等;另一类是无触点开关按键,如电气式按键、磁感应按键等。
在单片机应用系统中,通过按键实现控制功能和数据输入是非常普遍的。
在所需按键数量不多时,系统常采用独立式按键。
独立式按键是指每个按键单独占有一根I/O口线,且其工作状态不会影响其他I/O口线的工作状态。
这种按键的电路配置灵活,软件结构简单。
不过在实际应用中,由于不同的系统对按键的要求不同,因此,对按键程序的设计要考虑全面,以便更好地完成按键所设定的功能。
在按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵形式,如图4.1所示。
在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。
这样一个端口(如P1口)就可以构成4×4=16个按键,比直接将端口线用于键盘多出了一倍,而且线数越多,区别越明显,比如再多加一条线就可以构成20键的键盘,而直接用端口线则只能多出1键(共9键)。
由此可见,在需要的键数比较多时,采用矩阵法来做键盘是合理的。
#include <reg51.h>#include <intrins.h>#define uchar unsigned char#define uint unsigned intuchar dis_buf; //显示缓存uchar temp;uchar key; //键顺序吗void delay0(uchar x); //x*0.14MS#define delayNOP(); {_nop_();_nop_();_nop_();_nop_();};// 此表为LED 的字模0 1 2 3 4 5 6 7 89 a b c d e funsigned char code LED7Code[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x77,0x7C,0x39,0x5E,0x79,0x71};/*************************************************************//* *//* 延时子程序*//* *//*************************************************************/void delay(uchar x){ uchar j;while((x--)!=0){ for(j=0;j<125;j++){;}}}/*************************************************************//* *//* 键扫描子程序(4*4 的矩阵) P2.4 P2.5 P2.6 P2.7为行*//* P2.0 P2.1 P2.2 P2.3为列*//* *//*************************************************************/void keyscan(void){ temp = 0;P2=0xF0; //高四位输入行为高电平列为低电平delay(1);temp=P2; //读P2口temp=temp&0xF0; //屏蔽低四位temp=~((temp>>4)|0xF0);if(temp==1) // p2.4 被拉低key=0;else if(temp==2) // p2.5 被拉低key=1;else if(temp==4) // p2.6 被拉低key=2;else if(temp==8) // p2.7 被拉低key=3;elsekey=16;P2=0x0F; //低四位输入列为高电平行为低电平delay(1);temp=P2; //读P2口temp=temp&0x0F;temp=~(temp|0xF0);if(temp==1) // p2.0 被拉低key=key+0;else if(temp==2) // p2.1 被拉低key=key+4;else if(temp==4) // p2.2 被拉低key=key+8;else if(temp==8) // p2.3 被拉低key=key+12;elsekey=16;dis_buf = key; //键值入显示缓存//dis_buf = dis_buf & 0x0f;}/*************************************************************/ /* */ /*判断键是否按下*/ /* */ /*************************************************************/void keydown(void){P2=0xF0;if(P2!=0xF0) //判断按键是否按下如果按钮按下会拉低P2其中的一个端口{keyscan(); //调用按键扫描程序}}/*************************************************************//* *//* 主程序*//* *//*************************************************************/main(){P0=0xFF; //关段码P1=0x10; //开位码delay(10); //延时while(1){keydown(); //调用按键判断检测程序P0 = LED7Code[dis_buf]; //显示按键的数值}}/************************************************************/。
实验三矩阵键盘识别实验
一、实验目的
掌握单片机I/O口的输入检测的方法、矩阵按键的识别方法、键盘消抖等。
学会实时程序的调试技巧。
二、实验原理
我们在手动按键的时候,由于机械抖动或是其它一些非人为的因素很有可能会造成误识别,一般手动按下一次键然后接着释放,按键两片金属膜接触的时间大约为50ms 左右,在按下瞬间到稳定的时间为5-10ms,在松开的瞬间到稳定的时间也为5-10ms,如果我们在首次检测到键被按下后延时10ms 左右再去检测,这时如果是干扰信号将不会被检测到,如果确实是有键被按下,则可确认,以上为按键识别去抖动的原理。
三、实验内容
实验板上电时,数码管不显示,顺序按下矩阵键盘后,在数码管上依次显示0到F,6个数码管同时静态显示即可。
下图中按键s6-s218条线分别联接p3口相连,p3.0~p3.3控制1~4行,p3.4~p3.7控制1~4列。
图1 实验板键盘电路原理图
四、实验步骤
1、按实验要求在Keil中创建项目,编辑、编译程序。
2、将编译生成的目标码文件(后缀为.Hex)传入实验板中。
3、在实验板上运行程序,观察实验运行结果并记录。
C51单片机矩阵键盘扫描去抖程序最近有一个C51的项目,用的是新华龙的C51 F020单片机。
项目中要实现4*5的矩阵键盘。
矩阵电路图如下如示其中,四条列线接在F020的P2~P5口线上,5条行线接在P5口线上(F020的P5口是不同于普通C51的扩展接口,不能位寻址)。
同时4条列线接在一四输入与非门(74LS20)上,门输出接F020的外中断1,这样,任何一键按下,都会产生中断,通知程序进行键盘扫描。
托一个新手给写了键盘的扫描程序,基本功能都能实现,但对于键盘的去抖处理总是做不好,表现是或者不能去抖,或者按键响应过慢,或者采集到错误键值。
看来新手对于矩阵键盘扫描原理掌握较好(网上资料多),但对于键盘去抖的知识却有所欠缺,基本都是按照书上说的延时一段时间再采集键值,实际应用中,这样的处理是远远不够的,过于简单。
实际去抖处理应该这样进行更合理一些,即连续采集键值,当采集到的键值在一段时间内是相同的,即认为按键状态已稳定,此键值为真实键值。
另外,按键释放时,也会有抖动,导致误采键值,因此在键释放时,也应进行去抖处理,处理方法同时是连续一段时间采集到无键按下状态,才认为按键被释放。
根据这个方法,我重写了新手的程序,实际应用中表现极好。
现将程序公布如下,供新手参考。
Key.h文件内容#ifndef __key_H__#define __key_H__#define NULL_KEY 0x0000#define S1 0x3801#define S2 0x3401#define S3 0x3802#define S4 0x3402#define S5 0x3804#define S6 0x3404#define S7 0x3808#define S8 0x3408#define S9 0x3810#define S10 0x3410#define S11 0x2C01#define S12 0x1C01#define S13 0x2C02#define S14 0x1C02#define S15 0x2C04#define S16 0x1C04#define S17 0x2C08#define S18 0x1C08#define S19 0x2C10#define S20 0x1C10#define KEY_DELAY 20extern unsigned int Key_Value;extern void Init_Key();extern void Scan_Key();extern bit Key_Pressed;extern bit Key_Released;extern unsigned int idata Keypress_Count;extern unsigned int idata Keyrelease_Count;#endifkey.c 文件内容#include <string.h>#include "key.h"bit Key_Down; //是否有键按下的标志unsigned int idata Keypress_Count;sbit Col_Key0 = P2^2;sbit Col_Key1 = P2^3;sbit Col_Key2 = P2^4;sbit Col_Key3 = P2^5;bit Key_Pressed;bit Key_Released;unsigned int Key_Value;bit Key_Down; //是否有键按下的标志unsigned int idata Keypress_Count; //一毫秒增加一次的变量unsigned int idata Keyrelease_Count; //一毫秒增加一次的变量//矩阵键盘使用中断1作为键盘中断void Init_Key(){P5 = 0; //行线全部置为0EX1 = 1; // 允许外部时钟秒中断IT1 = 1; // 外部时钟中断设置为边沿触发}void Key_Int() interrupt 2{Key_Pressed = 1;EX1 = 0;}void Scan_Key(){unsigned char temp,rowvalue;unsigned int key;int i;temp = P2;temp &= 0x3C;if(temp == 0x3C){Key_Released = 0;Key_Pressed = 0;key = NULL_KEY;EX1 = 1;}else{key = temp;key = key<<8;rowvalue = 0x01;for(i=0;i<5;i++){P5 = rowvalue<<i;DelayMs(1);temp = P2;temp &= 0x3C;if(temp == 0x3c){rowvalue = rowvalue<<i;key = key | rowvalue;P5 = 0x00;break;}}P5 = 0x00;DelayMs(1);}if(key!=NULL_KEY) //如果有键按下{if(key==Key_Value) //如果按下的是相同的键{if(Keypress_Count>=KEY_DELAY){Key_Down = 1;}}else if(Key_Down != 1){Keypress_Count=0;Keyrelease_Count = 0;Key_Value=key;}}else //如果无键按下{if(Key_Down) //如果当前是键释放,返回键值{if(Keyrelease_Count >= KEY_DELAY){Key_Down=0;Keypress_Count=0;Keyrelease_Count=0;Key_Released = 1;EX1 = 1;return;}}else{Keypress_Count=0;Keyrelease_Count=0;Key_Value = NULL_KEY;EX1 = 1;return;}}}在main.c中的调用方法为if(Key_Pressed == 1){//Key_Pressed = 0;Scan_Key();}if(Key_Released == 1){Key_Released = 0;Ack_Key();}其中Ack_Key()函数为具体的键盘响应程序,就不列出了。
实验三基于MCS-51单片机的独立按键和矩阵按键检测实验一、支撑课程目标目标1:掌握微机和单片机的基本原理、编程技术、中断技术、系统扩展、定时器、串行接口和其他输入/输出接口技术,并且了解典型的单片机应用系统的设计思想和实现方法。
目标2:初步具备自行拟定实验步骤、检查和故障排除、分析和综合实验结果以及撰写实验报告的能力。
目标4:掌握MCS-51单片机/STM32F103单片机系统仿真工具和仿真流程,了解常用实验仪器、设备的基本工作原理,了解其正确使用方法,具备利用电子仪器设备和专业仿真软件对复杂工程问题进行分析和设计的能力。
二、实验类型:验证型( )、设计型(√)、研究创新型()三、预期学生学习的成果1、具有典型按键检测电路原理及消除抖动的必要性的认知。
2、理解程序设计消除抖动的实现过程。
3、掌握独立按键的程序查询检测编程实现。
4、掌握独立按键的中断检测编程实现。
5、理解矩阵键盘的行列扫描检测原理,具有矩阵键盘软硬件设计综合能力。
四、实验原理1、典型按键检测电路典型的按键检测电路具备检测按键的条件:检测引脚处在键按下前和后,要有电平变化,否则按键无法检测。
电路组成包括电源、上拉电阻、按键、接地组成,按下前,检测引脚高电平,按下后检测引脚低电平。
电阻防止按下电源短路,如图1(a)。
GND(a)(b)图 1 按键典型电路及对应检测电压2、按键抖动及消除如图1(b),理想条件下,按键未按下,在检测I/O端口是高电平,按下以后,检测I/O端口是低电平,手松后,按键弹起,检测I/O端口是高电平。
整个按键过程出现高电平到低电平又到高电平,有下降沿,也有上升沿。
实际过程中,由于人手的抖动,检测端电压如图1(c),检测电压出现“毛刺”抖动,假设单片机检测高电平阈值为VH,低电平阈值为VL,一次按键就会出现多次高电平到低电平变化,存在按键误检测可能。
常用消除办法之一:一旦检测到低电平,延迟u毫秒,u选择大于20,再次判断检测端是否是低电平,如果是,就判定为1次按键。
51单片机的矩阵按键扫描的设计C语言程序以下为一个基于51单片机的矩阵按键扫描的设计C语言程序:```c#include <reg51.h>//定义端口连接到矩阵键盘sbit col1 = P2^0;sbit col2 = P2^1;sbit col3 = P2^2;sbit row1 = P2^3;sbit row2 = P2^4;sbit row3 = P2^5;sbit row4 = P2^6;//声明按键函数char read_keypad(;void maiwhile (1)char key = read_keypad(; // 读取按键值//根据按键值进行相应操作switch(key)case '1'://第一行第一列按键逻辑//在此处添加相应的代码break;case '2'://第一行第二列按键逻辑//在此处添加相应的代码break;//继续处理其他按键//...default://未识别到按键break;}}//按键扫描函数char read_keypacol1 = 0; col2 = 1; col3 = 1; // 激活第一列if (row1 == 0) { // 第一行第一列按键被按下while (row1 == 0); //等待按键释放return '1'; // 返回按键值}if (row2 == 0) { // 第二行第一列按键被按下while (row2 == 0); //等待按键释放return '4'; // 返回按键值}if (row3 == 0) { // 第三行第一列按键被按下while (row3 == 0); //等待按键释放return '7'; // 返回按键值}if (row4 == 0) { // 第四行第一列按键被按下while (row4 == 0); //等待按键释放return '*'; // 返回按键值}col1 = 1; col2 = 0; col3 = 1; // 激活第二列//处理第二列的按键逻辑//...col1 = 1; col2 = 1; col3 = 0; // 激活第三列//处理第三列的按键逻辑//...return '\0'; // 返回空字符表示未检测到按键```以上代码中,我们使用51单片机的P2端口连接到矩阵键盘的列和行,通过扫描不同的列和检测行的状态来判断按键是否被按下。
单片机矩阵键盘实验实验报告
实验名称:单片机矩阵键盘实验
实验目的:掌握单片机矩阵键盘的原理和应用,能够使用单片机按键输入
实验内容:利用Keil C51软件,采用AT89C51单片机实现一个4x4的矩阵键盘,当按下任何一个按键时,将相应的键值传输到液晶显示屏上进行显示。
实验步骤:
1、搭建实验电路,将矩阵键盘与单片机相连,连接好电源正负极,然后将电路焊接成一个完整的矩阵键盘输入电路。
2、打开Keil C51软件,新建一个单片机应用工程,然后编写代码。
3、通过代码实现对矩阵键盘输入的扫描功能,当按下任何一个按键时,将相应的键值传输到液晶显示屏上进行显示。
4、编译代码,生成HEX文件,下载HEX文件到单片机中,将单片机与电源相连,然后就可以测试了。
5、测试完成后,根据测试结果修改代码,重新编译生成HEX 文件,然后下载到单片机中进行验证。
实验结果:
经过测试,实验结果良好,能够准确地输入按键的值,显示在液晶屏上。
实验感想:
通过这次实验,我深深地认识到了矩阵键盘技术的重要性以及应用价值,同时也更加深入了解单片机的工作原理和应用技术,这对我的学习和工作都有很好的帮助。
C51单片机键盘检测原理以及实现首先,在做软件之前确定硬件。
明确键盘类型:弹性按键:按下时闭合,松手后自动断开。
如电脑键盘自锁式按键:按下时闭合,且自动锁住。
一边用于开关在I/O 口检测触电电压时应该考虑按键抖动问题,一般按键抖动为5~10ms左右,具体与其机械特性有关,所以要加检测抖动环节,可以用软件或者去抖动芯片硬件处理,当然通常用延时方法处理。
注意正确连接引脚。
下面是一个简单的4 按键独立键盘程序,在51hei 开发板的数码管上操作。
完整的源代码下载51hei/f/jpdd.rar 数值为0~59 变化,开始显示00 按key1 数值加1,按key2 数值减1,按key3 数值归0,按key4 数值每秒加1。
#includereg52.h#define uchar unsigned char#define unit unsigned intsbit key1=P3 ;sbit key1=P3;sb it key1=P3;sb it key1=P3;sb it dula=P2;sb it wela=P2;uch a r code table[]={0x3f,0x06.0x5b,0x4f,0x66,0x6d,0x7d,0x070x7f,0x6f,0x77,0x7c0x39,0x5e,0 x79,0x71};void delayms(unit);uchar numt0,unm;void display(uchar numdis) //定义一个显示的函数,分个位十位,用来显示{uchar shi,ge; //然后用轮流显示发,利用人眼图像残留分别显示shi=numdis/10; //上面的numdis 表示num 这个显示的数ge=numdis%10; //numdis 由下面主函数num 赋值dula=1;P0=table[shi]; dula=0;P0=0xff;wela=1;P0=0xfe;wela=0;delayms(5);dula=1;P0=table[ge];dula=0;P0 =0xff;wela=1;P0=0xfe;wela=0;delayms(5);}void delayms(unit xms) //自定义延迟环节{unit i,j;for(i=xms,i0,i--);for(j=110,j0,j--);}void init() //初始化函数,保证程序正常运行{TMOD=0x01;TH0=(65536-45872)/256;TL0=(65536-458720%256;EA=1;ET=0;}tips:感谢大家的阅读,本文由我司收集整编。
//4x4矩阵键盘扫描例程(C51)//使用P0口上的LED灯显示键盘扫描得到的键值//===============#include<reg51.h> //51系列单片机头文件#define uchar unsigned char#define uint unsigned int#define key_4x4_port P3 //定义4x4键盘使用的单片机端口uchar key; //存放扫描得到的键值void delayms(uint xms); //声明延时子程序void key_4x4_scan(); //声明4x4键盘扫描子程序,得到的键值送全局变量key //=====================void main(){P0=0xff; //P0开机初始化Key=0xff; //键盘值开机初始化为ff(检测到的键值应为0-15)while(1){key_4x4_scan(); //不停调用键盘扫描子程序P0=key; //用P0来显示键值}}//========================void delayms(uint xms) //延时子程序{ uint i, j;for (i=xms; i>0; i--)for (j-110; j>0; j--);}//======================void key_4x4_scan() //4x4键盘扫描子程序,得到的键值送全局变量key{ uchar temp;key_4x4_port=0xfe; //送出P3.0位0电平去扫描temp= key_4x4_port; //读出整个口得到的值temp=temp&0xf0; //屏蔽低4位if (temp!=0xf0) //假如高4位不全是1{ delayms(10); // 延时消抖再读temp=key_4x4_port;temp=temp&0xf0;if (temp!=0xf0) //消抖后如果再次高4位确定不是全1{ temp=key_4x4_port; //读出此次按键的值switch(temp){ case 0xee;key=0; break;case 0xde;key=1; break;case 0xbe;key=2; break;case 0x7e;key=3; break;}while(temp!=0xf0) //等待按键放开{ temp=key_4x4_port;temp=temp&0xf0;}}}//====次高位送0==========key_4x4_port=0xfd; //送出P3.1位0电平去扫描temp= key_4x4_port; //读出整个口得到的值temp=temp&0xf0; //屏蔽低4位if (temp!=0xf0) //假如高4位不全是1{ delayms(10); // 延时消抖再读temp=key_4x4_port;temp=temp&0xf0;if (temp!=0xf0) //消抖后如果再次高4位确定不是全1{ temp=key_4x4_port; //读出此次按键的值switch(temp){ case 0xed;key=4; break;case 0xdd;key=5; break;case 0xbd;key=6; break;case 0x7d;key=7; break;}while(temp!=0xf0) //等待按键放开{ temp=key_4x4_port;temp=temp&0xf0;}}}//====第3高位送0==========key_4x4_port=0xfb; //送出P3.2位0电平去扫描temp= key_4x4_port; //读出整个口得到的值temp=temp&0xf0; //屏蔽低4位if (temp!=0xf0) //假如高4位不全是1{ delayms(10); // 延时消抖再读temp=key_4x4_port;temp=temp&0xf0;if (temp!=0xf0) //消抖后如果再次高4位确定不是全1{ temp=key_4x4_port; //读出此次按键的值switch(temp){ case 0xeb;key=8; break;case 0xdb;key=9; break;case 0xbb;key=10; break;case 0x7b;key=11; break;}while(temp!=0xf0) //等待按键放开{ temp=key_4x4_port;temp=temp&0xf0;}}}//====第4高位送0==========key_4x4_port=0xf7; //送出P3.3位0电平去扫描temp= key_4x4_port; //读出整个口得到的值temp=temp&0xf0; //屏蔽低4位if (temp!=0xf0) //假如高4位不全是1{ delayms(10); // 延时消抖再读temp=key_4x4_port;temp=temp&0xf0;if (temp!=0xf0) //消抖后如果再次高4位确定不是全1{ temp=key_4x4_port; //读出此次按键的值switch(temp){ case 0xe7;key=12; break;case 0xd7;key=13; break;case 0xb7;key=14; break;case 0x77;key=15; break;}while(temp!=0xf0) //等待按键放开{ temp=key_4x4_port;temp=temp&0xf0;}}}}//==========End。
实验一矩阵键盘检测一、实验目的:1、学习非编码键盘的工作原理和键盘的扫描方式。
2、学习键盘的去抖方法和键盘应用程序的设计.二、实验设备:51/AVR实验板、USB连接线、电脑三、实验原理:键盘接口电路是单片机系统设计非常重要的一环,作为人机交互界面里最常用的输入设备。
我们可以通过键盘输入数据或命令来实现简单的人机通信。
1、按键的分类一般来说,按键按照结构原理可分为两类,一类是触点式开关按键,如机械式开关、导电橡胶式开关等;另一类是无触点式开关按键,如电气式按键,磁感应按键等。
前者造价低,后者寿命长。
目前,微机系统中最常见的是触点式开关按键(如本学习板上所采用按键).按键按照接口原理又可分为编码键盘与非编码键盘两类,这两类键盘的主要区别是识别键符及给出相应键码的方法。
编码键盘主要是用硬件来实现对键的识别,非编码键盘主要是由软件来实现键盘的识别。
全编码键盘由专门的芯片实现识键及输出相应的编码,一般还具有去抖动和多键、窜键等保护电路,这种键盘使用方便,硬件开销大,一般的小型嵌入式应用系统较少采用。
非编码键盘按连接方式可分为独立式和矩阵式两种,其它工作都主要由软件完成。
由于其经济实用,较多地应用于单片机系统中(本学习板也采用非编码键盘)。
2、按键的输入原理在单片机应用系统中,通常使用机械触点式按键开关,其主要功能是把机械上的通断转换成为电气上的逻辑关系。
也就是说,它能提供标准的TTL 逻辑电平,以便与通用数字系统的逻辑电平相容.此外,除了复位按键有专门的复位电路及专一的复位功能外,其它按键都是以开关状态来设置控制功能或输入数据。
当所设置的功能键或数字键按下时,计算机应用系统应完成该按键所设定的功能。
因此,键信息输入是与软件结构密切相关的过程。
对于一组键或一个键盘,通过接口电路与单片机相连. 单片机可以采用查询或中断方式了解有无按键输入并检查是哪一个按键按下,若有键按下则跳至相应的键盘处理程序处去执行,若无键按下则继续执行其他程序。