2020中考数学专题练习:统计与概率(精选)
- 格式:pdf
- 大小:1.82 MB
- 文档页数:9
2020年中考数学真题分项汇编(湖南专版)专题13 统计与概率1. (2020年湖南长沙中考)一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别。
从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是 ( ) A. 第一次摸出的球是红球,第二次摸出的球一定是绿球; B. 第一次摸出的球是红球,第二次摸出的球不一定是红球;C. 第一次摸出的球是红球的概率是31; D. 两次摸出的球都是红球的概率是91。
【答案】A【解析】第一次和第二次摸出球的颜色相互独立,注意题干中说明了第一次摸完后会放回,A 选项中,第二次摸出的球可能是红球,也可能是绿球。
故A 错误,选A. 2.(2020年湖南常德中考)下列说法正确的是( )A .明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B .抛掷一枚质地均匀的硬币两次,必有一次正面朝上C .了解一批花炮的燃放质量,应采用抽样调查方式D .一组数据的众数一定只有一个【分析】根据必然事件的概念、众数的定义、随机事件的概率逐项分析即可得出答案. 解:A 、明天的降水概率为80%,则明天下雨可能性较大,故本选项错误; B 、抛掷一枚质地均匀的硬币两次,正面朝上的概率是21,故本选项错误; C 、了解一批花炮的燃放质量,应采用抽样调查方式,故本选项正确; D 、一组数据的众数不一定只有一个,故本选项错误; 故选:C .3.(2020年湖南怀化中考)小明到某公司应聘,他想了解自己入职后的工资情况,他需要关注该公司所有员工工资的( )A. 众数B. 中位数C. 方差D. 平均数【答案】B【解析】根据题意,结合该公司所有员工工资的情况,从统计量的角度分析可得答案.【详解】解:根据题意,小明到某公司应聘,了解这家公司的员工的工资情况,就要全面的了解中间员工的工资水平, 故最应该关注的数据是中位数, 故选:B .4.(2020年湖南湘潭中考)为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”:B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是( )A. 0.25B. 0.3C. 25D. 30【答案】B【分析】先计算出八年级(3)班的全体人数,然后用选择“5G时代”的人数除以八年级(3)班的全体人数即可.【详解】由图知,八年级(3)班的全体人数为:25+30+10+20+15=100(人)选择“5G时代”的人数为:30人∴选择“5G时代”的频率是:30=0.3 100故选:B.5.(2020年湖南湘西中考)从长度分别为1cm、3cm、5cm、6cm四条线段中随机取出三条,则能够组成三角形的概率为( )A. 14B.13C.12D.34【答案】A【解析】试验发生包含的基本事件可以列举出共4种,而满足条件的事件是可以构成三角形的事件,可以列举出共1种,根据概率公式得到结果.【详解】解:∵试验发生包含的基本事件为(1cm,3cm,5cm);(1cm,3cm,6cm);(1cm,5cm,6cm);(3cm,5cm,6cm),共4种;而满足条件的事件是可以构成三角形的事件为(3cm,5cm,6cm),共1种;∴以这三条线段为边可以构成三角形的概率是14,故选:A.6.(2020年湖南株洲中考)一个不透明的盒子中装有4个形状、大小质地完全相同的小球,这些小球上分别标有数字-1、0、2和3.从中随机地摸取一个小球,则这个小球所标数字是正数的概率为( )A. 14B.13C.12D.34【答案】C【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【详解】解:根据题意可得:4个小球中,其中标有2,3是正数,故从中随机地摸取一个小球,则这个小球所标数字是正数的概率为:2142 =.故选:C.7.(2020年湖南株洲中考)数据12、15、18、17、10、19的中位数为( )A. 14B. 15C. 16D. 17【答案】C【解析】首先将这组数据按大小顺序排列,再利用中位数定义,即可求出这组数据的中位数.【详解】解:把这组数据从小到大排列为:10,12,15,17,18,19,则这组数据的中位数是15172+=16.故选:C.8.(2020年湖南张家界市中考)下列采用的调查方式中,不合适的是( )A. 了解澧水河的水质,采用抽样调查.B. 了解一批灯泡的使用寿命,采用全面调查.C. 了解张家界市中学生睡眠时间,采用抽样调查.D. 了解某班同学的数学成绩,采用全面调查.【答案】B【解析】根据调查对象的特点,结合普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果接近准确数值,从而可得答案.【详解】解:了解澧水河的水质,采用普查不太可能做到,所以采用抽样调查,故A合适,了解一批灯泡的使用寿命,不宜采用全面调查,因为调查带有破坏性,故B不合适,了解张家界市中学生睡眠时间,工作量大,宜采用抽样调查,故C合适,了解某班同学的数学成绩,采用全面调查.合适,故D合适,故选B.9.(2020年湖南岳阳中考)今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是( )A. 36.3,36.5B. 36.5,36.5C. 36.5,36.3D. 36.3,36.7【答案】B【解析】根据众数、中位数的概念求出众数和中位数即可判断.【详解】解:将这7名学生的体温按从小到大的顺序排列如下:36.3,36.3,36.5,36.5,36.5,36.7,36.8则中位数就是第4个数:36.5;出现次数最多的数是36.5,则众数为:36.5;故选:B10.(2020年湖南长沙中考)长沙地铁3号线、5号线即将试运行,为了解市民每周乘坐地铁出行的次数,某校园小记者随机调查了100名市民,得到如下统计表:这次调查中的众数和中位数分别是、。
江西省2020届中考数学单元专题练之统计与概率专题一统计好题精做1.下面调查中,适合采用全面调查的是()A. 调查南昌市中学生心理健康现状B. 调查江西省春节期间的食品合格情况C. 调查你所在的班级同学的身高情况D. 调查江西卫视《金牌调解》栏目的收视率2.下列说法错误..的是()A. 给定一组数据,那么这组数据的平均数一定只有一个B. 给定一组数据,那么这组数据的中位数一定只有一个C. 给定一组数据,那么这组数据的众数一定只有一个D. 如果一组数据存在众数,那么该众数一定是这组数据中的某一个3. 为纪念中国人民抗日战争的胜利,9月3日被确定为抗日战争胜利纪念日,某校为了了解学生对“抗日战争”的知晓情况,从全校6000名学生中,随机抽取了120名学生进行调查,在这次调查中()A. 6000名学生是总体B. 所抽取的每1名学生对“抗日战争”的知晓情况是总体的一个样本C. 120名是样本容量D. 所抽取的120名学生对“抗日战争”的知晓情况是总体的一个样本4.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A. 70B. 720C. 1680D. 23705.已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当()A. 平均数B. 中位数C. 众数D. 方差6.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表乙组12用水量统计图第6题图比较5月份两组家庭用水量的中位数,下列说法正确的是()A. 甲组比乙组大B. 甲、乙两组相同C. 乙组比甲组大D. 无法判断7.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A. 平均数B. 中位数C. 众数D. 方差8.某单位组织职工开展植树活动,植树量与人数之间的关系如图,下列说法不正确...的是()A. 参加本次植树活动共有30人B. 每人植树量的众数是4棵C. 每人植树量的中位数是5棵D. 每人植树量的平均数是5棵第8题图第9题图9. “救死扶伤”是我国的传统美德,某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图,根据统计图判断下列说法,其中错误的一项是()A. 认为依情况而定的占27%B. 认为该扶的统计图中所对应的圆心角是234°C. 认为不该扶的占8%D. 认为该扶的占92%10. 2016年某校九年级6名数学教师年终绩效综合考评得分(满分100分)如下:100,97,94,98,97,96.下列说法中不正确的是()A. 这组数据的众数是97B. 这组数据的中位数是96C. 这组数据的平均数是97D. 这组数据的方差是10 311.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.第11题图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推断不合理...的是()A. 与2015年相比,2016年我国与东欧地区的贸易额有所增长B. 2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D. 2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多12. 一组数据的方差为9,如果将这组数据中的每个数据都扩大3倍,得到一组新数据,则这组新数据的方差是()A. 9B. 27C. 81D. 2413. 由小到大排列的一组数据x1,x2,x3,x4,x5,其中,每个数据都小于-1,则样本1,x1,-x2,x3,-x4,x5的中位数为()A. 1+x22 B.x2-x12 C.1+x52 D.x3+x4214.某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165 cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A. 平均数不变,方差不变B. 平均数不变,方差变大C. 平均数不变,方差变小D. 平均数变小,方差不变15. 某商场4月份随机抽查了6天的营业额,结果分别如下(单位:万元):2.8、3.2、3.4、3.7、3.0、3.1.试估算该商场4月份的总营业额,大约是________万元.第16题图16.某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是________个.17.如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”的人数是________人.第17题图18.数据1,3,5,12,a,其中整数a是这组数据中的中位数,则该组数据的平均数是________.19. 一组数据1,2,a的平均数为2,另一组数据-2,a,2,1,b的众数为-2,则数据-2,a,2,1,b的中位数为________.20.甲、乙、丙、丁四名射击运动员分别连续射靶10次,他们各自的平均成绩及其方差如下表所示,如果选一名成绩好且发挥稳定的运动员参赛,则应选择的运动员是21.个数据,若这五个数据的中位数是6,唯一众数是7,则他们投中次数的总和不会超过________.22. 寒假期间的某一天,小捷同学为了了解当地居民购物时使用塑料购物袋的情况,到某超市对部分购物者进行了社会实践调查,据了解该超市按塑料购物袋的承重能力提供了0.1元、0.2元、0.3元三种质量不同的塑料购物袋.下面两幅图是这次调查得到的不完善的统计图(若每人每次只使用一个塑料购物袋),请你根据图中的信息,回答下列问题:第22题图(1)这次调查的购物者总人数是________;(2)请补全条形统计图,扇形统计图中0.2元部分所对应的圆心角是________度;(3)若这天到该超市购物的人数有2000人次,则该超市需销售塑料购物袋多少个?根据调查情况,每天到该超市购物的人数差不多,请你估算一下一个月(按30 天计算)购物者购买塑料购物袋共要花费多少钱?23.为给研究制定《中考改革实施方案》提出合理化建议,教研人员对九年级学生进行了随机抽样调查,要求被抽查的学生从物理、化学、政治、历史、生物和地理这六个选考科目中,挑选出一科作为自己的首选科目,将调查数据汇总整理后,绘制出了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?(2)将折线统计图补充完整;(3)我市现有九年级学生约90000人,请你估计首选科目是物理的人数.第23题图24.为传承中华优秀传统文化,提升学生文学素养,江西省一直在中小学开展“假期读一本好书”的活动.某校八年级为了了解本年级学生活动开展的情况,从全年级学生中随机抽取了部分学生调查读书种类情况,并进行统计分析,绘制了如下不完整的统计图表:读书种类情况统计表读书种类情况条形统计图第24题图请根据以上信息解答下列问题:(1)a =________,b =________;(2)补全条形统计图;(3)若绘制“读书种类情况扇形统计图”,则“艺术类”所对应扇形的圆心角度数为________°;(4)若该校八年级共有600人,请估计全年级在本次活动中读书种类为“艺术类”的学生人数.专题二 概率 好题精做1.下列成语描述的事件为随机事件的是( )A. 水涨船高B. 守株待兔C. 水中捞月D. 缘木求鱼2.下列说法正确的是( )A. 不可能事件发生的概率为0B. 随机事件发生的概率为12C. 概率很小的事件不可能发生D. 投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次3. 一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是( )A. 12B. 13C. 512D. 144. 在一个不透明的袋子中装有四个小球,它们除分别标有的号码1,2,3,4不同外,其他完全相同.任意从袋子中摸出一球后不放回,再任意摸出一球,则第二次摸出球的号码比第一次摸出球的号码大的概率是( )A. 13B. 12C. 23D. 16第5题图5.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A. 18 B.16 C.14 D.126.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()A. 16 B.13 C.12 D.23第7题图7.如图所示的图形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是________.8. 在一个不透明的布袋中有2个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到黄球的概率是45,则n=________.9.同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是________.10.现有一“过关游戏”,规定:在第n关要掷一颗骰子n次,如果这n次抛掷所出现的点数之和大于4n5,则算过关,否则不算过关.(1)过第1关是________事件(填“必然”、“不可能”或“不确定”,后同),过第4关是________事件;(2)当n=2时,计算过第二关的概率(可借助表格或树形图).11. “端午节”是我国流传了上千年的传统节日,全国各地举行了丰富多彩的纪念活动.为了继承传统,减缓学生考前的心理压力,某班学生组织了一次拔河比赛,裁判员让两队队长用“石头、剪刀、布”的手势方式选择场地位置,规则是:石头胜剪刀,剪刀胜布,布胜石头,手势相同则再决胜负.(1)用列表或画树状图法,列出甲、乙两队手势可能出现的情况;(2)裁判员的这种做法对甲、乙双方公平吗?请说明理由.12. (6分)(2019赣州模拟)先阅读下面某校八年级师生的对话内容,再解答问题.(温馨提示:一周只上五天课,另外考试时每半天考一科)小明:“听说下周会进行连续两天的期中考试.”刘老师:“是的,要考语文、数学、英语、物理共四科,但具体星期几不清楚.”小宇:“我估计是星期四、星期五.”(1)求小宇猜对的概率;(2)若考试已定在星期四、星期五,但各科考试顺序没定,请用恰当的方法求同一天考语文、数学的概率.13.为落实“垃圾分类”,环卫部门要求垃圾要按A、B、C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾,甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.满分冲关1. (2019原创)如图,是由甲、乙两种不同样式的小正方形瓷砖铺成的地板,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的第1题图概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则()A. P1>P2B. P1<P2C. P1=P2D. 以上都有可能2. 一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A. 20B. 24C. 28D. 303.如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是________.4.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为________.5. (6分)有四根小木棒长度分别是1,3,5,7,若从中任意抽出三根木棒组成三角形,(1)下列说法正确的序号是________;①第一根抽出木棒长度是3的可能性是1 4②抽出的三根木棒能组成三角形是必然事件③抽出的三根木棒能组成三角形是随机事件④抽出的三根木棒能组成三角形是不可能事件(2)请你直接列举任意抽出的三根木棒的所有情况,并求出能组成三角形的概率.6. (2019吉安模拟)元旦游园活动中,小明、小亮、小红三位同学正在搬各自的椅子准备进行“抢凳子”游戏,看见王老师来了,小亮立即邀请王老师参加.游戏规则如下:将三位同学的椅子背靠背放在教室中央,四人围着椅子绕圈行走,在行走过程中裁判员随机喊停,听到“停”后四人迅速抢坐在一张椅子上,没有抢坐到椅子的人淘汰,不能进入下一轮游戏.(1)下列事件是必然事件的是()A. 王老师被淘汰B. 小明抢坐到自己带来的椅子C. 小红抢坐到小亮带来的椅子D.有两位同学可以进入下一轮游戏(2)如果王老师没有抢坐到任何一张椅子,三位同学都抢到了椅子但都没有抢坐到自己带来的椅子(记为事件A),求出事件A的概率,请用树状图法或列表法加以说明.7.如图①,在一个不透明的袋中装有四个球,分别标有字母A、B、C、D.这些球除了所标字母外都相同.另外,有一面白色、另一面黑色,大小相同的4张正方形卡片,每张卡片两面的字母相同,分别标有A、B、C、D.最初..,摆成图②的样子,A、D是黑色,B、C是白色.第7题图操作:①从袋中任意取一个球;②将与取出球所标字母相同的卡片翻过来;③将取出的球放回袋中.两次操作后,观察卡片的颜色.(如:第一次取出球A,第二次取出球B,此时卡片的颜色变成)(1)求四张卡片变成相同颜色的概率;(2)求四张卡片变成两黑两白,并恰好形成各自颜色矩形的概率.8.如图①,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图②,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法...求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?第8题图江西省2020届中考数学单元专题练之统计与概率答案全解全析1. C2. C【解析】根据中位数、平均数的定义可知,给定一组数据,那么这组数据的中位数、平均数只有一个,故A、B叙述正确;根据众数的定义可知,一组数据的众数可能不只一个,如数据2,2,3,3,4,5的众数为2和3,故C 叙述错误;根据众数的定义,众数是一组数据中出现次数最多的数,可知一组数据中的众数一定是这组数据中的一个,故D叙述正确.3. D4. C【解析】∵100名学生中持“反对”和“无所谓”意见的共有30名学生,∴持“赞成”意见的学生人数=100-30=70(名),∴全校持“赞成”意见的学生人数约为2400×70100=1680(名).故选C.5. D【解析】A组的平均数:x A=14(90+60+90+60)=75,中位数是:12(90+60)=75;B组的平均数:x B=14(70+80+80+70)=75,中位数是:12(70+80)=75,因此,两组数据的平均数和中位数都是75,而两组数据都有两个众数,A组是60、90,B组是70、80,都无法区别两组成绩.A组的方差为14×[(90-75)2+(60-75)2+(90-75)2+(60-75)2]=225,B组的方差为14×[(70-75)2+(80-75)2+(80-75)2+(70-75)2]=25,显然A组的方差大于B组的方差,说明B 组比A组成绩更稳定,因此,用方差区别两组成绩更合适.6. B【解析】12个数据的中位数是第6个数和第7个数的平均数,由统计表可以看出甲组中第6个数和第7个数均为5,所以中位数为5;由扇形统计图可知乙组中5月份家庭用水量为4吨、5吨、6吨、7吨的分别有12×90360=3(户)、12×360-90-90-60360=4(户)、12×90360=3(户)、12×60360=2(户),故乙组中第6个数和第7个数均为5,所以中位数也为5.7. B【解析】逐项分析如下:植树量为4棵的人数最多为10人,∴每人植树量的众数为4棵;将每人植树量从少到多排列,第15、16人植树均为5棵,∴其中位数为5棵;所有人植树量的平均数为:130×(3×4+4×10+5×8+6×6+7×2)=7115(棵).9. D 【解析】由扇形统计图可知,依情况而定的占27%,故A 正确;认为该扶的占65%,所对应的圆心角为:360°×65%=234°,故B 正确;认为不该扶的占:1-27%-65%=8%,故C 正确;认为该扶的占65%,而不是92%,故D 不正确.10. B据的方差将扩大9倍,∴新数据的方差是9×9=81.故选C.13. C 【解析】∵x 1<x 2<x 3<x 4<x 5<-1,∴题目中六个数据排序后为x 1<x 3<x 5<1<-x 4<-x 2,故中位数是按从小到大排列后第三、第四两个数的平均数,∴这组数据的中位数是1+x 52.故选C. 14. C 【解析】原平均数为:(160+165+170+163+167)÷5=165 cm ,原方差为:s 2=585,现在平均数为:(160+165+170+163+167+165)÷6=165cm ,现方差为:s 2=293,∴平均数不变,方差变小.故选C.15. 96 【解析】数据2.8、3.2、3.4、3.7、3.0、3.1的平均数为16(2.8+3.2+3.4+3.7+3.0+3.1)=3.2,3.2×30=96,所以该商场4月份的总营业额大约是96万元.16. 183 【解析】由题图可知,把数据按从小到大排列后为:180、182、183、185、186,中位数是183.17. 10 【解析】由条形统计图可知,喜爱“新闻”节目的人数为5,所占百分比为10%,∴全班学生数为:5÷10%=50(人),∵喜欢“动画”节目所占百分比为30%,∴喜欢“动画”节目的人数为:50×30%=15(人),∴喜欢“体育”节目的人数为:50-5-15-20=10(人).18. 4.8,5或5.2 【解析】∵这组数据共5个,a 是中位数,∴3≤a ≤5,∵a 是整数,∴a 的值可以是3,4,5.当a 为3时,这组数据的平均数是15(1+3+3+5+12)=4.8;当a 为4时,这组数据的平均数是15(1+3+4+5+12)=5;当a 为5时,这组数据的平均数是15(1+3+5+5+12)=5.2.综上,这组数据的平均数为4.8,5或5.2.19. 1 【解析】∵一组数据1,2,a 的平均数为2,∴1+2+a =3×2,解得a =3,∵数据-2,3,2,1,b 的众数为-2,∴b =-2,∴把数据-2,3,2,1,-2按从小到大的顺序排列为:-2,-2,1,2,3,∴中位数为1.20. 丙 【解析】∵x -甲=x -丙>x -乙>x -丁,∴从甲和丙中选择一人参加比赛,∵s 2甲>s 2丙,∴选择丙参赛.21. 29 【解析】∵5个数据的中位数是6,唯一众数是7,∴最大的三个数的和是:6+7+7=20,则两个较小的数一定是小于6的非负整数,且不相等,即两个较小的数最大为4和5,故总和一定小于等于29.22. 解:(1)120;(2)99;补全条形统计图如解图所示:第22题解图(3)该超市这天需销售塑料购物袋的个数是:2000×30+33+12120=1250(个), 估计一个月购物者购买塑料购物袋共要花费:2000×0.1×30+0.2×33+0.3×12120×30=6600(元). 23. 解:(1)被抽查的学生总人数为:162÷18%=900(人);(2)补全折线统计图如解图所示:第23题解图【解法提示】抽查的900人中,选历史作为首选科目的学生人数为:900×6%=54(人).(3)我市现有九年级学生90000人,估计首选科目是物理的学生人数为:90000×180900=18000(人).24. 解:(1)16,16%;(2)补全条形统计图如解图所示:第4题解图(3)57.6;(4)估计全年级在本次活动中读书种类为“艺术类”的学生人数是600×16%=96(人).1. B2. A3. C 【解析】∵一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴你抬头看信号灯时是绿灯的概率是:2530+25+5=512. 4. B 【解析】画树状图如解图所示:第4题图共有12种等可能的结果,其中第二次摸出球的号码比第一次摸出球的号码大的结果数为6,所以第二次摸出球的号码比第一次摸出的号码大的概率是612=12.故选B.记录的两个数字都是正数的概率是416=14.6. D 【解析】用列举法可知,三人的排列共有“爸妈明”,“爸明妈”,“妈爸明”,“妈明爸”,“明爸妈”,“明妈爸”6种等可能的情况,爸爸妈妈相邻的结果有4种,∴P (爸爸妈妈相邻)=46=23.7.2 58. 8【解析】不透明的布袋中的球除颜色不同外,其余均相同,共有n+2个球,其中黄球n个,根据古典型概率公式知:P(黄球)=nn+2=45,解得n=8.9.38【解析】同时抛掷三枚质地均匀的硬币,将其结果用树状图表示如解图,由解图可知,共有8种等可能结果,其中两枚正面向上,一枚正面向下的情况有3种,则P=38.第9题解图10.解:(1)必然,不可能;【解法提示】第1次抛掷所出现的点数大于等于1,即大于45,所以过第1关是必然事件,过第4关是不可能事件.(2)当n=2时,画树状图如解图:第10题解图共有36种等可能的结果数,其中这2次抛掷所出现的点数之和大于165的结果数为33,所以过第二关的概率是3336=1112.11.解:(1)列表如下:从(1)中表格可知,共有9种等可能的结果,其中P(甲队胜)=39=13,P(乙队胜)=39=13,甲队和乙队胜的概率相同,故裁判的这种做法对甲、乙双方公平.12. 解:(1)连续两天考试则共有以下4种可能性:周一周二,周二周三,周三周四,周四周五,在周四周五两天考试的可能性只有1种,故P (小宇猜对)=14;(2)方法一:依题意可列表得:∴P (同一天考语文、数学)=26=13.方法二:依题意可画树状图如解图:第12题解图共有12种等可能的结果,其中周四考语数的有2种,周五考语数的有2种,则同一天考语数的有4种,∴P (同一天考语文、数学)=412=13.13. 解:(1)甲投放的垃圾恰好是A 类的概率是13;(2)画树状图如解图:第13题解图由树状图可知,共有18种等可能的结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,∴P (乙投放的垃圾恰有一袋与甲投放的垃圾是同类)=1218=23.满分冲关1. A 【解析】由甲图可知,共有16块方砖,其中黑色方砖有6块,∴黑色方砖在整个地板中所占的比值为616=38,∴在甲种地板上最终停留在黑色区域的概率P 1=38,共有9块方砖,其中由乙图可知,黑色方砖有3块,∴黑色方砖在整个地板中所占的比值为39=13,∴在乙种地板上最终停留在黑色区域的概率P 2=13,∵38>13,∴P 1>P 2.故选A.2. D 【解析】根据频率估计概率原则,可知9n ×100%=30%,解得n =30.3. 17 【解析】由题意知,m 的取值是-1,0,1;n 的取值是-3,-2,-1,0,1,2,3,∴(m ,n )共有21种情况;由方程有两个相等实数根,得n 2-4m =0,即n 2=4m ,∴有n =0,m =0;n =2,m =1;n =-2,m =1这三种情况,∴方程有两个相等实数根的概率为P =321=17.4. 13 【解析】画树状图如解图:第4题解图∵共有6种等可能的结果,抽签后每个运动员的出场顺序都发生变化的有2种情况,∴抽签后每个运动员的出场顺序都发生变化的概率=26=13.5. 解:(1)①③;【解法提示】第一根抽出的是3的可能性是14;抽出的三根木棒恰好能组成三角形是随机事件.故答案为①③.(2)从1、3、5、7中任意抽出三根木棒有:1、3、5;1、3、7;3、5、7;1、5、7,共4种等可能的情况,而能组成三角形的有3、5、7一种情况,所以抽出的三根木棒恰好能组成三角形的概率是14.6. 解:(1)D 【解析】A. 王老师被淘汰是随机事件;B. 小明抢坐到自己带来的椅子是随机事件;C. 小红抢坐到小亮带来的椅子是随机事件;D. 共有3张椅子,四人中只有1位老师,∴一定有2位同学能进入下一轮游戏;(2)设小明,小亮,小红三位同学带来的椅子依次排列为a 、b 、c ,画树状图如解图:第6题解图由树状图可知,所有等可能结果共有6种,其中第4种,第5种结果符合题意,∴P (A )=26=13.7. 解:(1)画树状图如解图:第7题解图或列表如下:色的情形有AD 、DA 、BC 、CB 4种,∴P (两次操作后全部卡片变成相同颜色)=416=14;(2)由(1)中的树状图可知,两次操作后,恰好形成各自颜色的矩形的情形有AC 、CA 、BD 、DB 、AB 、BA 、CD 、DC 8种,∴P (恰好形成各自颜色矩形)=816=12.8. 解:(1)∵掷一次骰子有4种等可能结果,只有掷得4时,才会落回到圈A ,∴P 1=14;(2)列表如下:(2,2),(3,1),(4,4)时,才可落回到圈A ,∴P 2=416=14,∵P 1=P 2,∴淇淇与嘉嘉落回到圈A 的可能性一样.。
专题10 统计与概率大题30道1.(2020·广东省初三其他)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.【答案】(1)50;(2)240;(3)1 2 .【解析】【分析】用喜爱社会实践的人数除以它所占的百分比得到n的值;先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比,即可估计该校喜爱看电视的学生人数;画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【详解】(1)510%50n=÷=;(2)样本中喜爱看电视的人数为501520510---=(人),10120024050⨯=,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率61 122 ==.【点睛】本题考查了列表法与树状图法;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,也考查了统计图. 2.(2020·广东省初三月考)某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球B:乒乓球C:羽毛球D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)【答案】(1)200.(2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.【解析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数:3620200360÷=(人).(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可.(3)根据题意列出表格或画树状图,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.3.(2020·广东省初三一模)2019年是新中国成立70周年,在“庆祝新中国成立70年华诞”主题教育活动月,深圳某学校组织开展了丰富多彩的活动,活动设置了“A:诗歌朗诵展演,B:歌舞表演,C:书画作品展览,D:手工作品展览”四个专项活动,每个学生限选一个专项活动参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图所示的不完整的条形统计图和扇形统计图:(1)本次随机调查的学生人数是人;(2)请你补全条形统计图;(3)在扇形统计图中,“B”所在扇形的圆心角为度.(4)小涛和小华各自随机参与其中的一个专项活动,请你用画树状图或列表的方式求他们恰好选中同一个专项活动的概率.【答案】(1)60;(2)图见解析;(3)108;(4)14.【解析】【分析】(1)从两个统计图中可得“A组”的有15人,占调查人数的28%,可求出调查人数;(2)求出“C组”部分的人数,即可补全条形统计图;(3)样本中“B组”占调查人数的1860,因此圆心角占360°的1860,可求出圆心角的度数;(4)画出树状图,由概率公式即可得出结果.【详解】(1)15÷25%=60人,答:本次随机调查的学生人数是60人;故答案为:60;(2)C组:60﹣15﹣18﹣9=18人,补全条形统计图如图所示:(3)“B”所在扇形的圆心角为:360°×1860=108°.故答案为:108;(4)画树状图如图2所示:共有16个等可能的结果,小涛和小华恰好选中同一个主题活动的结果有4个,∴小涛和小华恰好选中同一个主题活动的概率=416=14.【点睛】考查了列表法与树状图法、扇形统计图、条形统计图;读懂题意,画出树状图是解题的关键. 4.(2020·广东省初三三模)2020年3月“停课不停学”期间,某校采用简单随机抽样的方式调查本校学生参加第一天线上学习的时长,将收集到的数据制成不完整的频数分布表和扇形图,如下所示:(1)求m ,n 的值;(2)学校有学生2400人,学校决定安排老师给““线上学习时长”在x ≤60分钟范围内的学生打电话了解情况,请你根据样本估计学校学生“线上学习时长”在x ≤60分钟范围内的学生人数. 【答案】(1)9,36m n ==;(2)432人. 【解析】【分析】(1)根据第2组的人数是6,对应的百分比是12%,即可求得调查的总人数,利用总人数减去其它组的人数求得m 的值;(2)利用总人数乘以对应的比例即可求解. 【详解】(1)抽取的总人数是6÷12%=50(人), m =50﹣3﹣6﹣18﹣14=9(人). n %=1850×100%=36%, ∴n =36;(2)估计学校学生“线上学习时长”在x≤60分钟范围内的学生人数是2400×950=432(人).【点睛】本题考查的是扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.频率=所求情况数与总情况数之比.5.(2020·广东省初三一模)垃圾的分类处理与回收利用,可以减少污染,节省资源.深圳市环境卫生局为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在扇形统计图中,产生的有害垃圾C所对应的圆心角为度;(3)调查发现,在可回收物中塑料类垃圾占13%,每回收1吨塑料类垃圾可获得0.5吨二级原料.假设深圳市每天产生的生活垃圾为28500吨,且全部分类处理,那么每天回收的塑料类垃圾可以获得多少吨二级原料?【答案】(1)见解析;(2)21.6;(3)1000.35吨【解析】【分析】(1)根据统计图中D类垃圾的吨数和所占的百分比,可以求得本次调查的垃圾总数,然后即可得到B类垃圾的吨数,从而可以将条形统计图补充完整;(2)根据统计图中的数据,可以得到在扇形统计图中,产生的有害垃圾C所对应的圆心角的度数;(3)根据题意和统计图中的数据,可以计算出每天回收的塑料类垃圾可以获得多少吨二级原料【详解】(1)本次调查的吨数为:5÷10%=50,B类有50×30%=15(吨),补全的条形统计图如右图所示;(2)在扇形统计图中,产生的有害垃圾C所对应的圆心角为:360°×(1﹣54%﹣30%﹣10%)=21.6°,故答案为:21.6;(3)28500×54%×13%×0.5=1000.35(吨),答:每天回收的塑料类垃圾可以获得1000.35吨二级原料.【点睛】本题考查条形统计图、扇形统计图、全面调查与抽样调查,解答本题的关键是明确题意,利用数形结合的思想解答.6.(2020·广东省初三一模)广州融创乐园是国内首个以南越文化、岭南风格为主题的游乐园,自2019年6月开园以来受到了国内外游客的热捧.某旅游团组织一批游客游玩了乐园内的四个网红项目,“A.双龙飞舞”、“B.飞跃广东”、“C.云霄塔”、“D.怒海狂涛”,并进行了“我最喜欢的一个项目”的投票评选活动,投票结果绘制成以下两幅尚未完整的统计图.请你根据图中提供的信息,解答下列问题:(1)参与投票的游客总人数为人;(2)扇形统计图中B所对的圆心角度数为度,并补全条形统计图;(3)从投票给“双龙飞舞“的3名男生和1名女生中随机抽取2名了解情况,请你用列举法求恰好抽到1男1女的概率.【答案】(1)50;(2)144,见解析;(3)树状图见解析,1 2【解析】【分析】(1)用A项目的人数除以它所占的百分比得到调查的总人数;(2)先用360°乘以B项目的人数所占的百分比得到得到扇形统计图中B所对的圆心角度数,然后计算出C项目的人数后补全条形统计图;(3)画树状图展示所有12种等可能的结果数,找出恰好抽到1男1女的结果数,然后根据概率公式求解.【详解】(1)4÷8%=50,所以参与投票的游客总人数为50人;(2)扇形统计图中B所对的圆心角度数=360°×2050=144°;C项目的人数为50×30%=15(人),补全条形统计图为:故答案为50;144;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到1男1女的结果数为6,所以恰好抽到1男1女的概率=612=12.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.7.(2020·广东省初三其他)长春地铁一号线于2017年6月30日正式开通.运营公司根据乘车距离制定了不同的票价类别(见对照表).为了解乘客的乘车距离,运营公司随机选取了一部分经常需要乘车的市民进行了调查统计,绘制了两幅不完整的统计图.请你根据图表中提供的信息解答以下问题:(1)本次抽样调查的人数是_________人.(2)补全条形统计图.(3)运营公司估计这条地铁专线通车后每天的客流量约为10万人,请你估算运营公司的日营业额.票价类别与乘车距离对照表【答案】(1)2000;(2)详见解析;(3)约为33.4万元【解析】【分析】(1)用A类的人数除以所占的百分比求出本次抽样调查的总人数;(2)用总人数乘以B类的人数所占的百分比求出B类的人数,再用总人数减去其它乘车距离的人数,求出E类的人数,从而补全统计图;(3)根据平均数的计算公式直接计算即可.【详解】(1)本次抽样调查的人数是:520÷26%=2000(人),故答案为:2000;(2)B 类的人数是:2000×35%=700(人),E 类的人数有:2000﹣520﹣700﹣460﹣220=100(人),补图如下:(3)根据题意得:520270034604220510061033.42000⨯+⨯+⨯+⨯+⨯⨯=(万元),答:运营公司的日营业额约为33.4万元.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.8.(2020·深圳市罗湖外语实验学校初三月考)某区域为响应“绿水青山就是金山银山”的号召,加强了绿化建设.为了解该区域群众对绿化建设的满意程度,某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查,得到如图不完整统计图.请结合图中信息,解决下列问题.(1)此次调查中接受调查的人数为______人,其中“非常满意”的人数为______人;“一般”部分所在扇形统计图的圆心角度数为_______.(2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访,已知这4位群众中有2位来自甲片区,另2位来自乙片区,请用画树状图或列表的方法求出选择的群众都来自甲片区的概率. 【答案】(1)50;18;57.6°;(2)16. 【解析】【分析】(1)根据满意的人数以及所占的百分比进行求解可得接受调查的人数,用所得的人数减去其余的即可得“非常满意”的人数,一般的占总人数的比乘以360°可得圆心角度数;(2)画树状图得到所有等可能的情况以及符合要求的情况数,利用概率公式进行计算即可得.【详解】(1)50;18满意的有20人,占40%,∴此次调查中接受调查的人数为:2040%50÷=(人);此次调查中结果为非常满意的人数为:50482018---=(人),一般的所占的圆心角度数为:360°×(8÷50)=57.6°,故答案为:50;18;57.6°(2)画树状图得:共有12种等可能的结果,选择的群众均来自甲区的有2种情况,∴选择的市民均来自甲区的概率为:21 126=,故答案为:16.【点睛】本题考查了条形统计图,扇形统计图,列表法或树状图求概率,准确识图,从不同的统计图中找到必要的信息是解题的关键.9.(2020·广东省初三一模)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.【答案】(1)200、81°;(2)补图见解析;(3)1 3【解析】(1)本次活动调查的总人数为(45+50+15)÷(1﹣15%﹣30%)=200人,则表示“支付宝”支付的扇形圆心角的度数为360°×45200=81°,故答案为:200、81°;(2)微信人数为200×30%=60人,银行卡人数为200×15%=30人,补全图形如下:由条形图知,支付方式的“众数”是“微信”,故答案为:微信;(3)将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:画树状图得:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为39=13.【点睛】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.10.(2020·广东省初三一模)“校园音乐之声“结束后,王老师整理了所有参赛选手的比赛成绩(单位:分),绘制成如下频数直方图和扇形统计图:(1)求本次比赛参赛选手总人数,并补全频数直方图;(2)求扇形统计图中扇形E的圆心角度数;(3)成绩在E区域的选手中,男生比女生多一人,从中随机选取两人,求恰好选中两名女生的概率.【答案】(1)36人,见解析;(2)50°;(3)树状图见解析,1 10【解析】【分析】(1)由D组人数及其所占百分比可得总人数,总人数减去A、B、C、D组人数求出E的人数即可补全图形;(2)用360°乘以E组人数所占比例即可得;(3)画树状图得出所有等可能结果数,再根据概率公式求解可得.【详解】(1)本次比赛参赛选手总人数为9÷25%=36(人),则E组人数为36﹣(4+7+11+9)=5(人),补全直方图如下:(2)扇形统计图中扇形E的圆心角度数为360°×536=50°.(3)由题意知E组中男生有3人,女生有2人,画图如下:共有20种等可能结果,其中恰好选中两名女生的有2种,所以恰好选中两名女生的概率为220=110.【点睛】本题主要考查了扇形统计图与频率分布直方图相结合的知识点,利用树状图求解概率. 11.(2020·东莞市长安培英初级中学初三二模)为更好地践行社会主义核心价值观,让同学们珍惜粮食,学会感恩.校学生会积极倡导“光盘行动”,某天午餐后学生会干部随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后制成如图所示的不完整的统计图.(1)这次被调查的同学共有________名;(2)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以提供40人用餐.据此估算,全校2000名学生一餐浪费的食物可供多少人食用一餐?【答案】(1)200;(2)54°;(3)全校2000名学生一餐浪费的食物可供400人食用一餐.【解析】【分析】(1)根据剩一半的条形统计图和扇形统计图的信息计算即可得;(2)先求出剩大量饭菜的同学占比,再乘以360︒即可得;(3)利用2000除以这次被调查的同学总人数,再乘以40即可得.【详解】(1)这次被调查的同学总人数为5025%200(名)故答案为:200;(2)剩大量饭菜的同学占比为30100%15% 200⨯=则其所对应扇形圆心角的度数为15%36054⨯︒=︒答:在扇形统计图中剩大量饭菜所对应扇形圆心角的度数54︒;(3)由题意得:200040400200⨯=(人)答:全校2000名学生一餐浪费的食物可供400人食用一餐.【点睛】本题考查了条形统计图和扇形统计图的信息关联等知识点,熟记统计调查的相关知识是解题关键.12.(2020·广东省初三一模)某班举行跳绳比赛,赛后整理参赛学生的成绩,将学生成绩分为A、B、C、D 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完善.请你根据统计图解答下列问题:(1)参加比赛的学生共有______名;(2)在扇影统计图中,m的值为_____,表示D等级的扇形的圆心角为____度;(3)先决定从本次比赛获得B等级的学生中,选出2名去参加学校的游园活动,已知B等级学生中男生有2名,其他均为女生,请用列表法或画树状图法求出所选2名学生给好是一名男生一名女生的概率.【答案】(1)20;(2)40,72;(3)3 5【解析】【分析】(1)根据等级为A的人数除以所占的百分比求出总人数;(2)根据D级的人数求得D等级扇形圆心角的度数和m的值;(3)求出女生有3名,列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【详解】(1)3÷15%=20(名);故答案为:20;(2)∵8÷20=40%,∴m=40;表示D等级的扇形的圆心角为:360°×420=72°;故答案为:40,72;(3)B等级学生人数为20﹣3﹣8﹣4=5(人),B等级学生中男生有2名,则女生有3名,画树状图如图:共有20个等可能的结果,所选2名学生恰好是一名男生一名女生的结果有12个,∴所选2名学生恰好是一名男生一名女生的概率为123 205=.【点睛】此题考查了条形统计图,扇形统计图以及列表法与树状图法,弄清题意,从条形图和扇形图得到解题所需数据是解本题的关键.13.(2020·广州市南武中学初三其他)体育组为了了解九年级450名学生排球垫球的情况,随机抽查了九年级部分学生进行排球垫球测试(单位:个),根据测试结果,制成了下面不完整的统计图表:(1)表中的数a=,b=;(2)估算该九年级排球垫球测试结果小于10的人数;(3)排球垫球测试结果小于10的为不达标,若不达标的5人中有3个男生,2个女生,现从这5人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率.【答案】(1)20,0.08;(2)45人;(3)3 5【解析】【分析】(1)先算出抽查的总人数,再利用扇形统计图求出a,即可求出b.(2)该九年级排球垫球测试结果小于10的人数450×0.1=45人;(3)列表列出所有可能结果,再求概率即可;【详解】(1)抽查了九年级学生数:50.150÷=(人),2030x≤<的人数:1445020360⨯=(人),即20a=,3040x≤<的人数:50521204---=(人),40.0850b==,故答案为20,0.08;(2)该九年级排球垫球测试结果小于10的人数450×0.1=45(人),答:该九年级排球垫球测试结果小于10的人数为45人;(3)列表如下() 2123 205P∴==选出的人为一个男生一个女生的概率.【点睛】本题考查的是概率,熟练掌握表格和扇形统计图获取信息和列表法求概率是解题的关键. 14.(2020·广东省初三其他)为全面贯彻党的教育方针,坚持“健康第一”的教育理念,促进学生健康成长,提高体质健康水平,成都市调整体育中考实施方案:分值增加至60,男1000米(女800米)必考,足球、篮球、排球“三选一”…,从2019年秋季新入学的七年级起开始实施.某中学为了解七年级学生对三大球类运动的喜爱情况,从七年级学生中随机抽取部分学生进行调查问卷,通过分析整理绘制了如下两幅统计图.请根据两幅统计图中的信息回答下列问题:(1)求参与调查的学生中,喜爱排球运动的学生人数,并补全条形图;(2)若该中学七年级共有400名学生,请你估计该中学七年级学生中喜爱篮球运动的学生有多少名?(3)若从喜爱足球运动的2名男生和2名女生中随机抽取2名学生,确定为该校足球运动员的重点培养对象,请用列表法或画树状图的方法求抽取的两名学生为一名男生和一名女生的概率.【答案】(1)21人,详见解析;(2)180名;(3)2 3【解析】【分析】(1)先根据足球人数及其百分比求得总人数,再用总人数乘以排球人数占总人数的百分比可得排球人数,即可补全图形;(2)根据样本估计总体,先求出喜爱篮球运动人数的百分比,然后用400乘以篮球人数占百分比,即可得到喜爱篮球运动人数;(3)画树状图得出所有等可能的情况数,找出1名男生和1名女生的情况数,根据概率公式即可得出所求概率.【详解】(1)由题意可知调查的总人数=12÷20%=60(人),所以喜爱排球运动的学生人数=60×35%=21(人)补全条形图如图所示:(2)∵该中学七年级共有400名学生,∴该中学七年级学生中喜爱篮球运动的学生有400×(1﹣35%﹣20%)=180名答:该中学七年级学生中喜爱篮球运动的学生有180名;(3)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是一名男生和一名女生结果数为8,所以抽取的两人恰好是一名男生和一名女生概率=812=23.【点睛】此题考查了条形统计图、扇形统计图以及列表法与树状图法,解题的关键是理解条形图与扇形图中数据间的关系.15.(2020·深圳市龙岗区南湾街道沙湾中学初三月考)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.【答案】(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2)如图;(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图;(列表方法略,参照给分).P(C粽)==.答:他第二个吃到的恰好是C粽的概率是.16.(2020·广东省初三一模)央视“经典咏流传”开播以来受到社会广泛关注.我市某校就“中华文化我传承——地方戏曲进校园”的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”.(1)被调查的总人数是_____________人,扇形统计图中C部分所对应的扇形圆心角的度数为_______.(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有__________人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.【答案】(1)50,216°;(2)补图见解析;(3)180;(4)2 5【解析】【分析】(1)由A类别人数及其所占百分比可得总人数,用360°乘以C部分人数所占比例可得;(2)总人数减去其他类别人数求得B的人数,据此即可补全条形图;(3)用总人数乘以样本中A类别人数所占百分比可得;(4)用树状图或列表法即可求出抽到性别相同的两个学生的概率.详解:(1)被调查的总人数为5÷10%=50人,扇形统计图中C部分所对应的扇形圆心角的度数为360°×3050=216°,(2)B类别人数为50-(5+30+5)=10人,补全图形如下:(3)估计该校学生中A类有1800×10%=180人;(4)列表如下:所有等可能的结果为20种,其中被抽到的两个学生性别相同的结果数为8,∴被抽到的两个学生性别相同的概率为82= 205.【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的应用.解题时注意:概率=所求情况数与总情况数之比.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.17.(2020·广东省初三二模)(抗击疫情)为了遏制新型冠状病毒疫情的蔓延势头,各地教育部门在推迟各级学校开学时间的同时提出“听课不停学”的要求,各地学校也都开展了远程网络教学,某校集中为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了了解学生的需求,该校通过网络对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据结果绘制成如下两幅不完整的统计图。
2020年中考数学《统计与概率》总复习题
1.为创建大数据应用示范城市,某市一机构针对市民最关注的四类生活信息进行了民意调查(被调查人每人限选一项),下面是四类生活信息关注度统计图表:
请根据图中提供的信息解答下列问题:
(1)本次参与调查的人数有1000人;
(2)关注城市医疗信息的有150人,并补全条形统计图;
(3)扇形统计图中,D部分的圆心角是144度.
【分析】(1)从两个统计图中可得到,C教育资源信息的有200人,占调查人数的20%,可求出调查总人数,
(2)求出“B城市医疗信息”的人数,即可补全条形统计图,
(3)D部分所占圆心角度数占360°的,计算结果即可.
【解答】解:(1)200÷20%=1000(人)
故答案为:1000.
(2)1000﹣250﹣200﹣400=150(人)
故答案为:150,补全条形统计图如图所示:
(3)360°×=144°,
故答案为:144.
【点评】考查条形统计图、扇形统计图的意义和制作方法,从两个统计图中获取数量和数量关系是解决问题的关键,样本估计总体是统计中常用的方法.。
统计与概率满分:100分一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.下列调查中,最适合采用全面调查的是( ) A .对全国中学生视力和用眼卫生情况的调查B .对“新型冠状病毒”疫情期间,某列车全体乘客的体温的调查C .对某鞋厂生产的鞋底能承受的弯折次数的调查D .对某池塘中现有鱼的数量的调查2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( ) A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )A .平均数B .中位数C .众数D .方差 4.下列说法正确的是( ) A .367人中至少有2人生日相同B .任意掷一枚均匀的骰子,掷出的点数是偶数的概率是13C .天气预报说明天的降水概率为90%,则明天一定会下雨D .某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖5.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( )A.16 B .15 C .14 D .136.在一个不透明的袋子中装有n 个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为13,那么n 的值是( )A .6B .7C .8D .9 7.一组数据1,3,-2,3,4的中位数是( )A .1B .-2C .12D .38.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是( ) A .96分,98分 B .97分,98分 C .98分,96分 D .97分,96分9.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3∶5∶2.小王经过考核后所得的分数依次为90,88,83分,那么小王的最后得分是( )A .87B .87.5C .87.6D .8810.如图,在平行四边形ABCD 中,E 为BC 的中点,BD ,AE 交于点O ,若随机向平行四边形ABCD 内投一粒米,则米粒落在图中阴影部分的概率为( ) A.116 B .112 C .18D .16二、填空题(本大题共7小题,每小题4分,共28分)11.近年来食品安全问题备受人们的关注,某海关想检验一批进口食品的防腐剂含量是否符合国家标准,这种调查适用 (填“全面调查”或“抽样调查”). 12.已知一组数据:3,5,x,7,9的平均数为6,则x = .13.东莞市某中学为积极响应疫情期间“停课不停学”的要求,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是 .时间(小时) 0.5 1 1.5 2 2.5 人数(人)1222105314.某班50个分数段的学生为 人.15.小刘和小李参加射击训练,各射击10次的平均成绩相同,如果他们射击成绩的方差分别是s 2小刘=0.6,s 2小李=1.4,那么两人中射击成绩比较稳定的是 .16.一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有70次摸到红球.请你估计这个口袋中有 个白球.17.在-4,-2,1,2四个数中,随机取两个数分别作为函数y =ax 2+bx +1中a ,b 的值,则该二次函数图象恰好经过第一、二、四象限的概率为 . 三、解答题(一)(本大题共3小题,每小题6分,共18分)18.一位同学进行五次投实心球的练习,每次投出的成绩如下表:投实心球序次 1 2 3 4 5成绩(m) 10.5 10.2 10.3 10.6 10.4求该同学这五次投实心球的平均成绩.19.在四个互不相等的正整数中,最大的数是8,中位数是4,求这四个数(按从小到大的顺序排列).20.如图,假设可以随机在图中取点. (1)这个点取在阴影部分的概率是 ;(2)在保留原阴影部分的情况下,请你重新设计图案(直接在图上涂阴影),使得这个点取在阴影部分的概率为37.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为 ;(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.22.由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.23.全国“新冠”疫情逐渐被控制,各地交通得以解封.某检疫小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A,B,C,D,E,由调查所得数据绘制了如图所示的不完整的统计图表.类别频率A mB 0.35C 0.2D nE 0.05m,n的值;(2)补全统计图;(3)若某时段通过该路段的小型汽车数量为5 000辆,请你估计其中每车只乘坐1人的小型汽车数量.答案1.B 2.C 3.B 4.A 5.D 6.A 7.D 8.A 9.C 10.B 11.抽样调查 12.6 13.1小时 14.10 15.小刘 16.3 17.1618.解:该同学这五次投实心球的平均成绩为 10.5+10.2+10.3+10.6+10.45=10.4(m).故该同学这五次投实心球的平均成绩为10.4 m. 19.解:∵中位数是4,最大的数是8, ∴第二个数和第三个数的和是8, ∵这四个数是不相等的正整数, ∴这两个数是3,5或2,6,∴这四个数是1,3,5,8或2,3,5,8或1,2,6,8. 20.解:(1)17(2)如图(答案不唯一).21.解:(1)25(2)画树状图如下:由树状图知,共有20种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果, ∴两次所抽取的卡片恰好都是轴对称图形的概率为620=310.22.解:(1)∵转盘的4个等分区域内只有1,3两个奇数,∴小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率为24=12.(2)列表如下:1 2 3 4 1 (1,1) (1,2) (1,3) (1,4) 2 (2,1) (2,2) (2,3) (2,4) 3 (3,1) (3,2) (3,3) (3,4) 4(4,1)(4,2)(4,3)(4,4)∴P(小王胜)=416=14,P(小张胜)=416=14,∴游戏公平.23.解:(1)本次调查的小型汽车数量为32÷0.2=160(辆),m=48÷160=0.3,n=1-(0.3+0.35+0.2+0.05)=0.1.(2)B类小汽车的数量为160×0.35=56,D类小汽车的数量为160×0.1=16,补全统计图略.(3)估计其中每车只乘坐1人的小型汽车数量为5 000×0.3=1 500(辆).。
2020概率专题训练一、填空题:(每题3分,共36分)1、数 102030 中的 0 出现的频数为_____。
2、在一个装有 2 个红球,2 个白球的袋子里任意摸出一个球,摸出红球的可能性为__。
3、不可能发生是指事件发生的机会为_____。
4、“明天会下雨”,这个事件是_____事件。
(填“确定”或“不确定”)5、写出一个必然事件:_______________。
6、10把钥匙中有 3 把能打开门,今任取出一把,能打开门的概率为_____。
7、抛掷两枚骰子,则P(出现 2 个 6)=_____。
8、小射手为练习射击,共射击60次,其中36依次击中靶子的概率为_____。
9、小红随意在如图所示的地板上踢键子,则键子恰落在黑色方砖上的概率为_____。
10、足球场上,往往用抛硬币的方式来决定哪方先发球,吗?_____11、小明有两件上衣,三条长裤,则他有几种不同的穿法_____。
12、小红、小张,在一起做游戏,需要确定的游戏的先后顺序,他们约定用“剪子,包袱,锤子”的方式确定,小红取胜的概率是_____。
二、选择题:(每题 4 分,共 24 分)1、下列事件是必然发生的是()A、明天是星期一B、十五的月亮象细钩C、早上太阳从东方升起D、上街遇上朋友2、有五只灯泡,其中两只是次品,从中任取一只恰为合格品的概率为()A、20%B、40%C、50%D、60%3、抛掷一枚普遍的硬币三次,则下列等式成立的是()A、P(正正正)=P(反反反)B、P(正正正)=20%C、P(两正一反)=P(正正反)D、P(两反一正)=50%4、一个口袋里有1个红球,2个白球,3个黑球,从中取出一个球,该球是黑色的。
这个事件是()A、不确定事件B、必然事件C、不可能事件D、以上都不对5、在“石头、剪子、布”的游戏中,当你出“石头”时,对手与你打平的概率为()A、12B、13C、23D、146、从A、B、C、D四人中用抽筌的方式,选取二人打扫卫生,那么能选中A、B的概率为()A、14B、112C、12D、16三、解答题:(每题 9 分,共 54 分)1、一布袋中放有红、黄、白三种颜色的球各一,它们除颜色处其他都一个样,小明从中摸出一个球后放回摇匀,再摸出一个球,请你利用树状图分析可能出现的情况。
2020年全国中考数学试题分类(16)——统计和概率一.频数(率)分布表(共1小题)1.(2020•赤峰)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀a30%良好30 b合格9 15%不合格 3 5%合计60 60 100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为人.二.扇形统计图(共2小题)2.(2020•阜新)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<90 4B90≤x<110 15C110≤x<130 18D130≤x<150 12E150≤x<170 mF170≤x<190 5(1)本次测试随机抽取的人数是人,m=;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.3.(2020•盘锦)某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间的长短,将他们分为A,B,C,D四个组别,并绘制了如图不完整的频数分布表和扇形统计图.频数分布表组别时间/(小时)频数/人数A0≤t<0.5 2nB0.5≤t<1 20C1≤t<1.5 n+10D t≥1.5 5请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.三.条形统计图(共5小题)4.(2020•广州)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四5.(2020•贵港)某校对九年级学生进行“综合素质”评价,评价的结果分为A(优秀)、B(良好)、C(合格)、D(不合格)四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制以下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)B(良好)等级人数所占百分比是;(2)在扇形统计图中,C(合格)等级所在扇形的圆心角度数是;(3)请补充完整条形统计图;(4)若该校九年级学生共1000名,请根据以上调查结果估算:评价结果为A(优秀)等级或B(良好)等级的学生共有多少名?6.(2020•兰州)为培养学生正确的劳动价值观和良好劳动品质,加强新时代中学生劳动教育,某校八年级(1)班对本班35名学生进行了劳动能力量化评估和近一周家务劳动总时间调查,并对相关数据进行了收集、整理和分析,研究过程中的部分数据如下:信息一:劳动能力量化评估的成绩采用十分制,得分均为整数;信息二:信息三:近一周家务劳动时间分布表时间/小时t≤1 1<t≤2 2<t≤3 3<t≤4 t>4人数/人 5 8 12 7 3信息四:劳动能力量化成绩与近一周家务劳动总时间统计表6 7 8 9 10成绩/分人数时间/小时t≤1 4 1 0 0 01<t≤2 0 6 1 1 02<t≤3 0 0 9 3 03<t≤4 0 1 1 3 2t>4 0 0 0 1 2根据以上信息,解决下列问题:(1)直接从信息二的统计图中“读”出八年级(1)班劳动能力量化成绩的平均分为分;(2)请你判断下列说法合理吗?(请在横线上填写“合理”或“不合理”)①规定劳动能力量化成绩8分及以上为合格,八年级(1)班超过半数的学生达到了合格要求:.②班主任对近一周家务劳动总时间在4小时以上,且劳动能力量化成绩取得10分的学生进行表彰奖励,恰有3人获奖:.③小颖推断劳动能力量化成绩为8分的同学近一周家务劳动总时间主要分布在2<t≤3的时间段:.(3)结合以上信息,你认为普遍情况下参加家务劳动的时间与劳动能力之间具有怎样的关系?7.(2020•朝阳)由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,m的值是,D对应的扇形圆心角的度数是;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.8.(2020•锦州)某中学八年级在新学学期开设了四门校本选修课程:A.轮滑;B.书法;C.舞蹈;D.围棋,要求每名学生必须选择且只能选择其中一门课程,学校随机抽查了部分八年级学生,对他们的课程选择情况进行了统计,并绘制了如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)此次共抽查了名学生;(2)请通过计算补全条形统计图;(3)若该校八年级共有900名学生,请估计选择C课程的有多少名学生.四.折线统计图(共4小题)9.(2020•济南)某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多4510.(2020•广西)如图是A,B两市去年四季平均气温的折线统计图.观察图形,四季平均气温波动较小的城市是.(填“A”或“B”)11.(2020•德阳)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是.12.(2020•台州)甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为S甲2与S乙2,则S甲2S乙2.(填“>”、“=”、“<”中的一个)五.加权平均数(共2小题)13.(2020•德阳)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元14.(2020•眉山)某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分均为100,所占比例如下表:项目学习卫生纪律活动参与所占比例40% 25% 25% 10%八年级2班这四项得分依次为80,90,84,70,则该班四项综合得分(满分100)为()A.81.5 B.82.5 C.84 D.86六.中位数(共2小题)15.(2020•雅安)在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:投中次数 5 7 8 9 10人数 2 3 3 1 1则这10人投中次数的平均数和中位数分别是()A.3.9,7 B.6.4,7.5 C.7.4,8 D.7.4,7.516.(2020•乐山)某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.七.众数(共6小题)17.(2020•西藏)格桑同学一周的体温监测结果如下表:星期一二三四五六日体温(单位:℃)36.6 35.9 36.5 36.2 36.1 36.5 36.3分析上表中的数据,众数、中位数、平均数分别是()A.35.9,36.2,36.3 B.35.9,36.3,36.6C.36.5,36.3,36.3 D.36.5,36.2,36.618.(2020•朝阳)某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本):300,200,200,300,300,500这组数据的众数、中位数、平均数分别是()A.300,150,300 B.300,200,200C.600,300,200 D.300,300,30019.(2020•鞍山)我市某一周内每天的最高气温如下表所示:最高气温(℃)25 26 27 28天数 1 1 2 3则这组数据的中位数和众数分别是()A.26.5和28 B.27和28 C.1.5和3 D.2和320.(2020•河池)某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是()A.85,85 B.85,88 C.88,85 D.88,8821.(2020•毕节市)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,将他们投中的次数进行统计,制成下表:投中次数 3 5 6 7 8 9人数 1 3 2 2 1 1则这10名队员投中次数组成的一组数据中,众数和中位数分别为()A.5,6 B.2,6 C.5,5 D.6,522.(2020•包头)两组数据:3,a,b,5与a,4,2b的平均数都是3.若将这两组数据合并为一组新数据,则这组新数据的众数为()A.2 B.3 C.4 D.5八.极差(共1小题)23.(2020•巴中)某地区一周内每天的平均气温如下:25℃,27.3℃,21℃,21.4℃,28℃,33.6℃,30℃.这组数据的极差为()A.8.6 B.9 C.12.2 D.12.6九.方差(共4小题)24.(2020•盘锦)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁25.(2020•赤峰)学校朗诵比赛,共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数据特征是()A.平均数B.中位数C.众数D.方差26.(2020•永州)已知一组数据1,2,8,6,8,对这组数据描述正确的是()A.众数是8 B.平均数是6 C.中位数是8 D.方差是927.(2020•玉林)在对一组样本数据进行分析时,小华列出了方差的计算公式:s2= (2−x)2+(3−x)2+(3−x)2+(4−x)2x,由公式提供的信息,则下列说法错误的是()A.样本的容量是4 B.样本的中位数是3C.样本的众数是3 D.样本的平均数是3.5一十.统计量的选择(共1小题)28.(2020•大庆)在一次青年歌手比赛中,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0(单位:分).若去掉一个最高分和一个最低分.则去掉前与去掉后没有改变的一个统计量是()A.平均分B.方差C.中位数D.极差一十一.随机事件(共1小题)29.(2020•呼伦贝尔)下列事件是必然事件的是()A.任意一个五边形的外角和为540°B.抛掷一枚均匀的硬币100次,正面朝上的次数为50次C .13个人参加一个集会,他们中至少有两个人的出生月份是相同的D .太阳从西方升起一十二.概率公式(共4小题) 30.(2020•阜新)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是( ) A .1B .25C .35D .1231.(2020•大连)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( ) A .14B .13C .37D .4732.(2020•葫芦岛)一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是( ) A .16B .13C .12D .2333.(2020•鄂尔多斯)下列说法正确的是( ) ①√5−12的值大于12; ②正六边形的内角和是720°,它的边长等于半径; ③从一副扑克牌中随机抽取一张,它是黑桃的概率是14;④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s 2甲=1.3,s 2乙=1.1,则乙的射击成绩比甲稳定. A .①②③④ B .①②④ C .①④ D .②③ 一十三.列表法与树状图法(共13小题) 34.(2020•广西)九(1)班从小华、小琪、小明、小伟四人中随机抽出2人参加学校举行的乒乓球双打比赛,每人被抽到的可能性相等,则恰好抽到小华和小明的概率是( ) A .14B .15C .16D .11235.(2020•临沂)从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是( ) A .112B .18C .16D .1236.(2020•广西)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )A .16B .14C .13D .1237.(2020•杭州)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是 . 38.(2020•西宁)随着手机APP 技术的迅猛发展,人们的沟通方式更便捷、多样.某校数学兴趣小组为了解某社区20~60岁居民最喜欢的沟通方式,针对给出的四种APP (A 微信、BQQ 、C 钉钉、D 其他)的使用情况,对社区内该年龄段的部分居民展开了随机问卷调查(每人必选且只能选择其中一项).根据调查结果绘制了如图不完整的统计图,请你根据图中信息解答下列问题:(1)参与问卷调查的总人数是;(2)补全条形统计图;(3)若小强和他爸爸要在各自的手机里安装A,B,C三种APP中的一种,求他俩选择同一种APP的概率,并列出所有等可能的结果.39.(2020•广安)2020年6月26日是第33个国际禁毒日,为了解同学们对禁毒知识的掌握情况,从广安市某校800名学生中随机抽取部分学生进行调查,调查分为“不了解”“了解较少”“比较了解”“非常了解”四类,并根据调查结果绘制出如图所示的两幅不完整的统计图.请根据统计图回答下列问题:(1)本次抽取调查的学生共有人,估计该校800名学生中“比较了解”的学生有人.(2)请补全条形统计图.(3)“不了解”的4人中有3名男生A1,A2,A3,1名女生B,为了提高学生对禁毒知识的了解,对这4人进行了培训,然后随机抽取2人对禁毒知识的掌握情况进行检测,请用画树状图或列表的方法,求恰好抽到2名男生的概率.40.(2020•兰州)某学校组织了以“纪念革命先烈,激发爱国热情”为主题的爱国主义教育研学活动,参加活动的学生可从学校提供的四个研学地点中任选一个,地点如下:A:陇南市宕昌县哈达铺红军长征纪念馆;B:陇南市两当兵变纪念馆;C:甘南州迭部县腊子口战役纪念馆;D:张掖市高台县中国工农红军西路军纪念馆.小宁和小丽决定通过抽签的方式确定本次研学活动目的地,请你用树状图或列表的方法求出小宁和小丽抽到同一地点的概率.41.(2020•日照)为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x<80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是;众数是;(2)根据题中信息,估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D的概率是;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明.42.(2020•锦州)A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.43.(2020•朝阳)某校准备组建“校园安全宣传队”,每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选.具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选.(1)用画树状图或列表法,写出“王老师从袋中随机摸出两个小球”可能出现的所有结果.(2)求甲同学被选中的概率.44.(2020•盘锦)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.45.(2020•葫芦岛)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.46.(2020•鞍山)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.一十四.利用频率估计概率(共4小题)47.(2020•邵阳)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m248.(2020•盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:身高x/cm x<160 160≤x<170 170≤x<180 x≥180人数60 260 550 130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32 B.0.55 C.0.68 D.0.8749.(2020•鞍山)在一个不透明的袋子中装有6个红球和若干个白球,这些球除颜色外都相同,将球搅匀后随机摸出一个球,记下颜色后放回,不断重复这一过程,共摸球100次,发现有20次摸到红球,估计袋子中白球的个数约为.50.(2020•呼和浩特)公司以3元/kg的成本价购进10000kg柑橘,并希望出售这些柑橘能够获得12000元利润,在出售柑橘(去掉损坏的柑橘)时,需要先进行“柑橘损坏率”统计,再大约确定每千克柑橘的售价,如表是销售部通过随机取样,得到的“柑橘损坏率”统计表的一部分,由此可估计柑橘完好的概率为(精确到0.1);从而可大约估计每千克柑橘的实际售价为元时(精确到0.1),可获得12000元利润.柑橘总质量n/kg损坏柑橘质量m/kg柑橘损坏的频率xx(精确到0.001)………250 24.75 0.099 300 30.93 0.103 350 35.12 0.100 450 44.54 0.099 500 50.62 0.1012020年全国中考数学试题分类(16)——统计和概率参考答案与试题解析一.频数(率)分布表(共1小题) 1.【解答】解:根据频数分布表可知: 9÷15%=60,∴a =60×30%=18,b =1﹣30%﹣15%﹣5%=50%, ∴300×(30%+50%)=240(人).答:估计该校七年级学生身体素质良好及以上的人数为240人. 故答案为:240.二.扇形统计图(共2小题) 2.【解答】解:(1)15÷25%=60(人), m =60﹣4﹣15﹣18﹣12﹣5=6;答:本次测试随机抽取的人数是60人, 故答案为60,6; (2)C 等级所在扇形的圆心角的度数=360°×1860=108°,(3)该校七年级学生能够达到优秀的人数为 300×12+6+560=115(人). 故答案为:60,6. 3.【解答】解:(1)m =20÷40%=50, 2n +(n +10)=50﹣20﹣5, 解得,n =5,A 组所占的百分比为:2×5÷50×100%=20%, C 组所占的百分比为:(5+10)÷50×100%=30%, 补全的扇形统计图如右图所示; (2)∵A 组有2×5=10(人),B 组有20人,抽查的学生一共有50人, ∴所抽取的m 名学生平均每天课外阅读时间的中位数落在B 组; (3)1500×5+10+550=600(名), 答:该校有600名学生平均每天课外阅读时间不少于1小时.三.条形统计图(共5小题) 4.【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一, 故选:A . 5.【解答】解:(1)∵被调查的人数为4÷10%=40(人), ∴B 等级人数为40﹣(18+8+4)=10(人), 则B (良好)等级人数所占百分比是1040×100%=25%,故答案为:25%;(2)在扇形统计图中,C (合格)等级所在扇形的圆心角度数是360°×840=72°,故答案为:72°;(3)补全条形统计图如下:(4)估计评价结果为A (优秀)等级或B (良好)等级的学生共有1000×18+1040=700(人). 6.【解答】解:(1)平均成绩=4×6+8×7+11×8+8×9+4×1035=8(分),故答案为8.(2)①规定劳动能力量化成绩8分及以上为合格,八年级(1)班超过半数的学生达到了合格要求:合理.②班主任对近一周家务劳动总时间在4小时以上,且劳动能力量化成绩取得10分的学生进行表彰奖励,恰有3人获奖:不合理.③小颖推断劳动能力量化成绩为8分的同学近一周家务劳动总时间主要分布在2<t ≤3的时间段:合理. 故答案为合理,不合理,合理.(3)参加家务劳动的时间越长,劳动能力的成绩得分越大. 7.【解答】解:(1)20÷40%=50(名); 故答案为:50; (2)15÷50×100%=30%,即m =30;1050×360°=72°;故答案为:30,72°;(3)50﹣20﹣15﹣10=5(名);(4)2000×1050=400(名).答:该校最喜欢方式D 的学生约有400名.8.【解答】解:(1)这次学校抽查的学生人数是40÷80360=180(名), 故答案为:180名;(2)C 项目的人数为180﹣46﹣34﹣40=60(名) 条形统计图补充为:(3)估计全校选择C课程的学生有900×60180=300(名).四.折线统计图(共4小题)9.【解答】解:因为58出现了两次,其他数据都出现了一次,所以每月阅读课外书本数的众数是58,故选项A错误;每月阅读课外书本数从小到大的顺序为:28、33、45、58、58、72、78,最中间的数字为58,所以该组数据的中位数为58,故选项B正确;从折线图可以看出,从2月到4月阅读课外书的本数下降,4月到5月阅读课外书的本数上升,故选项C 错误;从1到7月份每月阅读课外书本数的最大值78比最小值多28多50,故选项D错误.故选:B.10.【解答】解:由折线图可知,A城市的年平均气温=14(15+26+23+12)=19℃,B城市的年平均气温=14(6+20+9+2)=9.25℃,所以A城市的方差为:S A2=14×[(15﹣19)2+(26﹣19)2+(23﹣19)2+(12﹣19)2]=32.5,B城市的方差为:S B2=14×[(6﹣9.25)2+(20﹣9.25)2+(9﹣9.25)2+(2﹣9.25)2]≈44.7,所以S A2<S B2,所以四季平均气温波动较小的城市是A.故答案为:A.11.【解答】解:由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:9.7+9.82=9.75.故答案为:9.75. 12.【解答】解:由折线统计图得乙同学的成绩波动较大, 所以S 甲2<S 乙2. 故答案为:<.五.加权平均数(共2小题) 13.【解答】解:这天销售的四种商品的平均单价是: 50×10%+30×15%+20×55%+10×20%=22.5(元), 故选:C . 14.【解答】解:80×40%+90×25%+84×25%+70×10%=82.5(分), 即八年级2班四项综合得分(满分100)为82.5分, 故选:B .六.中位数(共2小题)15.【解答】解:这10人投中次数的平均数为5×2+7×3+8×3+9+1010=7.4,中位数为7+82=7.5,故选:D . 16.【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40, 其中第四个数据为39,所以这组数据的中位数为39. 故答案为39.七.众数(共6小题) 17.【解答】解:这组数据中36.5出现了2次,次数最多,所以众数是36.5;将数据按照从小到大(或从大到小)的顺序排列为35.9,36.1,36.2,36.3,36.5,36.5,36.6,处于中间的数据是36.3,所以中位数是36.3; 平均数是x =17×(36.6+35.9+36.5+36.2+36.1+36.5+36.3)=36.3.故选:C . 18.【解答】解:众数:一组数据中出现次数最多的数据为这组数据的众数,这组数据中300出现了3次,次数最多,所以众数是300;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,6个数据按顺序排列之后,处于中间的数据是300,300,所以中位数是300+3002=300;平均数是x =16(200+200+300+300+300+500)=300,故选:D . 19.【解答】解:共7天,中位数应该是排序后的第4天, 则中位数为:27, 28℃的有3天,最多, 所以众数为:28. 故选:B . 20.【解答】解:将数据85,90,89,85,98,88,80按照从小到大排列是:80,85,85,88,89,90,98,故这组数据的众数是85,中位数是88, 故选:B . 21.【解答】解:由表可知,这10个数据中数据5出现次数最多,所以众数为5, ∵上从小到大排序后中位数为第5、6个数据的平均数,且第5、6个数据均为6, ∴这组数据的中位数为6+62=6,故选:A .。
2020年九年级数学典型中考压轴题训练:统计与概率1.某学校为了增强学生体质,决定开设以下体育活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查.并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)求这次被调查的学生人数;(2)通过计算将条形统计图补充完整;(3)若该校共有学生1200人,请你估计喜欢羽毛球的学生有多少人?2.在这场疫情中,“新型冠状性病毒”拆散了许多家庭,也有不少人的生命戛然而止,令人心痛.小明为了纪念这场疫情,自己动手做了四张扑克牌,四张扑克牌的文字分别为“武”、“汉”、“加”、“油”.小明将4张扑克牌翻成反面,然后搅匀扑克牌,搅匀后从中随机抽取一张牌,记录字后然后放回去,接着抽取一张牌,记录第二张牌上的字.请用画树状图或列表的方法,求出摸到两次“武”字的概率.3.一二六中学计划举行“最爱辽宁红色景点”调查活动,现随机抽取了部分学生进行主题为“你去过的景点是?”的问卷调查,要求学生必须从“A(辽沈战役纪念馆),B(鸭绿江断桥景区),C(战犯管理所旧址),D(大连市关向应故居纪念馆)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:(1)本次调查的学生人数为人;(2)在扇形统计图中,D部分所占圆心角的度数为°;(3)请直接将两个统计图补充完整;(4)若该校共有2400名学生,估计该校最想去A和B的学生共有多少人?4.为了解本校九年级同学双休日参加体育锻炼的时间,课题小组进行了问卷调查,并用调查结果绘制了如下两幅统计图(均不完整),其中A、B、C、D、E选项对应的时间(小时)分别为:0.5,1,1.5,2,2小时以上,请根据统计图解答以下问题:(1)求本次接受问卷调查的人数;(2)通过计算补全条形统计图;(3)本校有九年级同学共800人,请估计双休日参加体育锻炼时间在2小时以内(含2小时)的人数.5.在课堂上,老师将除颜色外都相同的1个黑球和若干个白球放入一个不透明的口袋并搅匀,让全班同学依次进行摸球试验,每次随机摸出一个球,记下颜色再放回搅匀,下表是试验得到的一组数据.摸球的次数n100150200500800摸到黑球的次数m263749124200摸到黑球的频率0.260.2470.2450.2480.25(1)估算口袋中白球的个数;(2)用画树状图或列表的方法计算连续两名同学都摸出白球的概率.6.“同享一片蓝天,共建美好家园”,北京某中学初三年级同学积极参与义务植树活动.小明同学为了了解本年级600个同学在2019年义务植树的数量,进行了抽样调查,随即抽取了其中30个同学,收集的数据如下(单位:棵):112423233433433534344545343456(1)对以上数据进行整理、描述和分析:①绘制如下的统计图则该统计图中种植3棵树的有个同学,种植4棵树的有个同学;②这30个同学2019年义务植树数量的中位数是,众数是;(2)中国植树节定于每年的3月12日,是中国为激发人们爱林、造林的热情,促进国土绿化,保护人类赖以生存的生态环境.经过进一步调查,小明同学发现这30个同学中有23个是在3月份去义务植树的,由此可以估计该年级所有同学中在3月份去义务植树的有个.7.为宣传6月6日世界海洋日,某校八年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:表1知识竞赛成绩分组统计表组别分数/分频数A60≤x<70aB70≤x<8020C80≤x<9028D90≤x<10036(1)本次调查一共随机抽取了个参赛学生的成绩;(2)表1中a=;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是;(4)请你估计,该校九年级竞赛成绩达到90分以上(含90分)的学生约有人.8.4月23日是世界读书日,全称为世界图书与版权日,又称“世界图书日“,设立的目的是推动更多的人去阅读和写作,希望所有人都能尊重和感谢为人类文明做出过巨大贡献的文学、文化、科学、思想大师们,保护知识产权.习近平说:“我爱好挺多,最大的爱好是读书,读书已成为我的一种生活方式,读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”学校某兴趣小组为了了解学生课外阅读的情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:【收集数据】从学校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如表(单位:min):30608150401101301469010060811201407081102010081【整理数据】按如表分段整理样本数据:课外阅读时间x(min)0≤x<4040≤x<8080≤x<120120≤x≤160人数3584【分析数据】对样本数据进行分析得到如表分析表:平均数中位数众数80m n【得出结论】(1)补全分析表中的数据:m=,n=;(2)如果该校现有学生1600人,请估计每周阅读时间超过90min的学生有多少名?(3)假设平均阅读一本课外书的时间为260分钟,请你选择一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?9.为了推动阳光体育运动的广泛开展,引导学生走向操场、走进大自然、走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买150双运动鞋,建议购买35号运动鞋多少双?10.镇政府想了解对王家村进行“精准扶贫”一年来村民的经济情况,统计员小李用简单随机抽样的方法,在全村130户家庭中随机抽取20户,调查过去一年的收入(单位:万元),从而去估计全村家庭年收入情况.已知调查得到的数据如下:1.9,1.3,1.7,1.4,1.6,1.5,2.7,2.1,1.5,0.9,2.6,2.0,2.1,1.0,1.8,2.2,2.4,3.2,1.3,2.8为了便于计算,小李在原数据的每个数上都减去1.5,得到下面第二组数:0.4,﹣0.2,0.2,﹣0.1,0.1,0,1.2,0.6,0,﹣0.6,1.1,0.5,0.6,﹣0.5,0.3,0.7,0.9,1.7,﹣0.2,1.3(1)请你用小李得到的第二组数计算这20户家庭的平均年收入,并估计全村年收入及全村家庭年收入超过1.5万元的百分比;已知某家庭过去一年的收入是1.89万元,请你用调查得到的数据的中位数推测该家庭的收入情况在全村处于什么水平?(2)已知小李算得第二组数的方差是S,小王依据第二组数的方差得出原数据的方差为(1.5+S)2,你认为小王的结果正确吗?如果不正确,直接写出你认为正确的结果.11.为了遏制新型冠状病毒疫情的蔓延势头,各地教育部门在推迟各级学校开学时间的同时提出“停课不停学”的要求,各地学校也都开展了远程网络教学,某校集合为学生提供四类在线学校方式:在线阅读、在线听课、在线答疑、在线讨论,为了了解学生的需求,该校通过网络对本校部分学生进行了“你对哪类在线学校方式最感兴趣”的调查,并根据地产结果绘制成如下两幅不完整的统计图.(1)本次调查的人数有多少人?(2)请补全条形图;(3)请求出“在线答疑”在扇形图中的圆心角度数;(4)小宁和小娟都参加了远程网络教学活动,请求出小宁和小娟选择同一种学习方式的12.某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.请结合统计图,回答下列问题(1)本次调查学生共人,a=,并将条形图补充完整;(2)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.13.为积极响应“弘扬传统文化”的号召,某学校倡导全校学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛.为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”.根据调查结果绘制成的统计图(部分)如图所示:大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表:一周诗词诵背数量3首4首5首6首7首8首人数101015402520请根据调查的信息分析:(1)以抽查的这部分学生为样本,求“在大赛启动之初,一周诗词诵背数量不超过5首”(2)以这部分学生经典诗词大赛启动之初和结束一个月后,一周诗词诵背数量的平均数作为决策依据,说明平均每名学生一周诗词诵背数量的增长率接近16%还是22%?14.甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.15.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:(1)本次调查一共随机抽取了个参赛学生的成绩;(2)表1中a=;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是;(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有人.表1 知识竞赛成绩分组统计表组别分数/分频数A60≤x<70aB70≤x<8010C80≤x<9014D90≤x<10018参考答案1.【解答】解:(1)这次被调查的学生人数为20÷=200(人);(2)选择C项目的人数为200﹣(20+80+40)=60(人),补全图形如下:(3)喜欢羽毛球的学生有1200×=360(人).2.【解答】解:将武汉加油分别记为1、2、3、4,列表如下:1234 111121314221222324331323334441424344由表可知共有16种等可能结果,其中摸到两次“武”字的只有1种结果,∴摸到两次“武”字的概率为.3.【解答】解:(1)本次调查的学生人数为66÷55%=120.故答案为120;(2)在扇形统计图中,“黄果树瀑布”部分所占圆心角的度数为360°×5%=18°.故答案为18;(3)选择C的人数为:120×25%=30(人),A所占的百分比为:1﹣55%﹣25%﹣5%=15%.补全统计图如图:(4)70%×2400=1680(人).答:该校共有2400名学生,估计该校最想去A和B的学生共有1680人.4.【解答】解:(1)40÷25%=160(人)答:本次接受问卷调查的同学有160人;(2)D组人数为:160×18.75%=30(人)统计图补全如图:(3)800×=750(人),答:双休日参加体育锻炼时间在2小时以内(含2小时)的人数为750人.5.【解答】解:(1)又表格中数据可得出,摸到黑球的频率稳定在0.25,故1÷0.25﹣1=3(个),答:口袋中白球的个数为3个;(2)画树状图得:∵共有16种等可能的结果,两次都摸到白球的有9种情况,∴两次都摸到白球的概率为:.6.【解答】解:(1)①由题目中的数据可知,种植3棵树的有11个同学,种植4棵的有9个同学,补全的统计图如右图所示,故答案为:11,9;②这30个同学2019年义务植树数量的中位数是3,众数是3,故答案为:3,3;(2)600×=460(个),即该年级所有同学中在3月份去义务植树的有460个,故答案为:460.7.【解答】解:(1)36÷36%=100(个).(2)a=100×16%=16(个).(3)将竞赛成绩从小到大排列后处在第50、51位的数都落在C组,因此中位数落在C 组;(4)500×36%=180(人).答:该校九年级竞赛成绩达到90分以上(含90分)的学生约有180人.故答案为:100;16;C组;180.8.【解答】解:(1)将数据重新排列为10、20、30、40、50、60、60、70、81、81、81、81、90、100、100、110、120、130、140、146,数据81出现次数最多,所以众数为81,第10、11个数据均为81,所以中位数为=81,故答案为:81、81;(2)估计每周阅读时间超过90min的学生有1600×=560(人);(3)因为该校学生平均每周阅读时间为80min,所以=16,即估计该校学生每人一年(按52周计算)平均阅读16本课外书.9.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为:6+12+10+8+4=40(人),图①中m的值为:100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35号;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)根据题意得:150×30%=45(双),答:建议购买35号运动鞋45双.10.【解答】解:(1)第二组数据的平均数为(0.4﹣0.2+0.2﹣0.1+0.1+0+1.2+0.6+0﹣0.6+1.1+0.5+0.6﹣0.5+0.3+0.7+0.9+1.7﹣0.2+1.3)=0.4,所以这20户家庭的平均年收入=1.5+0.4=1.9(万元),130×1.9=247,估计全村年收入为247万元;全村家庭年收入超过1.5万元的百分比为×100%=65%;第二组数据排序为:﹣0.6,﹣0.5,﹣0.2,﹣0.2,﹣0.1,0,0,0.1,0.2,0.3,0.4,0.5,0.6,0.6,0.7,0.9,1.1,1.2,1.3,1.7,∴这组数据的中位数为=0.35,∴原数据的中位数为:1.5+0.35=1.85,某家庭过去一年的收入是1.89万元,则该家庭的收入情况在全村处于中上游;(2)小王的结果不正确.第一组数据的方差和第二组数据的方差一样.它们的方差=[(0.4﹣0.4)2+(﹣0.2﹣0.4)2+(0.2﹣0.4)2+…+(1.3﹣0.4)2]=0.34.11.【解答】解:(1)本次调查的人数有25÷25%=100(人);(2)在线答题的人数有:100﹣25﹣40﹣15=20(人),补图如下:(3)“在线答疑”在扇形图中的圆心角度数是360°×=72°;(4)记四种学习方式:在线阅读、在线听课、在线答疑、在线讨论,分别为A、B、C、D,则可画树状图如下:共有16种等情况数,其中小宁和小娟选择同一种学习方式的有4种,则小宁和小娟选择同一种学习方式的概率是=.12.【解答】解:(1)本次调查学生共120÷40%=300(人),a%=1﹣40%﹣30%﹣20%=10%,∴a=10,10%×300=30,补全图形如下:故答案为:300,10;(2)画树状图为:共有12种等可能的结果数,其中每班所抽到的两项方式恰好是“跑步”和“跳绳”的结果数为2,所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率==.13.【解答】解:(1)由题意得抽查的这部分学生的数量为:20÷=120(名),大赛启动之初,一周诗词诵背数量为4首的人数为120×=45(名),则P(大赛启动之初,一周诗词诵背数量不超过5首)═=;(2)大赛启动之初,一周诗词诵背数量的平均数为(15×3+45×4+20×5+16×6+13×7+11×8)=5(首),大赛启结束一个月后,一周诗词诵背数量的平均数为(10×3+10×4+15×5+40×6+25×7+20×8)=6(首),平均每名学生一周诗词诵背数量的增长率是×100%=20%,所以平均每名学生一周诗词诵背数量的增长率更接近22%.14.【解答】解:(1)根据题意画图如下:共有4种等情况,其中所选的2名医护人员性别相同的有2种,则所选的2名医护人员性别相同的概率是=;故答案为:;(2)将甲、乙两所医院的医护人员分别记为甲1、甲2、乙1、乙2(注:1表示男医护人员,2表示女医护人员),树状图如图所示:共有12种等可能的结果,满足要求的有4种.则P(2名医生来自同一所医院的概率)==.15.【解答】解:(1)本次调查一共随机抽取学生:18÷36%=50(人),故答案为50;(2)a=50﹣18﹣14﹣10=8,故答案为8;(3)本次调查一共随机抽取50名学生,中位数落在C组,故答案为C;(4)该校九年级竞赛成绩达到80分以上(含80分)的学生有500×=320(人),故答案为320.。
复习测试范围:统计与概率 限时:45分钟 满分:100分一、选择题(每小题5分,共40分)1.下列说法正确的是 ( )A .了解某市市民知晓“礼让行人”交通新规的情况,适合全面调查B .甲、乙两人跳远成绩的方差分别为s 甲2=3,s 乙2=4,说明乙的跳远成绩比甲稳定C .一组数据2,2,3,4的众数是2,中位数是2.5D .可能性是1%的事件在一次试验中一定不会发生2.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其他都相同.搅匀后任意摸出一个球,是白球的概率为 ( ) A .12 B .310 C .15D .7103.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为 ( ) A .2 B .3 C .4D .54.某班40名同学一周参加体育锻炼时间统计如下表所示:人数(人) 3 17 13 7 时间(时)78910 那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是 ( )A .17,8.5B .17,9C .8,9D .8,8.55.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是 ( ) A .23 B .29 C .13D .196.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的年收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图,依据统计图得出以下四个结论,其中正确的是()图D8-1A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入为2.8万元D.前年年收入不止①②③三种农作物的收入7.甲、乙两人连续5次射击成绩如图D8-2所示,下列说法中正确的是()图D8-2A.甲的成绩更稳定B.乙的成绩更稳定C.甲、乙的成绩一样稳定D.无法判断谁的成绩更稳定8.从1,2,3,4中任取两个不同的数,分别记为a和b,则a2+b2>19的概率是()A.12B.512C.712D.13二、填空题(每小题6分,共36分)9.数据-5,3,2,-3,3的平均数是,众数是,中位数是.10.如图D8-3,转盘中6个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针落在阴影部分的概率为 .图D8-311.睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一,小强同学通过问卷调查的方式了解到本班三位同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三位同学该天的平均睡眠时间是 小时.12.如图D8-4,这是一幅长为3 m,宽为2 m 的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地面上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为 m 2.图D8-413.下表是甲、乙两名同学近五次数学测试(满分为100分)的成绩统计表:同学第一次 第二次 第三次 第四次 第五次 甲 90 88 92 94 91 乙9091939492根据上表数据,成绩较好且比较稳定的同学是 .14.甲、乙是两个不透明的纸箱,甲中有三张分别标有数字14,12,1的卡片,乙中有三张分别标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a ,从乙中任取一张卡片,将其数字记为b.若a ,b 能使关于x 的一元二次方程ax 2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为 .三、解答题(共24分)15.(12分)为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下:活动前被测查学生视力数据:4.04.14.14.24.24.34.34.44.44.44.54.54.64.64.64.74.74.74.74.84.84.84.84.84.94.94.95.05.05.1活动后被测查学生视力数据:4.04.24.34.44.44.54.54.64.64.64.74.74.74.74.84.84.84.84.84.84.84.94.94.94.94.95.05.05.15.1根据以上信息回答下列问题:(1)填空:a=,b=,活动前被测查学生视力样本数据的中位数是,活动后被测查学生视力样本数据的众数是.(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少?(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.图D8-5活动后被测查学生视力频数分布表分组频数4.0≤x<4.2 14.2≤x<4.4 24.4≤x<4.6 b4.6≤x<4.8 74.8≤x<5.0 125.0≤x<5.2 416.(12分)近年来,在习近平总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霾天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了如图D8-6所示的不完整的三种统计图表.对雾霾天气了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解15%C.基本了解45%D.不了解n图D8-6请结合统计图表,回答下列问题:(1)本次参与调查的学生共有人,n=;(2)扇形统计图中D部分扇形所对应的圆心角是度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去,否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.【参考答案】1.C2.A3.A4.D5.B [解析]画“树状图”如图所示.∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种, ∴一辆向右转,一辆向左转的概率为29,故选B .6.C7.B [解析]本题考查了方差的意义,x 甲=5+10+9+6+105=8,x 乙=8+9+7+9+75=8,s 甲2=(5-8)2+(10-8)2+(9-8)2+(6-8)2+(10-8)25=4.4,s 乙2=(8-8)2+(9-8)2+(7-8)2+(9-8)2+(7-8)25=0.8,∵s 甲2>s 乙2,∴乙的成绩更稳定.也可以直接根据折线统计图的波动情况,乙的波动较小,故乙的成绩更稳定,因此本题选B . 8.D [解析]本题考查了随即事件发生的概率,列表如下:aa 2+b 2 b1 2 3 41 5 10 172 5 13 20 3 10 13 25 4172025从表格可以看出,12种等可能的结果中,有4种结果符合要求,所以概率为412=13. 故选D . 9.0 3 2 10.1211.8.4 12.2.413.乙 [解析]x 甲=15×(90+88+92+94+91)=91,x 乙=15×(90+91+93+94+92)=92,s 甲2=15×[(90-91)2+(88-91)2+(92-91)2+(94-91)2+(91-91)2]=4,s 乙2=15×[(90-92)2+(91-92)2+(93-92)2+(94-92)2+(92-92)2]=2,所以乙的成绩较好且比较稳定. 14.49 [解析]画树状图如下:由图可知,共有9种等可能的结果,若使乙获胜,则b 2-4a ≤0,即b 2≤4a ,∴能使乙获胜的有4种结果, ∴乙获胜的概率为49.15.解:(1)5 4 4.65 4.8[解析]a=30-(3+4+7+8+3)=5,b=30-(1+2+7+12+4)=4. 活动前的中位数是4.6+4.72=4.65.活动后出现次数最多的数为4.8, 所以其众数为4.8. 故答案为:5,4,4.65,4.8.(2)活动后样本中视力达标的人数有16人,所以估计七年级600名学生活动后视力达标的人数有600×1630=320(人).(3)活动前中位数为4.65,活动后中位数为4.8,说明学生在做完视力保健活动后整体视力情况变好. 16.解:(1)400 35% [解析] 180÷45%=400(人),n=1-5%-15%-45%=35%. 故答案为400;35%.(2)126 [解析] 扇形统计图中D 部分扇形所对应的圆心角=360°×35%=126°, 故答案为126.(3)D 等级的人数为400×35%=140(人), 补全条形统计图如图:(4)画树状图为:共有12种等可能的结果,其中和为奇数的结果有8种, ∴P (小明去)=812=23, P (小刚去)=1-23=13. ∵23≠13,∴这个游戏规则不公平.。