第5章 公式与函数的使用
- 格式:ppt
- 大小:1.85 MB
- 文档页数:45
三角函数与解三角形公式总结【预备知识点】一、任意角与弧度制(一)任意角1.任意角的概念:规定一条射线绕其端点任意方向旋转所形成的角。
2.任意角的分类:(1)正角:规定一条射线绕其端点逆时针方向旋转所形成的角。
(2)负角:规定一条射线绕其端点顺时针方向旋转所形成的角。
(3)零角:规定一条射线绕其端点无任意方向旋转所形成的角,始边与终边重合的角。
口诀:正逆负顺零重合3.相等角、相反角与角的运算(1)相等角:旋转方向相同且旋转量相等。
(2)相反角:旋转方向相反且旋转量相等。
(3)角的运算:线性加减运算与数乘运算。
4.常见误区:(1)锐角是第一象限角,但是第一象限角不一定是锐角,因为有周期。
例如420°。
(2)钝角是第二象限角,但是第二象限角不一定是钝角,因为有周期。
例如495°。
(3)直角不是任意象限角,属于y轴的特殊角。
(4)平角、周角属于轴线角,它不属于任何一个象限角。
(二)弧度制1.弧长公式及其意义(1)弧长公式:l=nπr180⟺lr=n∗π180=|α|⟺l=|α|r(2)弧长公式的意义:(i)圆心角α所对的弧长与半径r的比值,只与α大小有关。
(ii)弧长长度等于半径长的圆弧所对的圆心角叫做1弧度的角,用rad表示,读作弧度。
其中rad可省略。
(3)一般地,正角的弧度数是正数,零角的弧度数是0,负角的弧度数是一个负数。
2.角度制与弧度制的互换依据:180°=π rad{1°=π180rad≈0.01745 rad 1 rad=(180π)°≈57.30°=57°18′(三)常见的角度制与弧度制互换表示二、三角函数常用特殊值【大重点,熟练背诵】【必考知识点】一、三角函数概念(1)定义式【熟记理解】(2)同角三角函数的基本关系【大重点题型:化弦为切经常用到,结合诱导公式与恒等变换】(i)平方关系【重点记第一个】sin2x+cos2x=11+cot2x=csc2x1+tan2x=sec2x(ii)商数关系【重点记第一个】tanx=sinx cosxcotx=cosx sinx(iii)倒数关系tanx∗cotx=1sinx∗cscx=1cosx∗secx=1(3)三角函数在各象限的符号【大重点并背诵】二、诱导公式【大重点,以下表格全背】诱导公式的基本思路【以第1组~第4组为例】:(1)首先,任意负角的三角函数转化成任意正角的三角函数【用公式3或1】(2)其次,任意正角的三角函数转化成0∼2π的三角函数【用公式1】(3)最后,0∼2π的三角函数转化成锐角三角函数【用公式2或4】三、三角恒等变换【大重点,所有公式都要背】1.两角和与差的正弦、余弦、正切Cα−β:cos(α−β)=cosα∗cosβ+sinα∗sinβCα+β:cos(α+β)=cosα∗cosβ−sinα∗sinβSα−β:sin(α−β)=sinα∗cosβ−cosα∗sinβSα+β:sin(α+β)=sinα∗cosβ+cosα∗sinβTα−β:tan(α−β)=tanα−tanβ1+tanα∗tanβTα+β:tan(α+β)=tanα+tanβ1−tanα∗tanβ扩展:三角和公式Cα+β+γ:cos(α+β+γ)=cosα∗cosβ∗cosγ−cosα∗sinβ∗sinγ−sinα∗cosβ∗sinγ−sinα∗sinβ∗cosγSα+β+γ:sin(α+β+γ)=sinα∗cosβ∗cosγ+cosα∗sinβ∗cosγ+cosα∗cosβ∗sinγ−sinα∗sinβ∗sinγTα+β+γ:tan(α+β+γ)=tanα+tanβ+tanγ−tanα∗tanβ∗tanγ1−tanα∗tanβ−tanα∗tanγ−tanβ∗tanγ2.二倍角的正弦、余弦、正切C2α: cos2α=cos2α−sin2α=1−2sin2α=2cos2α−1; cos2α=1+cos2α2,sin2α=1−cos2α2S2α: sin2α=2sinα∗cosαT2α: tan2α=2tanα1−tan2α扩展1:半角公式Cα2: cosα2=±√1+cosα2Sα2: sinα2=±√1−cosα2Tα2: tanα2=sinα1+cosα=1−cosαsinα=±√1−cosα1+cosα注意:正负由α2所在的象限决定!其中Cα: cosα=cos2α2−sin2α2=1−2sin2α2=2cos2α2−1=1−tan2α21+tan2α2Sα: sinα=2sin α2∗cosα2=2∗tanα21+tan2α2Tα:tanα=2∗tanα2 1−tan2α2扩展2:三倍角公式S3α: sin3α=3sinα−4sin3α=4sinα∗sin(π3−α)∗sin(π3+α)C3α: cos3α=4cos3α−3cosα=4cosα∗cos(π3−α)∗cos(π3+α)T3α: tan3α=3tanα−tan3α1−3tan3α=tanα∗tan(π3−α)∗tan(π3+α)扩展3:四倍角公式S4α: sin4α=−4∗[cosα∗sinα∗(2sin2α−1)]C4α: cos4α=1−8∗cos2α∗sin2αT4α: tan4α=4tanα−4tan3α1−6tan2α+tan4α扩展4:五倍角公式S5α: sin5α=16sin5α−20sin3α+5sinαC5α: cos5α=16cos5α−20cos3α+5cosαT5α: tan5α=5−10tan2α+tan4α1−10tan2α+5tan4α3.和差化积公式sin α+sin β=2sin α+β2∗cosα−β2sin α−sin β=2cos α+β2∗sinα−β2cos α+cos β=2cos α+β2∗cosα−β2cos α−cos β=−2sin α+β2∗sinα−β2tan α+tan β=sin(α+β) cosα∗cosβtan α−tan β=sin(α−β) cosα∗cosβcot α+cot β=sin(α+β) sinα∗sinβcot α−cot β=−sin(α−β) sinα∗sinβtan α+cot β=cos(α−β) cosα∗sinβtan α−cot β=−cos(α+β) cosα∗sinβsin2α−sin2β=sin(α+β)∗sin(α−β)cos2α−cos2β=−sin(α+β)∗sin(α−β)sin2α−cos2β=−cos(α+β)∗cos(α−β)cos2α−sin2β=cos(α+β)∗cos(α−β)记忆口诀:同名和差三角积,(sin α±sin β或cos α±cos β:等式左边只有同是正弦或同是余弦才可以相加减。
第1课时公式二、公式三和公式四学习目标核心素养1。
了解公式二、公式三和公式四的推导方法.2.能够准确记忆公式二、公式三和公式四.(重点、易混点)3.掌握公式二、公式三和公式四,并能灵活应用.(难点)1.借助公式进行运算,培养数学运算素养.2.通过公式的变形进行化简和证明,提升逻辑推理素养。
1.公式二(1)角π+α与角α的终边关于原点对称.如图所示.(2)公式:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan_α.2.公式三(1)角-α与角α的终边关于x轴对称.如图所示.(2)公式:sin(-α)=-sin_α,cos(-α)=cos_α,tan(-α)=-tan_α.3.公式四(1)角π-α与角α的终边关于y轴对称.如图所示.(2)公式:sin(π-α)=sin_α,cos(π-α)=-cos_α,tan(π-α)=-tan_α。
思考:(1)诱导公式中角α只能是锐角吗?(2)诱导公式一~四改变函数的名称吗?提示:(1)诱导公式中角α可以是任意角,要注意正切函数中要求α≠kπ+π2,k∈Z.(2)诱导公式一~四都不改变函数名称.1.如果α,β满足α+β=π,那么下列式子中正确的个数是()①sin α=sin β;②sin α=-sin β;③cos α=-cos β;④cos α=cos β;⑤tan α=-tan β.A.1 B.2 C.3 D.4C[因为α+β=π,所以sin α=sin(π-β)=sin β,故①正确,②错误;cos α=cos(π-β)=-cos β,故③正确,④错误;tan α=tan(π-β)=-tan β,⑤正确.故选C。
]2.tan错误!等于()A.-错误!B。
错误!C.-错误! D.错误!C[tan错误!=tan错误!=tan错误!=tan错误!=-tan错误!=-错误!.]3.已知tan α=3,则tan(π+α)=________。