中考复习初中数学常用辅助线
- 格式:doc
- 大小:30.00 KB
- 文档页数:5
初中辅助线102种方法初中数学中的辅助线是指在解题过程中为了简化计算或证明关系而引入的辅助线条。
它可以帮助我们更好地理解问题,找到解题的思路和方法。
下面我将介绍一些常见的初中数学辅助线的方法共102种,希望对你的学习有所帮助。
一、简化计算型:1.使用除法计算2.使用平均数计算3.使用倍数计算4.使用分数计算5.使用比例计算6.使用公式计算7.使用近似值计算8.使用合并计算9.使用反向计算10.使用等差数列计算11.使用等比数列计算12.使用余数计算13.使用开平方计算14.使用全等三角形计算15.使用相似三角形计算16.使用三角函数计算17.使用面积计算18.使用体积计算19.使用平行四边形计算20.使用正方形计算21.使用等腰三角形计算22.使用垂直角计算23.使用圆的性质计算24.使用直角三角形计算二、求证关系型:25.使用数轴求证结论26.使用等距离线段求证结论27.使用相似三角形求证结论28.使用画图法求证结论29.使用平行四边形的性质求证结论30.使用正方形的性质求证结论31.使用相等线段求证结论32.使用角度和为180度求证结论33.使用角度和为360度求证结论34.使用锐角三角形角度关系求证结论35.使用直角三角形角度关系求证结论36.使用分割线段求证结论37.使用等腰三角形角度关系求证结论38.使用辅助角求证结论39.使用辅助线段求证结论40.使用同位角性质求证结论41.使用对称性求证结论42.使用对称图形求证结论43.使用等腰梯形性质求证结论44.使用等腰三角形线段关系求证结论45.使用四边形对角线性质求证结论46.使用圆的性质求证结论47.使用辐角关系求证结论48.使用有序数对求证结论49.使用矩形性质求证结论50.使用三角形内接圆性质求证结论51.使用七巧板求证结论52.使用抽屉原理求证结论53.使用排列组合求证结论三、解决线型:54.使用重要线段求解问题55.使用重要角度求解问题56.使用等距离线段求解问题57.使用正方形对称性求解问题58.使用等腰三角形求解问题59.使用平行四边形求解问题60.使用零点、对称点、最大值最小值求解问题61.使用相交弦、弧求解问题62.使用切线求解问题63.使用对称点求解问题64.使用相等线段求解问题65.使用等距离点求解问题66.使用同位角性质求解问题67.使用相似三角形求解问题68.使用全等三角形求解问题70.使用角度和为180度求解问题71.使用角度和为360度求解问题72.使用锐角三角形角度关系求解问题73.使用直角三角形角度关系求解问题74.使用同位角性质求解问题75.使用等腰三角形角度关系求解问题76.使用辅助角求解问题77.使用辅助线段求解问题78.使用分割线段求解问题79.使用等腰梯形性质求解问题80.使用对角线性质求解问题81.使用折角求解问题82.使用相似图形求解问题83.使用正方形的对称性求解问题84.使用等腰三角形线段关系求解问题85.使用三角形内角和为180度求解问题86.使用辐角关系求解问题87.使用无理方程求解问题89.使用矩形的性质求解问题90.使用弧长和面积关系求解问题91.使用正多边形的性质求解问题92.使用等腰梯形的性质求解问题93.使用命题与真值求解问题94.使用夹角的性质求解问题95.使用相对坐标求解问题96.使用中点定理求解问题97.使用边长关系求解问题98.使用距离公式求解问题99.使用勾股定理求解问题100.使用平行四边形的对角线性质求解问题101.使用足分线关系求解问题102.使用线段积关系求解问题以上便是初中辅助线的102种方法,覆盖了数学中常见的辅助线方法,可以帮助你更好地理解和解决数学问题。
初中数学做辅助线的方法总结
在初中数学中,做辅助线是解题的重要方法之一。
以下总结了几
种常见的做辅助线的方法:
1. 对称性辅助线法:当一个图形或方程式具有对称性时,可以
画出一条对称轴或一些对称线,从而利用对称性来简化问题。
例如,
在求三角形的中线长度相等定理时,可以描绘出三角形的垂直平分线,并在中点处作垂线,得到两个相等的直角三角形。
2. 垂线辅助线法:当一个角、线段或线段的垂线很难直接操作时,可以画出一条垂线,将问题转化为一个直角三角形问题。
例如,
在求一条线段的垂线长度时,可以先画出一条垂线与该线段相交,并
组成一个直角三角形。
3. 平移辅助线法:当一个几何图形或方程式涉及到平移时,可
以通过向图形或方程式添加平移线或平移量来使问题变得简单。
例如,在证明平行四边形对角线平分的定理时,可以平移一个平行四边形,
使其成为一个重合的平行四边形,从而使问题变得简单。
4. 分割辅助线法:当一个图形或方程式很复杂时,可以通过将
其分解成几个简单的部分来解题。
例如,在求多边形面积时,可以将
多边形分割成几个三角形或梯形,并将它们的面积相加,从而得到多
边形的面积。
总之,做辅助线的方法不只有以上四种,还可以根据具体问题的
不同情况选用其他的方法。
需要注意的是,在使用辅助线时,要注意
画出清晰的图形,并理解各种辅助线的作用,才能有效地解决问题。
初中几何辅助线—克胜秘籍等腰三角形1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2. 作一腰上的高;3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。
梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 连接两对角2. 做高平行四边形1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线很简单。
无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。
还有一些关于平方的考虑勾股,A字形等。
三角形图中有角平分线,可向两边作垂线(垂线段相等)。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
②在比例线段证明中,常作平行线。
作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。
③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
中考数学10大类辅助线
中考数学中,常见的辅助线有以下10大类:
1.垂直辅助线:通过一个点和另一直线的垂直线,常用于求两条
直线的垂直关系、求直角三角形等问题。
2.平行辅助线:通过一点和一条直线,与已知的另一直线平行,
常用于求两条直线的平行关系、求平行四边形等问题。
3.中垂线:将一个线段的中点与另一点相连的线段,用于求线段
的中点、判断三角形的等腰性质等问题。
4.角平分线:将一个角分成两个相等的角的线段,通常用于求角
的平分线、求角的刻度等问题。
5.对称辅助线:通过一个点,找到与已知点关于某一直线对称的点,用于求对称点的位置、对称图形等问题。
6.高线:将一个顶点到对立边的垂线段,常用于求三角形的高度、找到垂心等问题。
7.过定点画圆:通过一个已知点和一个已知的半径,画出以该点为圆心的圆,常用于求圆的位置关系、圆与线的交点等问题。
8.过三点画圆:通过给定的三个点,画出以这三点为圆上三个点的圆,用于求圆与三角形的关系等问题。
9.共轭辅助线:通过两个点,在给定条件下找到与已知直线共轭的直线,常用于求一对共轭角、共轭点等问题。
10.谁是谁的辅助线:在解题过程中,发现和已知量之间存在特定的几何关系时,可以将某个量作为另一个量的辅助线,通过推导或等式的变形求解。
以上是中考数学中常用的10大类辅助线。
通过合理地运用这些辅助线,可以帮助我们更好地解决各种几何问题,提高解题的效率和准确性。
中考数学10大类辅助线中考数学常见的辅助线方法有很多种,可以根据题目的特点和计算的需要来选择适当的辅助线方法。
以下是常见的十大类辅助线方法:1.垂直线:通过绘制垂直线可以将几何图形划分为各个部分,方便计算和推导。
垂直线常用于求证和求交点等问题。
2.平行线:通过绘制平行线可以将几何图形划分为等价的部分,方便进行比较和推导。
平行线常用于求证和相似三角形等问题。
3.对角线:通过绘制对角线可以将几何图形划分为更简单的部分,方便计算和推导。
对角线常用于求面积和相似多边形等问题。
4.中垂线:通过绘制中垂线可以将线段划分为等分的两部分,方便计算和推导。
中垂线常用于求证和等腰三角形等问题。
5.角平分线:通过绘制角平分线可以将角划分为等角的两部分,方便计算和推导。
角平分线常用于求证和相似三角形等问题。
6.高线:通过绘制高线可以将三角形划分为底边和顶点的垂直线段,方便计算和推导。
高线常用于求证和面积等问题。
7.过中点的连线:通过绘制过中点的连线可以将线段或图形划分为对称的两部分,方便计算和推导。
过中点的连线常用于求证和相似图形等问题。
8.过交点的连线:通过绘制过交点的连线可以将几何图形划分为更简单的部分,方便计算和推导。
过交点的连线常用于求证和相似三角形等问题。
9.辅助圆:通过绘制辅助圆可以将几何图形划分为更简单的部分,方便计算和推导。
辅助圆常用于求证和相似图形等问题。
10.分割线:通过绘制分割线可以将几何图形划分为等价或相似的部分,方便计算和推导。
分割线常用于求证和比例等问题。
以上是中考数学常见的十大类辅助线方法的简介。
使用辅助线可以在解题过程中简化计算,提高解题的效率和准确性。
在实际应用中,需要根据题目的具体要求和解题步骤选择适当的辅助线方法,灵活运用,有助于提高数学解题能力。
1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍。
含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2.平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
(5)过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法梯形是一种特殊的四边形。
它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。
辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰。
(2)梯形外平移一腰(3)梯形内平移两腰(4)延长两腰(5)过梯形上底的两端点向下底作高(6)平移对角线(7)连接梯形一顶点及一腰的中点。
(8)过一腰的中点作另一腰的平行线。
(9)作中位线当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。
初中数学辅助线口诀及图解初中数学辅助线口诀及图解 1作辅助线的方法和技巧题中有角平分线,可向两边作垂线。
垂直平分线,可以把线连接到两端。
三角形中两中点,连结则成中位线。
三角形中有中线,延长中线同样长。
成比例,正相似,常为平行线。
如果所有的线都在圆的外面,则通过切割圆心来连接这些线。
如果两圆内外切,经过切点作切线。
两个圆相交于两点,这两点一般作为它们的公共弦。
它是直径,在一个半圆里,我想把线连接成直角。
作等角,添个圆,证明题目少困难。
辅助线是虚线。
小心不要更改图纸。
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
需要将线段对折一半,延伸和缩短都可以测试。
三角形的两个中点相连形成中线。
三角形有一条中线,中线延伸。
平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
移动平行对角线组成三角形是很常见的。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
半径和弦长计算,弦中心到中间站的距离。
圆上若有一切线,切点圆心半径连。
勾股定理是计算切线长度最方便的方法。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆形,要连接成直角的弦。
圆弧的中点与圆心相连,竖径定理要记完整。
圆周角边两条弦,直径和弦端点连。
切角、切边、切弦、找同弧、同对角线等。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交的圆,别忘了把它做成普通串。
内外相切的两个圆,通过切点公切线。
如果添加了连接线,切点必须在连接线上。
在等角图上加一个圆很难证明问题。
辅助线,是虚线,画图注意勿改变。
如果图形是分散的,对称旋转进行实验。
画画是必不可少的,平时也要熟练。
解题还要多心眼,经常总结方法显。
不要盲目加线。
方法要灵活多变。
分析综合方法选,困难再多也会减。
作辅助线的方法一:中点、中位线,延线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180 度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。
在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。
故作歌诀:“造角、平、相似,和差积商见。
”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。
即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。
即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。
初中几何辅助线大全(很详细哦)初中几何辅助线―克胜秘籍等腰三角形1.作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2.作一腰上的高;3.将底边的一端作为底边的垂直线交叉,并与另一条腰部的延长线相交,形成直角三角形。
梯形1.垂直于平行边2.垂直于下底,将上底延伸为一条平行于两条斜边的腰部3的平行线4使两条垂直于底部的垂直线5延伸两条斜边,形成一个三角形菱形1.连接两对角2.做高平行四边形1.垂直于平行边2.按对角线将平行四边形分成两个三角形,高度为3-注意形状内外的矩形1.对角线2.作垂线很简单。
无论是哪一个主题,第一个都应该考虑主题的要求,例如Ab= AC+BD,这样的方法是找到另一个与AB长度相同的线段的方法,然后证明A+BD=另一个AB。
三角形图中有角平分线,可向两边作垂线(垂线段相等)。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形的中点连接成一条中线。
三角形中有中线、延长中线和其他中线。
解几何题时如何画辅助线?① 在中点处看到中线,并将中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
② 在证明比例线段时,通常使用平行线。
作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。
③ 对于梯形问题,添加辅助线的常用方法有:1。
穿过上底的两个端点用作下底的垂直线;2.穿过上底的一个端点用作一条腰部的平行线;3.穿过上底部的一个端点用作对角线的平行线;4.穿过一根腰部的中点用作另一根腰部的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形的平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
初中数学辅助线应用技巧总结数学是一门需要逻辑思维和推理能力的学科,而辅助线是在解决数学问题时起到辅助作用的直线。
学会灵活运用辅助线可以帮助我们更好地理解和解决数学问题。
本文将总结几种初中数学辅助线的应用技巧。
一、应用技巧1:利用垂直线垂直线是辅助线中最常见的一种。
在解决几何问题时,垂直线可以帮助我们确定几何图形的性质。
例如,在求解平面几何问题时,我们可以利用垂直线来证明两条直线垂直。
在作图时,通过画出垂直线可以辅助我们队几何图形进行分析。
二、应用技巧2:运用平行线平行线也是常用的辅助线之一。
在解决平面几何问题时,可以利用平行线的特性来求解未知角度、边长或形状。
例如,当我们需要求解两条直线平行时,可以通过与这两条直线交叉的另一条直线来构造平行线,从而帮助我们解决问题。
三、应用技巧3:利用等腰三角形等腰三角形是一个重要的几何图形,其辅助线的运用可以帮助我们解决关于三角形的问题。
例如,在求解三角形的面积或者角度时,我们可以构造等腰三角形,从而简化问题的解决。
另外,等腰三角形的对称性质也在解决证明问题时起到重要作用。
四、应用技巧4:利用垂直平分线垂直平分线是连接线段的中点并垂直于该线段的直线。
在解决几何问题时,利用垂直平分线可以帮助我们证明角的相等、线段的相等以及几何图形的对称性质。
例如,当我们需要证明一个四边形是矩形时,可以利用垂直平分线来证明其中的两个角相等。
五、应用技巧5:利用相似三角形相似三角形是指形状相似但大小不同的三角形。
在解决几何问题时,我们可以通过构造相似三角形来求解未知边长或者角度。
例如,在利用勾股定理求解三角形问题时,常常需要使用相似三角形的性质进行推导和证明。
六、应用技巧6:使用角平分线角平分线是将一个角分成两个相等的角的直线。
在解决几何问题时,角平分线可以帮助我们证明角的相等或者构造特定的几何图形。
例如,在求解两个角相等时,可以通过画出角平分线来帮助我们得出证明结果。
七、应用技巧7:利用直行线直行线是指两条相交直线间的形成的四个角中有两个是相等的。
初中数学常用辅助线
一.添辅助线有二种情况:
1按定义添辅助线:
如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:
每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:
(1)平行线是个基本图形:
当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线
(2)等腰三角形是个简单的基本图形:
当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:
出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形
出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形
几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:
全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线
(7)相似三角形:
相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。
若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。
(8)特殊角直角三角形
当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明
(9)半圆上的圆周角
出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样。
二.基本图形的辅助线的画法
1.三角形问题添加辅助线方法
方法1:有关三角形中线的题目,常将中线加倍。
含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2.平行四边形中常用辅助线的添法
平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:
(1)连对角线或平移对角线:
(2)过顶点作对边的垂线构造直角三角形
(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线
(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
(5)过顶点作对角线的垂线,构成线段平行或三角形全等.
3.梯形中常用辅助线的添法
梯形是一种特殊的四边形。
它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。
辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:
(1)在梯形内部平移一腰。
(2)梯形外平移一腰
(3)梯形内平移两腰
(4)延长两腰
(5)过梯形上底的两端点向下底作高
(6)平移对角线
(7)连接梯形一顶点及一腰的中点。
(8)过一腰的中点作另一腰的平行线。
(9)作中位线
当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。
通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。
4.圆中常用辅助线的添法
在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,灵活
掌握作辅助线的一般规律和常见方法,对提高学生分析问题和解决问题的能力是大有帮助的。
(1)见弦作弦心距
有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的联系。
(2)见直径作圆周角
在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。
(3)见切线作半径
命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题。
(4)两圆相切作公切线
对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。
(5)两圆相交作公共弦
对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。