水泥厂余热发电
- 格式:pptx
- 大小:2.41 MB
- 文档页数:25
水泥厂余热发电站建设标准水泥厂是一个能源消耗比较大的工业生产企业,随着对环保要求的提高以及对能源利用的需求,水泥厂余热发电站越来越受到关注。
水泥厂余热发电站建设标准需要从以下几个方面考虑:1.设备技术标准:水泥厂余热发电站设备包括余热锅炉、汽轮发电机组等。
这些设备需要具备良好的热能利用效益和稳定的发电能力,同时也需要满足安全生产和环境保护的要求。
例如,余热锅炉需要具备高效热交换和废气脱硫脱硝等能力,汽轮发电机组需要具备高效稳定的发电能力。
2.设备运行标准:水泥厂余热发电站的设备需要经过严格的验收和运行试验。
包括对设备的可靠性、稳定性和经济性等进行检测和评价。
同时,还需要制定设备的运行和维护标准,确保设备能够长期稳定、高效运行。
3.安全生产标准:作为一个独立的发电站,水泥厂余热发电站也需要符合国家的安全生产标准。
包括工艺的安全性、设备的可靠性、操作人员的安全培训等。
同时,还需要建立完善的应急预案,以应对可能出现的突发事件。
4.环境保护标准:水泥厂余热发电站建设必须遵守国家有关环境保护的法律法规,包括废气排放的标准、噪音控制的标准等。
此外,还需要制定相应的环境管理措施,确保发电站的排放水平达到国家和地方的环保要求。
5.经济效益标准:水泥厂余热发电站建设需要考虑到经济效益。
这包括建设投资的回收期、电价补贴政策和售电价格等。
同时,还需要考虑到未来能源价格的变动以及水泥厂业务发展的前景,以保证发电站的长期运营和经营效益。
总之,水泥厂余热发电站建设标准需要综合考虑设备技术、设备运行、安全生产、环境保护和经济效益等方面的要求。
只有从这五个方面全面考虑,才能确保水泥厂余热发电站的建设和运营能够达到高效、安全、环保和经济的标准。
水泥厂纯低温余热发电管理制度1. 引言随着工业发展和能源消耗的增加,低温余热的利用成为了节能减排的重要途径之一。
水泥厂作为能源消耗大、余热排放量高的行业,纯低温余热发电技术的应用对于提高能源利用效率、减少环境污染具有重要意义。
为了规范水泥厂纯低温余热发电的管理和运营,制定本管理制度。
2. 适用范围本管理制度适用于水泥厂纯低温余热发电系统的建设、运营和维护。
3. 定义•纯低温余热发电:利用水泥厂废热回收发电技术,将低温余热转化为电能供水泥厂内部或外部使用的过程。
•水泥厂纯低温余热发电系统:由余热回收装置、蒸汽发电装置、发电设备、电网接入设备等组成的完整系统。
4. 管理机构和责任4.1 管理机构水泥厂纯低温余热发电系统的管理由以下机构负责:•水泥厂纯低温余热发电系统管理部门:负责纯低温余热发电系统的建设、运营和维护工作。
•环境保护部门:负责监督水泥厂纯低温余热发电系统的环保工作。
•安全生产部门:负责监督水泥厂纯低温余热发电系统的安全生产工作。
4.2 责任•水泥厂纯低温余热发电系统管理部门负责制定、实施和监督纯低温余热发电系统的管理制度,确保系统的正常运行和维护。
•环境保护部门负责监督水泥厂纯低温余热发电系统的环保工作,确保系统的运行符合相关环保标准。
•安全生产部门负责监督水泥厂纯低温余热发电系统的安全生产工作,确保系统的运行符合相关安全标准。
5. 纯低温余热发电系统建设5.1 设计与选型•水泥厂纯低温余热发电系统的设计应根据水泥厂的热源条件、余热产生量和负荷需求进行合理选型。
•设计时应考虑系统的可靠性、安全性、环保性和经济性,确保系统在长期运行中能够达到预期的发电效果。
5.2 施工与验收•施工单位应按照设计要求进行施工,并进行相应的验收测试。
•验收测试应包括设备性能测试、安全性能测试、环保性能测试等,确保系统满足要求后方可进行投运。
6. 纯低温余热发电系统运营和维护6.1 运营管理•水泥厂纯低温余热发电系统应设立专门的运营管理人员,负责系统的日常运行管理。
水泥工厂余热发电设计规范水泥工厂是能源消耗较大的重工业生产设备,其生产过程会产生大量的余热。
为了最大限度地利用这些余热资源,发电是一种常见的应用方式。
水泥工厂余热发电的设计规范是确保该过程安全、高效运行的基础。
首先,设计规范应包括水泥工厂余热发电系统的选址和布局要求。
选址应尽可能接近水泥工厂的热源,以减小余热传输的损失。
布局要合理,确保余热发电系统与水泥工厂的其他设备不相干扰,同时便于检修和维护。
其次,设计规范需明确余热发电装置的工作原理和组成。
余热发电系统通常由余热回收装置、蒸汽发生器、汽轮发电机组等组成。
规范应明确各装置的工作原理和参数要求,确保整个系统的安全可靠运行。
设计规范还应包含余热回收装置的要求。
余热回收装置主要用于收集水泥工厂在生产过程中产生的余热,以供给蒸汽发生器进行发电。
规范应对余热回收装置的换热效率、烟气排放要求、设备寿命等进行明确规定,以确保其良好运行。
此外,规范还应涵盖蒸汽发生器的设计要求。
蒸汽发生器是将余热转化为蒸汽的关键设备,其设计应满足工艺要求和安全标准。
规范应明确蒸汽发生器的结构设计、热效率、蒸汽参数等技术指标,以及设备使用寿命、维护保养要求等。
最后,设计规范还应对发电机组的选型和布置要求进行规定。
发电机组是将蒸汽动力转化为电能的设备,其选型应满足水泥工厂的电力需求。
规范应对发电机组的额定容量、效率要求、并网方式等进行明确规定。
同时,规范还应要求合理布置发电机组,确保电能传输的安全可靠。
综上所述,水泥工厂余热发电设计规范应包括选址与布局要求、余热回收装置的设计要求、蒸汽发生器的设计要求、发电机组的选型和布置要求等方面。
规范的制定有助于保证余热发电系统的安全运行,最大限度地利用水泥工厂的余热资源,提高能源利用效率。
水泥窑余热发电(五篇)第一篇:水泥窑余热发电水泥窑余热发电水泥厂余热资源的特点是流量大、品位低。
在宁国水泥厂4000t /d生产线上,预热器(PH)和冷却机(AQC)出口废气流量和温度分别为258550Nm3/h、340℃和306600Nm3/h、238℃,其中部分预热器废气用来烘干燃煤和原料。
针对上述特点,热力系统采用减速式两点混气式汽轮机,利用参数较低的主蒸汽和闪蒸汽的饱和蒸汽发电;根据余热资源的工艺状况设置两台余热锅炉,保证能够充分利用余热资源;应用热水闪蒸技术,设置一台高压闪蒸器和一台低压闪蒸器,闪蒸出的饱和蒸汽混入汽轮机做功;对现有AQC进行废气二次循环改造。
由于PH出口废气还要用于烘干原料,因此未设省煤器,只设蒸发器和过热器。
加强系统密封。
系统采用先进的DCS集散控制系统进行操作控制,具有功能齐全、自动控制、操作简便等特点。
工艺流程图(见图31)工艺流程两台高效余热锅炉,AQC锅炉和PH锅炉将水泥生产过程中随废气排放到大气中的热能吸收,产生压力为25Kg/cm2、温度为335℃-350℃、蒸发量为31.1t/h的过热蒸汽及二级低压饱和蒸汽并进入汽轮机,进行能量转换,拖动发电机向电网输送电力。
PH锅炉为强制循环、烟气流向为水平、管程流向为垂直、管列形式为循排、传热管为光管、除灰装置为振打系统;AQC锅炉为自然循环、烟气自上而下、管程流向为水平、管列形式为错排、传热管为螺旋翅管、除灰装置为吹灰器。
运转状况及效果该项目设计指标为发电机组装机容量6480kw,按吨熟料发电量33.07KWh/T,发电机组相对水泥窑的运转率为90%计算,设计年发电量4087万KWh。
从1998年3月至1999年3月,平均吨熟料发电量为34.24KWh/T(设计值为33.07KWh/T)发电机组相对水泥窑的运转率达到90.45%,实现系统安全、稳定、高效运行。
截止到1999年3月底累计发电4800万KWh,各项经济指标均达到并超过了设计水平,实现产值2160万元,实现金热发电投产当年达产达标。
水泥厂余热发电冷却原理
水泥厂生产过程中,熟料需要经过高温煅烧而产生大量的废气和余热。
如何有效地利用这些废气和余热是水泥厂节能环保的重要一环。
其中,余热发电技术成为了一种可行的方法。
水泥厂余热发电的基本原理是利用余热驱动蒸汽涡轮机发电。
一般情况下,水泥厂的余热发电系统包括余热回收、换热器、蒸汽涡轮机和冷却系统。
具体来说,废气在通过烟囱排放之前会先进入余热回收系统,通过余热回收器进行余热回收。
余热回收器通常采用板式或者管式结构,其主要作用是使废气与水接触,使热量传递到水中,从而使水变成蒸汽。
蒸汽在经过换热器后,会通过蒸汽涡轮机转化为电能。
换热器将从余热回收器中流出的热水与进入换热器的冷水进行热交换,使冷水变成热水,从而增加余热回收的效率。
最后,冷却系统用于冷却蒸汽涡轮机排出的高温蒸汽。
冷却系统通常采用冷却水作为冷却介质,通过冷却水对高温蒸汽进行冷却,从而使高温蒸汽变成低温蒸汽,再进入换热器回收余热。
总之,水泥厂余热发电冷却原理就是通过余热回收、换热和冷却系统的相互配合,利用废气中的余热驱动蒸汽涡轮机发电,同时使高温蒸汽通过循环冷却,从而实现能源的高效利用。
- 1 -。
2024年水泥余热发电市场前景分析引言水泥生产过程中产生的大量余热一直是一种可再生能源的潜在来源。
通过将水泥生产中产生的余热转化为电能,不仅可以提高能源利用效率,减少环境污染,还可以减轻对传统能源的需求。
本文将对水泥余热发电市场的前景进行分析。
水泥余热发电的原理水泥生产过程中,部分燃烧产生的热能会以余热形式散失。
水泥余热发电利用余热通过热交换器转化为蒸汽,然后使用蒸汽驱动汽轮机发电。
这种发电方式有效地提高了能源利用效率,减轻了对传统能源的依赖。
水泥余热发电市场的优势1.节约能源资源:水泥生产过程中产生的余热一直以来都是被忽视的能源资源。
利用水泥余热发电可以最大限度地利用这一资源,减少对传统能源的需求量,提高能源的利用效率。
2.环境友好:水泥生产过程中的余热排放是一种环境污染。
通过将余热转化为电能,可以有效减少对大气和水体的污染,降低环境压力,符合可持续发展的理念。
3.经济效益:水泥余热发电技术的成熟应用,可以为水泥企业带来可观的经济效益。
通过售电收入和降低用电成本,水泥企业能够实现能源成本的控制,提高竞争力。
水泥余热发电市场的挑战1.技术难题:水泥余热发电技术包含了很多复杂的工艺和过程,需要高水平的工程技术支持和设备投入。
这对水泥企业来说是一个挑战,需要投入大量的经济和技术资源。
2.设备选型:不同水泥生产工艺和规模的企业,其余热发电的设备选择也存在差异。
对于水泥企业来说,如何选择适合自身情况的发电设备,以及设备的可靠性和稳定性,是一个重要的问题。
3.经济效益不稳定:水泥余热发电项目的经济效益受到多个因素的影响,如政策支持、电价政策、产能利用率等。
这些因素的变化可能导致水泥余热发电项目的经济效益不稳定,对项目运营带来一定的风险。
水泥余热发电市场的发展趋势1.政策支持:随着能源和环境问题的日益突出,政府对清洁能源的支持力度将进一步增加。
未来,水泥余热发电市场将受到更多政策的支持,为水泥企业提供更好的发展环境。
水泥余热发电一、水泥窑纯低温余热发电背景随着水泥熟料煅烧技术的发展,发达国家水泥工业节能技术水平发展很快,低温余热在水泥生产过程中被回收利用,水泥熟料热能利用率已有较大的提高。
但我国由于节能技术、装备水平的限制和节能意识影响,在窑炉工业企业中仍有大量的中、低温废气余热资源未被充分利用,能源浪费现象仍然十分突出。
新型干法水泥熟料生产企业中由窑头熟料冷却机和窑尾预热器排出的350℃左右废气,其热能大约为水泥熟料烧成系统热耗量的35%,低温余热发电技术的应用,可将排放到大气中占熟料烧成系统热耗35%的废气余热进行回收,使水泥企业能源利用率提高到95%以上。
项目的经济效益十分可观。
发电模拟图我国是世界水泥生产和消费的大国,近年来新型干法水泥生产发展迅速,技术、设备、管理等方面日渐成熟。
目前国内已建成运行了大量2000t/d以上熟料生产线,新型干法生产线与其他窑型相比在热耗方面有显著的降低,但新型干法水泥生产对电能的消耗和依赖依然强劲,因此,新型干法水泥总量的增长对水泥工业用电总量的增长起到了推动作用,一定程度上加剧了电能的供应紧张局面。
而目前国内运行的新型干法水泥熟料生产线采用余热发电技术来节能降耗的企业极少,再者,国内由于经济潜力增长加剧了电力短缺的矛盾,刺激了煤电项目的增长,一方面煤电的发展会加速煤炭这种有限资源的开采、消耗,另一方面煤电生产产生大量的CO2等温室气体,加剧了对大气的环境污染。
因此在水泥业发展余热发电项目是行业及国家经济发展的必然。
此外,为了提高企业的市场竞争力,扩大产品的盈利空间,国内的许多水泥生产企业在建设熟料生产线的同时,也纷纷规划实施余热发电项目。
随着世界经济快速发展、新型节能技术的推广应用,充分利用有限的资源和发展水泥窑余热发电项目已经成为水泥业发展的一种趋势,也完全符合国家产业政策。
截至2009年,全国新型干法熟料生产线为934条,熟料产能7.6亿吨, 预计到2010年全国新型干法熟料生产线为1080条左右,熟料生产能力为8.6亿吨左右。
水泥厂余热发电技术介绍0708
水泥厂余热发电技术介绍0708
水泥烧结过程产生的余热具有高温、大量、热能密度高等特点,具有垂直发电的优点,可以有效利用水泥厂内部的温度高于外部的余热,从而产生电力,将余热能转换为电力,水泥厂热能发电技术的应用,可以实现工业园区的零排放,节约能源,改善生态环境,有效减少空气污染物的排放,改善人们自然大气和环境健康。
而且,水泥工厂余热发电技术比传统燃料发电技术具有更低的成本、更安全、更可靠的操作等优势,在发电技术发展史上还有价值观,带来更多的技术创新。
具体来说,水泥工厂余热发电技术主要包括余热发电技术、热能转换技术及应用技术三部分:
1、余热发电技术:包括余热回收系统、余热回收设备、余热利用机械、电气及控制相关设备;
2、热能转换技术:主要指热能转换器中的一种,如余热发电机、内燃机、热能耦合系统等;。
2024年水泥余热发电市场分析现状一、引言水泥制造过程中产生大量的废热,如果能够有效利用这些余热进行发电,不仅可以降低水泥企业的能耗,还可以减少环境污染。
本文将对水泥余热发电市场的现状进行分析。
二、水泥余热发电的概述水泥制造过程中的余热主要来自于系统的冷却过程和排放口的高温废气。
传统的处理方式是通过排放口将废气排放到大气中,造成能源的浪费和环境的污染。
而水泥余热发电技术的出现改变了这种状况,可以将废热转化为电力,实现能源的再利用。
三、水泥余热发电市场的优势1. 节能减排水泥余热发电技术可以高效利用水泥制造过程中产生的余热,将废热转化为电力,减少了水泥企业的能耗。
与传统的废气排放方式相比,水泥余热发电可以大幅度减少二氧化碳等温室气体的排放,对环境友好。
2. 经济效益水泥余热发电不仅可以满足水泥企业自身的电力需求,还可以通过出售多余的电力获得收入,提高企业的经济效益。
3. 灵活性水泥余热发电技术可以根据水泥生产的工艺和运行情况进行灵活调整,可以适应不同规模的水泥生产线,具有较大的适应性。
四、水泥余热发电市场的挑战1. 技术难题水泥余热发电技术在实际应用中还存在一些技术难题,如余热回收和转换效率的提高、系统的稳定性和可靠性等方面的问题,需要进一步加强研究和开发。
2. 成本问题水泥余热发电技术的投入成本较高,包括设备的购置和维护等方面的费用。
水泥企业需要对这些成本进行评估,并进行合理的投资规划。
3. 政策支持水泥余热发电市场的发展需要政府的政策支持,包括给予税收优惠、提供用电价格优惠等方面的支持政策,以吸引更多的水泥企业进行投资。
五、水泥余热发电市场的前景水泥余热发电市场有着广阔的前景。
随着环保意识的增强和能源资源的紧缺,水泥企业将更加重视余热的利用。
同时,技术的不断创新和成本的下降也将推动水泥余热发电市场的发展。
预计在未来几年内,水泥余热发电市场将成为一个具有较大潜力的市场。
六、结论水泥余热发电技术的出现在节能减排和环境保护方面起到了积极的作用,具有广阔的市场前景。
2024年水泥余热发电市场发展现状引言水泥产业是我国重要的基础产业之一,但在水泥生产过程中会产生大量的余热。
这些余热如果不能有效利用,不仅会造成资源的浪费,还会对环境造成负面影响。
水泥余热发电技术的出现,为水泥产业的可持续发展提供了新的机遇。
本文将对水泥余热发电市场的发展现状进行分析。
水泥余热发电技术概述水泥生产过程中产生的余热主要来自于水泥窑和水泥磨。
水泥窑是水泥生产过程中的关键设备,其中熟料制备需要将石灰石等原料在高温下进行煅烧,产生大量的余热。
水泥磨是水泥生产过程中的另一个重要环节,磨矿机械产生的机械能也可以转化为余热。
水泥余热发电技术通过收集和利用这些余热,将其转化为电能,实现能源的再利用。
水泥余热发电市场的发展现状技术发展水平水泥余热发电技术在我国的应用起步较早,已经取得了一定的技术进展。
目前,我国已经建立了一批水泥余热发电装置,先进的发电设备能够将水泥生产过程中的余热转化为电能,提高能源利用效率。
然而,与发达国家相比,我国在水泥余热发电技术的研发和应用上仍存在一定差距,需要进一步加大科研力度和技术投入。
市场容量和潜力水泥行业是我国能源消耗的重要行业之一,也是我国水泥余热发电市场的潜在市场。
根据统计数据,我国年产水泥超过20亿吨,而水泥生产过程中的余热可利用率仅为30%左右。
因此,水泥余热发电市场具有巨大的潜力和发展空间,可以为我国节能减排和绿色发展做出重要贡献。
政策支持政府对水泥余热发电技术的发展给予了积极支持。
目前,我国已经出台了一系列的政策措施,包括财政补贴、税收优惠和项目审批加速等,以鼓励水泥企业利用余热发电。
政策的支持为水泥余热发电市场的发展提供了有力保障,并为相关企业创造了良好的投资环境。
市场竞争格局水泥余热发电市场竞争格局相对集中,部分大型水泥企业在该领域具有较强的竞争优势。
这些企业利用自身的规模经济和技术实力,推动了水泥余热发电技术的发展。
然而,市场竞争也存在一定问题,如部分企业技术水平相对滞后,缺乏核心竞争力。
水泥厂余热发电原理水泥厂是工业生产中能源消耗较大的行业之一,而水泥生产过程中会产生大量的余热。
为了提高能源利用效率和减少环境污染,水泥厂常常运用余热发电技术,将过程中产生的余热转化为电能。
水泥生产中产生余热的主要过程有四个:熟料烧结系统中的烧结窑,水泥磨系统的磨机,废气制冷系统的废气冷却器和废气净化器。
首先,熟料烧结系统中的烧结窑是水泥生产过程中能耗最大的环节。
烧结窑中的高温燃烧过程会产生大量的废气和余热。
这些废气和余热进入废气制冷系统。
其次,废气冷却器是废气制冷系统的核心设备。
废气从烧结窑中进入废气冷却器,与冷却器中的循环水进行热交换,使废气温度下降。
在热交换过程中,循环水被加热并转化为蒸汽。
然后,经过废气冷却器之后的废气进入废气净化器,进行尾气净化处理。
废气净化器是为了达到环保排放标准,去除废气中的污染物和尾气中的有害物质。
最后,余热发电系统的核心设备是汽轮机。
经过废气净化器处理后的废气,可进入汽轮机中进行发电。
废气中的高温高压蒸汽能够为汽轮机提供动力。
汽轮机是将热能转化为机械能的装置,通过高速旋转的轴转动发电机,从而产生电能。
在水泥厂的余热发电系统中,还有一些辅助设备和系统。
例如,蒸汽产生系统用于将废气中的蒸汽采集和储存,并进行调压。
发电机通过机械能转化为电能,并将电能输送到水泥厂的电网中。
此外,还有控制系统用于实时监测和控制余热发电系统的运行,以确保系统的安全和稳定。
总之,水泥厂余热发电是一种能够提高能源利用效率和减少环境污染的技术。
通过将水泥生产过程中产生的余热转化为电能,不仅可以为水泥厂提供自身消耗的电能,还可以向周边地区供应清洁能源。
水泥厂余热发电系统的实施,不仅有利于推动水泥工业的可持续发展,也有助于实现绿色产业转型和低碳经济的建设。
水泥厂余热发电
水泥厂余热发电是指利用水泥生产过程中产生的烟气、废热等余热来发电。
水泥生产过程中,熟料烧成过程中的排放气体温度较高,烟气中含有大量的热能,可以通过余热发电技术将烟气中的热能转化为电能。
水泥厂余热发电的具体步骤如下:
1. 收集烟气:通过烟囱或热交换器等设备,收集水泥生产过程中产生的烟气。
2. 预处理烟气:将收集到的烟气进行预处理,如除尘、脱硫等,以减少对发电设备的损害。
3. 热能回收:将预处理后的烟气通过余热锅炉等设备,将烟气中的热能转化为高温高压蒸汽。
4. 发电:将高温高压蒸汽输入蒸汽轮机,蒸汽轮机通过转动发电机产生电能。
5. 余热利用:蒸汽经过蒸汽轮机后,其余的低温低压蒸汽可以用于水泥生产过程中的烘干等。
1
水泥厂余热发电的优势包括节能环保、资源综合利用等。
通过利用水泥生产过程中产生的余热发电,既可以减少水泥生产过程中的能耗和排放,还可以减少对传统能源的依赖,提高能源利用效率。
2。
水泥厂余热发电原理
水泥厂余热发电是利用水泥生产过程中产生的高温废气余热来发电的一种方法。
其原理主要包括以下几个步骤:
1. 水泥生产中的高温废气收集:水泥生产过程中,包括煤磨、煤烧、熟料球磨、水泥磨等环节,都会产生大量高温废气。
首先需要将这些高温废气进行收集,通过管道或系统将其输送到余热发电设备。
2. 废气余热回收:在余热发电设备中,废气被引导进入余热锅炉或余热交换器。
在这个过程中,废气与水或其他工质进行热交换,使废气的余热被转移到工质中。
3. 工质汽化发电:经过热交换后,工质会因为余热的作用而汽化变为高温蒸汽。
这些高温蒸汽会驱动汽轮机转动,汽轮机的转动运动会产生机械能。
4. 机械能发电:转动的汽轮机将机械能转化为电能。
汽轮机与发电机相连,在汽轮机的转动力的驱动下,发电机会产生电流,并将电能输出。
5. 排放废气处理:经过废气余热回收后,废气中的热能已被充分利用,但废气中可能仍含有些许污染物。
为了保护环境,水泥厂余热发电设备还需要配备排放废气处理设备,如除尘器、脱硫器等,对废气进行净化处理,以保证废气排放符合环保要求。
通过以上几个步骤,水泥厂能够将生产过程中产生的高温废气充分利用,转化为电能,实现了能源的再生利用,减少了对传统能源的需求,同时也减少了对环境的影响。
这种利用水泥厂余热发电的方式,不仅提高了水泥生产的能源利用效率,还具有较高的经济效益和环保效益。
水泥厂余热发电监测随着工业的高速发展,对能源的需求也越来越高。
在能源的使用过程中,不可避免会产生大量的余热,如果不加以利用就会浪费大量的能源。
为了充分利用余热,许多企业将余热转化成电能使用,这种将余热转换成电能的过程叫做余热发电。
本文将以水泥厂余热发电监测为例,介绍余热发电的原理、应用以及监测过程。
一、余热发电原理余热是指在各种生产过程中因各种原因而没能完全转化成电能和机械能而流失掉的热能。
把这些余热收集起来,再进行转化工艺,可以把它转换成电能。
其中,比较成熟的转换工艺有蒸汽轮机、燃气轮机和有机朗肯循环机等。
目前,水泥厂余热发电一般采用蒸汽轮机的方式来转换余热。
水泥生产中,熟料窑是空气污染的主要来源,它也是一个巨大高温的加热器。
生产工艺中,熟料经过熟化反应要以高于1400摄氏度的温度保持30分钟,这样才能够转化成半熟或者完全烧结的固态颗粒。
在这个过程中,会释放出大量的热能。
利用余热发电,就是通过收集和利用这些热量来发电。
二、余热发电的应用余热发电技术广泛应用于化工、钢铁、水泥等行业的余热利用中。
这些工业中,产生的高温高压蒸汽都可以用来推动涡轮发电机、燃气轮机等以发电。
与此同时,余热发电还可以帮助企业节约成本。
充分利用余热发电,可以大幅度降低企业的能耗成本,减少环保税,提高经济效益。
同时,也是对高能物资的有效利用,不仅减轻了能源不足问题,也让企业拥有更多的自由度去吸收能源价格的变化。
三、水泥厂余热发电监测1、监测方法专业监测机构会利用各种现代测量和控制技术对余热发电过程进行监测。
在监测中,会使用实时在线监测、历史数据查询、统计分析等多种方法,获取最为全面的数据,最好涵盖同_品批次内不同发电机组性能指标的差异。
2、监测内容水泥厂余热发电监测的内容主要包括发电机、燃机、加热器、锅炉、蒸汽轮机、辅助发电设备等方面的监测。
同时还要监测电网电压、电流等重要电力参数,并针对监测结果进行数据分析,找出各种电力参数对发电量的影响。
水泥厂余热发电原理水泥生产过程中会产生大量的余热,这些余热如果不加以利用会造成能源的浪费。
而水泥厂余热发电就是利用水泥生产过程中的余热来进行发电,从而实现能源的高效利用。
水泥生产中主要有煤磨煤粉和熟料煅烧两个主要环节。
煤磨煤粉环节是将煤炭粉碎成煤粉,并将其送入炉内与热风进行混合燃烧,产生高温热风。
而熟料煅烧环节是将石灰石和粉煤灰等原料在高温下进行反应,形成熟料。
这两个环节产生的高温热风就是余热的主要来源。
水泥厂余热发电系统主要包括余热烟气收集、余热烟气回收和发电装置三个部分。
首先,余热烟气收集。
水泥厂煤磨煤粉和熟料煅烧过程中产生的高温热风经过排气管道排出,这些烟气中含有大量的热能。
因此,需要在排烟口处设置余热烟气收集装置,将烟气引导到余热回收设备中。
常见的收集装置有烟道、热管等。
这些收集装置的设计要考虑到烟气的流速、温度和压力等参数,以保证烟气能够被有效地收集。
其次,余热烟气回收。
收集到的高温烟气需要通过余热回收装置来回收其中的热能。
常见的热能回收方式有直接利用和间接利用两种方式。
直接利用是指将高温烟气直接与工作介质(如水、有机液体等)进行热交换,使介质升温,然后直接用于发电或其他用途。
间接利用是指通过换热器将高温烟气热量传递给介质,使介质的温度上升,然后再用于发电或其他用途。
根据实际情况和经济性考虑,选择适合的余热回收方式。
最后,发电装置。
余热回收装置将高温烟气中的热量传递给工作介质后,介质的温度升高。
通过将介质中的热能转化为机械能,再进一步转化为电能来实现发电。
常见的发电装置有蒸汽涡轮发电机组和有机朗肯循环发电机组。
蒸汽涡轮发电机组通过高温烟气产生蒸汽,然后推动涡轮旋转,最终带动发电机产生电能。
有机朗肯循环发电机组通过高温烟气产生有机工质的蒸汽,然后推动涡轮旋转,最终带动发电机产生电能。
水泥厂余热发电原理的核心是利用水泥生产过程中产生的高温热风,通过回收和利用热能来进行发电。
这不仅可以降低水泥生产过程中的能源消耗,减少环境污染,还可以提高水泥厂的能源利用效率,降低生产成本,实现可持续发展。
在水泥熟料生产过程中,水泥窑的窑头和窑尾产生大量废气(废热),在废气排出的地方安装余热锅炉,分别称为AQC锅炉和SP锅炉。
在余热锅炉内,废气与水进行热交换,使水产生一定温度和压力的过热蒸汽,过热蒸汽进入汽轮发电机组进行发电。
主要设备有凝汽式汽轮机、发电机、SP余热锅炉和AQC余热锅炉。
窑头及窑尾废气经余热锅炉后,沉降的炉灰经收集回用水泥生产系统。
窑头采用FU 拉链机将收下的炉灰送回到熟料输送系统;窑尾采用螺旋输送机将料灰送回到生料输送系统
1 窑头AQC余热锅炉
它是利用窑头冷却机产生的废气热量将水加热成饱和水或蒸汽的锅炉,为立式布置,自然循环。
由于冷却机废气中粉尘为熟料颗粒,粉尘粘附性不强,所以不设置清灰装置。
换热管采用螺旋翅片管,大大增加了换热面积,使得锅炉体积大幅下降,降低了投资成本。
在AQC余热锅炉前端设置了高温沉降室,大大减轻了废气对AQC余热锅炉的磨损。
2 窑尾SP锅炉
SP余热锅炉为立式布置,机械振打,自然循环,整个锅炉的振打形式为连续式,清灰较为均匀,同时设计有合理的灰斗,避免了因清灰原因造成废气中含尘浓度突然增大而引起风机跳停,该锅炉最具特点的地方是采用自然循环方式,省掉了二台强制循环热水泵,降低了运行成本,提高了系统可靠性。
立式的结构形式,在节约了占地面积的同时,也方便了废气管道的布置。
3 应急处置措施
为了保证电站故障不影响水泥窑生产,余热锅炉废气管道及发电系统汽水管道均考虑了应急处理措施。
余热锅炉均保留原有烟道,加装旁通阀,一旦余热锅炉或电站发生事故时,可以将余热锅炉从水泥生产系统中解列,从而不影响水泥生产的正常运行。