比例线段教学教案
- 格式:doc
- 大小:292.50 KB
- 文档页数:4
冀教版数学九年级上册25.1《比例线段》教学设计一. 教材分析冀教版数学九年级上册第25.1节《比例线段》是学生在学习了平面几何基本概念和性质的基础上进一步探究线段之间的比例关系。
通过本节课的学习,学生能够理解比例线段的定义,掌握比例线段的性质,并能够运用比例线段解决一些实际问题。
教材通过丰富的实例和活动,引导学生探究比例线段的特点,培养学生的观察能力和逻辑思维能力。
二. 学情分析九年级的学生已经具备了一定的几何基础,对平面几何的概念和性质有一定的了解。
但是,对于比例线段这一概念,学生可能较为陌生,需要通过具体的实例和活动来理解和掌握。
学生的观察能力和逻辑思维能力有待进一步提高,因此,在教学过程中,教师需要注重引导学生观察、思考和推理。
三. 教学目标1.知识与技能目标:使学生理解比例线段的定义,掌握比例线段的性质,能够运用比例线段解决一些实际问题。
2.过程与方法目标:通过观察、操作、交流等活动,培养学生的观察能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.重点:比例线段的定义和性质。
2.难点:比例线段的运用和解决实际问题。
五. 教学方法1.启发式教学:教师通过提问、引导,激发学生的思考,使学生主动探索比例线段的性质。
2.合作学习:教师学生进行小组讨论和合作交流,培养学生的团队合作意识。
3.直观教学:教师利用多媒体课件、实物模型等直观教具,帮助学生形象地理解比例线段的概念。
六. 教学准备1.多媒体课件:教师制作多媒体课件,包括比例线段的定义、性质和实际应用等内容的展示。
2.实物模型:教师准备一些线段模型,用于直观展示比例线段的特点。
3.练习题:教师准备一些练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾平面几何的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师利用多媒体课件展示比例线段的定义和性质,通过实物模型和动画演示,帮助学生形象地理解比例线段的概念。
初中数学比例线段教案教学目标:1. 理解比例线段的概念,掌握比例线段的性质。
2. 学会判断四条线段是否成比例,并能求出两条线段的比。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 比例线段的概念和性质。
2. 判断四条线段是否成比例,求两条线段的比。
教学难点:1. 比例线段的性质的理解和应用。
2. 判断四条线段是否成比例的方法。
教学准备:1. 教师准备PPT或黑板,展示比例线段的例子和性质。
2. 学生准备笔记本,记录比例线段的概念和性质。
教学过程:一、导入(5分钟)1. 引导学生回顾线段的基本概念,如线段的定义、特点等。
2. 提问:我们已经学习了线段的基本概念,那么如何判断四条线段是否成比例呢?二、新课讲解(15分钟)1. 讲解比例线段的概念:如果两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段。
2. 讲解比例线段的性质:比例线段的比相等,且相邻两条线段的比互为倒数。
3. 举例说明比例线段的判断方法和求比的方法。
三、课堂练习(10分钟)1. 让学生独立完成练习题,判断四条线段是否成比例。
2. 让学生求出两条线段的比。
四、总结与拓展(5分钟)1. 让学生总结比例线段的概念和性质。
2. 提问:比例线段在实际生活中有什么应用?五、课后作业(5分钟)1. 让学生完成课后作业,巩固比例线段的知识。
教学反思:本节课通过讲解和练习,让学生掌握了比例线段的概念和性质,能够判断四条线段是否成比例,并求出两条线段的比。
在教学过程中,要注意引导学生积极参与,培养学生的逻辑思维能力和解决问题的能力。
同时,也要关注学生的学习情况,及时进行反馈和辅导。
初中成比例线段教案教学目标:1. 理解成比例线段的概念及性质;2. 学会判断四条线段是否成比例;3. 能够运用成比例线段解决实际问题。
教学重点:成比例线段的概念及其性质。
教学难点:探索成比例线段的性质。
教学准备:课件、学案。
教学过程:一、导入(5分钟)1. 教师通过展示一些实际问题,引导学生发现其中存在的线段比例关系。
2. 学生观察并讨论,尝试解释这些比例关系。
二、新课讲解(15分钟)1. 教师介绍成比例线段的概念,解释线段比例关系的意义。
2. 学生跟随教师一起探究成比例线段的性质,通过示例和练习加深理解。
3. 教师强调成比例线段的判断方法,引导学生注意比例线段的性质。
三、课堂练习(15分钟)1. 学生独立完成练习题,巩固对成比例线段的理解。
2. 教师选取部分学生的作业进行点评,指出优点和需要改进的地方。
四、应用拓展(15分钟)1. 教师提出一些实际问题,引导学生运用成比例线段的知识解决。
2. 学生分组讨论,分享解题过程和答案。
3. 教师总结学生们的解题方法,强调成比例线段在实际问题中的应用。
五、总结(5分钟)1. 教师引导学生回顾本节课所学内容,总结成比例线段的概念和性质。
2. 学生分享自己对成比例线段的理解和收获。
教学反思:本节课通过引入实际问题,引导学生发现线段比例关系,激发学生的学习兴趣。
通过新课讲解和课堂练习,学生能够理解和掌握成比例线段的概念及其性质。
在应用拓展环节,学生能够将所学知识应用于实际问题中,提高解决问题的能力。
在教学过程中,教师应及时关注学生的学习情况,针对学生的掌握情况,调整教学节奏和难度,确保学生能够扎实掌握成比例线段的知识。
同时,教师应鼓励学生积极参与课堂讨论,培养学生的合作意识和沟通能力。
《成比例线段成比例线段与比例的基本性质》教案一、教学目标:知识与技能:1. 理解成比例线段的定义和判定方法。
2. 掌握比例的基本性质,并能运用其解决实际问题。
过程与方法:1. 通过观察和操作,培养学生发现和解决问题的能力。
2. 培养学生运用成比例线段和比例解决实际问题的能力。
情感态度价值观:1. 培养学生对数学的兴趣和好奇心。
2. 培养学生勇于尝试、克服困难的精神。
二、教学重点:成比例线段的判定方法比例的基本性质三、教学难点:成比例线段的实际应用比例解决实际问题的方法四、教学准备:教师准备PPT,包括成比例线段的图片、判定方法、比例的基本性质等。
学生准备教材、笔记本、尺子、铅笔等。
五、教学过程:1. 导入(5分钟)教师通过展示一些成比例线段的图片,引导学生观察和思考,让学生初步感知成比例线段的概念。
2. 新课导入(10分钟)教师引导学生学习成比例线段的定义和判定方法,通过示例和练习,让学生理解和掌握成比例线段的判定方法。
3. 知识拓展(10分钟)教师引导学生学习比例的基本性质,通过示例和练习,让学生理解和掌握比例的基本性质。
4. 课堂练习(10分钟)教师布置一些有关成比例线段和比例的实际问题,让学生运用所学知识解决,巩固所学内容。
5. 小结与作业布置(5分钟)教师对本节课的内容进行小结,布置一些有关成比例线段和比例的实际问题,供学生课后思考和练习。
六、教学活动设计:活动1:观察和发现教师展示一系列成比例的线段图片,让学生观察并指出哪些线段是成比例的。
学生分组讨论,分享他们的发现,并尝试用自己的语言描述成比例线段的特征。
活动2:操作和实践学生使用尺子和铅笔,在纸上绘制自己的成比例线段。
教师引导学生通过折叠、比较等方式,验证他们的线段是否成比例。
活动3:问题解决教师提供一些实际问题,如“一个长方形的长是10cm,宽是5cm,请问长方形的对角线是否成比例?”学生独立思考或小组合作,运用成比例线段的性质解决问题。
比例线段的教案教案标题:探索比例线段教案目标:1. 理解比例线段的概念和性质。
2. 能够在平面上使用比例线段进行测量和构造。
3. 发展学生的几何思维和问题解决能力。
教案步骤:引入活动:1. 利用图片或实物展示不同长度的线段,引导学生思考如何比较和描述这些线段之间的关系。
2. 引导学生提出比例线段的概念,并与他们讨论比例线段的特点。
知识讲解:1. 通过示意图和实例,解释比例线段的定义:在一条直线上,如果两个线段的长度之比等于另外两个线段的长度之比,则这两个线段是比例线段。
2. 强调比例线段的性质:比例线段的长度之比相等,可以用等号表示。
实践探索:1. 给学生发放纸和铅笔,让他们在纸上绘制一条直线段。
2. 要求学生选择一点作为起点,然后使用尺子或直尺测量该线段的长度,并记录下来。
3. 让学生选择一个比例,例如2:1,然后根据这个比例,在该线段上找到一个点,使得新线段的长度是原线段长度的两倍。
4. 引导学生思考并讨论,如何使用尺子或直尺进行测量和构造比例线段。
应用练习:1. 给学生分发练习题,要求他们测量和构造特定比例线段。
2. 引导学生应用比例线段解决实际问题,例如计算地图上两个城市之间的实际距离。
总结回顾:1. 与学生一起回顾比例线段的定义和性质。
2. 强调比例线段在几何和实际生活中的应用。
3. 鼓励学生提出问题和分享他们的思考。
教案评估:1. 观察学生在实践探索和应用练习中的表现。
2. 收集学生完成的练习题并进行评分。
3. 与学生进行个别或小组讨论,了解他们对比例线段的理解和应用的程度。
教案扩展:1. 引导学生探索其他几何图形中的比例关系,例如相似三角形和相似多边形。
2. 引导学生研究比例线段在艺术和设计中的应用,例如黄金分割比例。
3. 鼓励学生设计自己的问题和活动,以进一步巩固对比例线段的理解和应用。
成比例线段教案
一、教学目标
1. 知道什么是成比例线段
2. 掌握成比例线段的判断方法
3. 能够计算成比例线段的比例关系
二、教学重难点
1. 成比例线段的定义与判断
2. 成比例线段的比例关系计算
三、教学准备
1. 教材:数学教材
2. 工具:直尺、铅笔、橡皮
四、教学过程
Step1 引入新知
1. 先展示两条直线段,长度不一样,然后问:这两条线段有什么关系?
2. 学生回答之后,引导学生思考:如果这两条线段的长度比相等,这两条线段之间会有什么特点?
3. 引导学生思考后,从引导到定义,告诉学生这两个线段是成比例线段。
Step2 判断成比例线段
1. 给出一些线段的长度,让学生判断它们是否成比例线段。
2. 提示学生注意线段的比例关系,即长度比相等。
3. 让学生通过计算判断线段的比例关系。
Step3 计算成比例线段的比例关系
1. 给出一些已知的成比例线段,让学生计算它们的比例关系。
2. 提示学生可以通过计算线段的长度来得到比例关系。
Step4 巩固与拓展
1. 给学生一些练习题,让他们判断、计算成比例线段的比例关系。
2. 鼓励学生多使用判断方法,巩固对成比例线段的理解。
五、板书设计
成比例线段的定义:
两条线段的长度比相等。
成比例线段的判断:
计算线段的长度比是否相等。
比例线段一、教材分析1.教材的地位与作用本课是为今后相似的描述与计算奠定基础。
2.教学目标(1)知识与技能:掌握比例、比例线段的概念,会辨认比例式中的“项”,会求常见图形中的线段比。
(2)数学思考:经历比例、比例线段的概念得出过程,体会类比的思想,促进探究、质疑,归纳能力的发展。
(3)问题解决:通过问题情境的创设和解决过程,进一步体会数学与生活的紧密联系,体会数学的思维方式,增进数学学习的情感。
(4)情感、态度与价值观:在交流协作中,体会生生交往与师生交往的乐趣;在解决问题中接受挑战、战胜困难,增强学习数学的兴趣。
3.重点与难点本节课的重点是比例及比例线段,难点是应用。
二、学生分析九年级的学生在小学中已经学过比的概念,在七年级时又学过线段长度等知识,在第一课中对比例也有了一定的了解,因此在知识上已经具备了继续学习比例及比例线段的基础。
在思维能力上,学生经历了两年多的初中数学学习,已经具备了一定的数学学习能力,空间想象能力和抽象思维能力都有一定的增长,计算能力也有了较大的提高。
三、教法与学法教学中应贯彻落实数学课程标准,建立新的数学教学理念,实施课程教学的民主化,促进开放式教学的深入研究。
要充分发挥教师的主导作用和学生的主体作用,注重知识的发生、发展过程。
教师要给学生提供探究和交流的空间,紧紧抓住“数学思维活动的过程”这条主线,鼓励学生大胆联想、猜想,主动探索并获取知识,将面向全体、因生施教落到实处,培养学生的创新精神和实践能力。
四、活动流程1.创设情境,引入新课(1)提出问题:“今天这节课我们先来欣赏几组漂亮的图片。
这是什么?”“在这两幅图片上你发现了什么?”(2)继续提问:“相似图形必须满足什么特征?对大小有无要求?”(3)让学生来寻找实际生活中的相似图形。
问:那你们都洗过几寸的照片?有洗过跟真人那么大的照片吗?如果洗出来的照片太小了怎么办?太大了呢?师:比如从一寸放大到五寸,或是从七寸缩小到五寸,这里蕴含着一个重要的数学知识——比例。
2024年浙教版数学九年级上册4.1《比例线段》教学设计一. 教材分析《比例线段》是浙教版数学九年级上册4.1的内容,主要介绍了比例线段的定义、性质和应用。
通过本节课的学习,学生能够理解比例线段的含义,掌握比例线段的判定方法,并能够运用比例线段解决实际问题。
教材通过生动的实例和丰富的练习,帮助学生深入理解和掌握比例线段的知识。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对线段、比例等概念有一定的了解。
但学生在学习比例线段时,可能会对比例线段的定义和性质产生困惑,难以理解和运用。
因此,在教学过程中,需要注重对学生的基础知识的巩固,通过生动的实例和具体的操作,帮助学生理解和掌握比例线段的概念和性质。
三. 教学目标1.理解比例线段的定义和性质。
2.能够判定两条线段是否成比例线段。
3.能够运用比例线段解决实际问题。
4.培养学生的几何思维能力和解决问题的能力。
四. 教学重难点1.比例线段的定义和性质的理解。
2.比例线段的判定方法的掌握。
3.运用比例线段解决实际问题的能力。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索,激发学生的学习兴趣和动力。
2.利用多媒体和实物模型,生动形象地展示比例线段的定义和性质,帮助学生直观地理解和记忆。
3.通过小组讨论和合作交流,培养学生的团队协作能力和解决问题的能力。
4.提供丰富的练习题,让学生在实践中巩固和运用比例线段的知识。
六. 教学准备1.多媒体教学设备。
2.实物模型和图片。
3.练习题和答案。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生回顾线段和比例的基础知识,为新课的学习做好铺垫。
2.呈现(10分钟)利用多媒体和实物模型,生动形象地展示比例线段的定义和性质,让学生直观地理解和记忆。
3.操练(10分钟)让学生通过小组讨论和合作交流,共同完成一些关于比例线段的练习题,巩固和运用所学知识。
4.巩固(5分钟)让学生独立完成一些关于比例线段的练习题,检验学生对知识的掌握程度,并及时给予指导和帮助。
25.1比例线段教案
主备人:刘荣格 九年级数学
时间:2014年10月5日
教学目标:
(一)知识目标:
1.了解两条线段的比和比例线段的概念;
2.能根据条件写出比例线段;
3.回运用比例线段解决简单的实际问题。
(二)能力目标:巩固比和比例线段的概念,并能熟练运用求值。
(三)情感目标:
1、激发学习兴趣,培养想象力,挖掘学习动力。
2、落实新课程“合作学习,主动探究”思想。
教学重点、难点
教学重点:比例线段的概念。
教学难点:例3要求根据具体问题发现等量关系,找出比例式,有一定的隐蔽性,是本节教学的难点。
知识要点:
1.两条线段的长度的比叫做两条线段的比。
2.四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即a b =c d
,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。
重要提示:
1.用方程思想寻找几何图形中四条线段成比例是常用方法。
2.四条线段成比例可以解决一些实际问题,如地图上的某两地之间的距离。
教学过程
一、复习引入
1.列举四个数成比例,并写出比例式,指出比例内项、外项、第四比例项。
2.说出比例的基本性质。
由ad =bc 可推出哪些比例式?
3.练习:(1)若3x =4y ,求x y 、x x -y 、x -2y x +y 的值。
(2)若a +b a =53 ,求a -2b b
的值。
(3)x:y:z =2:3:4,求
x -y +z 2x +3y -z
的值。
(4)已知a:b:c =3:4:5,且2a +3b -4c =-1,求2a -3b +4c 的值。
(5)已知线段AB =15cm ,CD =20cm 。
求AB:CD 的值。
(6)完成P98网格问题。
(问题建立在相似变换基础上,可复习相似变换)
二、设置问题,探究新课
如何定义两线段的比呢?什么是比例线段?
在同一长度单位下,a,b,两线段长度的比叫做这两线段的比。
记为a :b 或a b
注意:(1)两线段是几何图形,可用它的长度比来确定;
(2)度量线段的长,单位多种,但求比值必需在同一长度单位下比值一定是正数,比值与采用的长度单位无关。
(3)表示方式与数字的比表示类同,但它也可以表示为AB:CD.
比例线段:一般地,四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 比,即a b =c d
,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。
(老教材定义:如果四条线段的长度成比例,那么这四条线段叫做成比例线段,简称比例线段)
完成P99做一做
三、模仿与应用
例题:已知线段a=10mm ,b=6cm ,c=2cm ,d=3cm.问:这四条线段是否成比例?为什么? 答:这四条线段成比例
∵a=10mm=1cm
∴a c =12 ,d b =36 =12 ∴a c =d b
,即线段a 、c 、d 、b 是成比例线段。
想一想:是否还可以写出其他几组成比例的线段.
反思:判断四条线段是否成比例的方法有两种:
(1)把四条线段按大小排列好,判断前两条线段的比和后两条线段的比是否相等。
(2)查看是否有两条线段的积等于其余两条线段的积。
例3如图,在Rt △ABC 中,CD 是斜边AB 上的高。
请找出一组比例线段,并说明理由。
分析:(1)根据比例基本性质,要判断四条线段是否成比例, 只要采取什么方法(看其中两条线段的乘积是否等于另两条线段的乘积)
(2)已知条件中有三角形的高,我们通常可以把高与什么知识联系起来? (3)根据三角形的面积公式,你能得到一个怎样的等式?根据所得
A B
C
D
的等式可以写出怎样的比例式。
例4如图,是我国台湾省的几个城市的位置图,问基隆市在高雄市的哪一个方向?到高雄市的实际距离是多少km ?
注意:要设实际距离为s ;求角度时要注意方位。
解:从图上量出高雄市到基隆市的距离约35mm,设实际距离为s ,则 3519000000s = 359000000s ∴=⨯=315000000(mm)
即s =315(km) 答:
如果量得图中28α∠=︒,我们还能确定基隆市在高雄市的北偏东28︒的315km 处。
课堂练习:P99课内练习、P100作业题(学生板演)
补充练习:
1.已知线段a =30mm ,b =2cm ,c =45
cm ,d =12mm ,试判断a 、b 、c 、d 是否成比例线段。
2.已知a 、b 、c 、d 是比例线段,其中a =6cm ,b =8cm ,c =24cm,则线段d 的长度是多上?
3.已知三角形三条边之比为a :b :c=2:3:4,三角形的周长为18cm ,求各边的长。
4.已知AB 两地的实际距离是60km ,画在图上的距离A 1B 1是6cm ,求这幅图的比例尺。
5.现在有一棵很高的古树,欲测出它的高度,但又不能爬到树尖上去直接测量,你有什么好的方法吗?
类题:相同时刻的物高与
影长成比例。
如果一电视塔在地面上影长为180m ,同一时刻高为2m 的竹
竿的影长为3m ,那么电视塔的高是多少? 6.如图,已知AD ,CE 是
△ABC 中BC 、AB 上的高线,求证:AD :CE=AB :
BC 7.如图,在Rt △ABC 中,CD ⊥AB ,DE ⊥AC,请找出一组比例线段,并说明理由。
8.如图,已知32AD AE DB EC ==,求,,AB EC AB DB AE AD
9.育美中学请张工程师设计学校的矩形花坛的平面图,这个花坛长为20m ,宽为12m 。
(1)在比例尺为1:100的平面图上,这个矩形花坛的长和宽各是多少?
(2)在平面图上,这个花坛的长和宽的比是多少?
(3)花坛长和宽实际比是多少?
(4)你发现这两个比有什么关系?
A
B C E D
四、课堂小结
1.两条线段的比及比例线段的概念;
2.方程思想的体现;
3.比例线段在实际问题中的应用。
五、作业:见作业本
六、教后感。