线弹性有限元法分析的基本步骤
- 格式:doc
- 大小:90.00 KB
- 文档页数:3
有限元分析的一般过程一、结构的离散化将结构或弹性体人为地划分成由有限个单元,并通过有限个节点相互连接的离散系统。
这一步要解决以下几个方面的问题:1、选择一个适当的参考系,既要考虑到工程设计习惯,又要照顾到建立模型的方便。
2、根据结构的特点,选择不同类型的单元。
对复合结构可能同时用到多种类型的单元,此时还需要考虑不同类型单元的连接处理等问题。
3、根据计算分析的精度、周期及费用等方面的要求,合理确定单元的尺寸和阶次。
4、根据工程需要,确定分析类型和计算工况。
要考虑参数区间及确定最危险工况等问题。
5、根据结构的实际支撑情况及受载状态,确定各工况的边界约束和有效计算载荷。
二、选择位移插值函数1、位移插值函数的要求在有限元法中通常选择多项式函数作为单元位移插值函数,并利用节点处的位移连续性条件,将位移插值函数整理成以下形函数矩阵与单元节点位移向量的乘积形式。
位移插值函数需要满足相容(协调)条件,采用多项式形式的位移插值函数,这一条件始终可以满足。
但近年来有人提出了一些新的位移插值函数,如:三角函数、样条函数及双曲函数等,此时需要检查是否满足相容条件。
2、位移插值函数的收敛性(完备性)要求:1)位移插值函数必须包含常应变状态。
2)位移插值函数必须包含刚体位移。
3、复杂单元形函数的构造对于高阶复杂单元,利用节点处的位移连续性条件求解形函数,实际上是不可行的。
因此在实际应用中更多的情况下是利用形函数的性质来构造形函数。
形函数的性质:1)相关节点处的值为 1,不相关节点处的值为 0。
2)形函数之和恒等于 1。
1、建立数学模型(特征消隐,理想化,清除)((即从 CAD 几何体→FEA 几何体),共有下列三法:▲ 特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。
▲ 理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理▲ 清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。
有限元试题及答案一、选择题1.有限元分析是一种利用计算机数值方法进行结构分析的方法,下面哪个说法是正确的?A. 有限元分析对结构的约束条件没有要求B. 有限元分析只适用于静力分析C. 有限元分析可以用来研究结构的动力响应D. 有限元分析的计算结果一定是精确的答案:C2.有限元法的基本步骤包括以下几个环节:I. 离散化II. 单元划分III. 节点连接IV. 计算材料性质V. 施加边界条件VI. 构建刚度矩阵和载荷向量VII. 求解节点位移和应力VIII. 后处理与结果分析请问选择项中正确的顺序是:A. IV – I – II – III – V – VI – VII – VIIIB. I – II – III – IV – V – VI – VII – VIIIC. II – III – V – IV – VI – I – VII – VIIID. I – III – II – IV – V – VI – VII – VIII答案:B3.在有限元分析中,单元是指将结构划分为有限个小单元来近似表示结构的方法。
下面哪个选项给出了常用的结构单元类型?A. 三角形单元,四面体单元,六面体单元B. 矩形单元,六面体单元,圆形单元C. 圆形单元,矩形单元,六面体单元D. 四面体单元,矩形单元,三角形单元答案:D二、填空题1.有限元分析中,刚度矩阵的计算需要根据单元的_________和材料的_________计算得到。
答案:几何形状,物理性质2.有限元法最常用的数学插值函数是_________函数。
答案:形函数3.在有限元分析中,自由度是指结构中的每个_________未知量。
答案:位移三、计算题1.给定如图所示的二维结构,使用有限元法进行分析。
假设结构材料为线性弹性材料,其杨氏模量为200 GPa,泊松比为0.3。
结构整体尺寸为5m x 3m,单元尺寸为1m x 1m。
分析载荷为2000 N,施加在结构的中心节点上。
有限元分析及应用习题答案有限元分析及应用习题答案有限元分析是一种广泛应用于工程领域的数值计算方法,可以用来解决各种结构力学问题。
在学习有限元分析的过程中,习题是非常重要的一部分,通过解答习题可以巩固理论知识,提高应用能力。
本文将给出一些有限元分析及应用的习题答案,希望对读者有所帮助。
1. 什么是有限元分析?有限元分析的基本步骤是什么?有限元分析是一种通过将结构划分为有限数量的子域,然后对每个子域进行数值计算,最终得到整个结构的应力、应变等力学参数的方法。
其基本步骤包括:建立有限元模型、选择适当的数学模型、进行数值计算、分析计算结果。
2. 有限元分析的优点是什么?有限元分析具有以下优点:- 可以处理任意形状的结构,适用范围广。
- 可以考虑材料非线性、几何非线性等复杂情况。
- 可以对结构进行优化设计,提高结构的性能。
- 可以得到结构的应力、应变等力学参数分布,为工程实际应用提供参考。
3. 有限元分析中的单元是什么?常见的有哪些类型?有限元分析中的单元是指将结构划分为有限数量的子域,每个子域称为一个单元。
常见的单元类型有:- 一维单元:如梁单元、杆单元等,适用于解决一维结构问题。
- 二维单元:如三角形单元、四边形单元等,适用于解决平面或轴对称问题。
- 三维单元:如四面体单元、六面体单元等,适用于解决立体结构问题。
4. 如何选择适当的单元类型?选择适当的单元类型需要考虑结构的几何形状、边界条件、材料性质等因素。
一般来说,对于简单的结构,可以选择较简单的单元类型;对于复杂的结构,需要选择更复杂的单元类型。
此外,还需要根据具体问题的要求和计算资源的限制进行选择。
5. 有限元分析中的边界条件有哪些类型?有限元分析中的边界条件包括:- 位移边界条件:指定某些节点的位移或位移的导数。
- 力边界条件:施加在结构上的外力或力矩。
- 约束边界条件:限制某些节点的位移或位移的导数为零。
6. 有限元分析中的材料模型有哪些?有限元分析中常用的材料模型有:- 线性弹性模型:假设材料的应力与应变之间存在线性关系。
简述有限元分析的实施步骤1. 确定问题和目标在进行有限元分析之前,首先需要明确问题和目标。
确定问题和目标将有助于指导后续的分析工作,并确保分析结果的可靠性和实用性。
问题和目标可以是结构的强度分析、热传导分析、流体力学分析等。
2. 创建有限元模型有限元模型是有限元分析的基础,它是结构物或系统的数学模型。
在创建有限元模型时,需要进行以下步骤:•定义几何形状:通过使用CAD软件或手动绘制来定义结构物或系统的几何形状。
这包括绘制结构物的边界、孔洞和特征。
•离散化:将结构或系统划分为有限数量的离散区域,称为有限元。
这些有限元可以是三角形、四边形或其他形状,取决于需要分析的问题类型。
•定义材料属性:为每个有限元分配适当的材料属性,如弹性模量、泊松比、密度等。
这些属性将影响到模型的响应。
•定义边界条件:定义结构或系统的边界条件,如固定边界、受力边界等。
这些边界条件将模拟实际结构中的限制条件。
3. 制定数学模型在进行有限元分析之前,需要将物理模型转化为数学模型。
数学模型是基于物理方程和边界条件的方程组。
制定数学模型的步骤如下:•应用力学原理:根据问题类型,采用适当的力学原理,如静力学原理、动力学原理等。
力学原理将为问题提供方程基础。
•建立强度方程:根据力学原理,建立物体或结构物的均衡方程。
这些方程将描述结构的受力分布和变形情况。
•引入边界条件:基于前面创建的有限元模型,将边界条件应用于强度方程。
这将包括施加受力、固定节点等。
4. 进行数值计算有限元分析的核心部分是进行数值计算。
在这一步骤中,使用适当的数值方法和算法,求解数学模型得到物理问题的解。
数值计算的步骤如下:•网格生成:通过将结构物或系统划分为离散区域生成网格。
这个网格将用于数值计算过程中的逼近。
•建立刚度矩阵:根据有限元模型和材料属性,建立刚度矩阵。
刚度矩阵描述了结构物的刚度特性。
•应用边界条件:将边界条件应用于刚度矩阵。
这将创建一个系统的等式,描述结构对外部加载的响应。
材料力学弹性力学有限元课程学习思路步骤解决问题的思路和步骤(基本方程)根据胡克定律(Hooke's law),在弹性限度内,材料的应力与应变成线性关系。
在处理具体的杆件问题时,根据材料性质和变形情况的不同,可将问题分为三类:①线弹性问题。
在杆变形很小,而且材料服从胡克定律的前提下,对杆列出的所有方程都是线性方程,相应的问题就称为线性问题。
对这类问题可使用叠加原理,即为求杆件在多种外力共同作用下的变形(或内力),可先分别求出各外力单独作用下杆件的变形(或内力),然后将这些变形(或内力)叠加,从而得到最终结果。
②几何非线性问题。
若杆件变形较大,就不能在原有几何形状的基础上分析力的平衡,而应在变形后的几何形状的基础上进求解一个弹性力学问题,就是设法确定弹性体中各点的位移、应变和应力共15 个函数。
从理论上讲,只有15个函数全部确定后,问题才算解决。
但在各种实际问题中,起主要作用的常常只是其中的几个函数,有时甚至只是物体的某些部位的某几个函数。
所以常常用实验和数学相结合的方法,就可求解。
直角坐标系下的弹性力学的基本方程为:有限元方法(FEM)的理论基础是变分原理和加权余量法。
仍然遵从平衡方程、几何方程、本构方程、协调方程,其解满足应力边界条件、位移边界条件。
其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
行分析。
这样,力和变形之间就会出现非线性关系,这类问题称为几何非线性问题。
③物理非线性问题。
在这类问题中,材料内的变形和内力之间(如应变和应力之间)不满足线性关系,即材料不服从胡克定律。
在几何非线性问题和物理非线性问题中,叠加原理失效。
解决这类问题可利用卡氏第一定理、克罗蒂-恩盖塞定理或采用单位载荷法等。
有限元分析过程有限元分析过程可以分为以下三个阶段:1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型——有限元模型,从而为有限元数值计算提供必要的输入数据。
有限元建模的中心任务是结构离散,即划分网格。
但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。
2.计算阶段: 计算阶段的任务是完成有限元方法有关的数值计算。
由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。
3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。
注意:在上述三个阶段中,建立有限元模型是整个有限分析过程的关键。
首先,有限元模型为计算提供所以原始数据,这些输入数据的误差将直接决定计算结果的精度;其次,有限元模型的形式将对计算过程产生很大的影响,合理的模型既能保证计算结构的精度,又不致使计算量太大和对计算机存储容量的要求太高;再次,由于结构形状和工况条件的复杂性,要建立一个符合实际的有限元模型并非易事,它要考虑的综合因素很多,对分析人员提出了较高的要求;最后,建模所花费的时间在整个分析过程中占有相当大的比重,约占整个分析时间的70%,因此,把主要精力放在模型的建立上以及提高建模速度是缩短整个分析周期的关键。
原始数据的计算模型,模型中一般包括以下三类数据:1.节点数据: 包括每个节点的编号、坐标值等;2.单元数据:a.单元编号和组成单元的节点编号;b.单元材料特性,如弹性模量、泊松比、密度等;c.单元物理特征值,如弹簧单元的刚度系数、单元厚度、曲率半径等;d.一维单元的截面特征值,如截面面积、惯性矩等;e.相关几何数据3.边界条件数据:a.位移约束数据;b.载荷条件数据;c.热边界条件数据;d.其他边界数据.建立有限元模型的一般过程:1.分析问题定义在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何模型。
线弹性有限元法分析的基本步骤
有限元法是工程领域应用最为广泛的一种计算方法,它不但可以解决工程中的结构分析问题,而且已成功地解决了热力学、流体力学、电磁学和声学等领域的问题。
经过数十年的发展,有限元方法的理论已相当完善。
将有限元理论、计算机图形学以及优化技术相结合而开发的各类专用有限元软件。
能高速高效地解决各类有限元问题。
线弹性有限元法分析的基本步骤
线弹性有限元法分析有限元一般分为6步。
第一步:定义形函数)(x N ,进而通过单元节点变量a 描述单元域内连续的变量)(x u
e a x N x u )()(=
第二步:定义单元材料的响应;如应力、应变和热流等。
e Ba x u L x ==)]([)(ε
)()(x D x εσσ==
第三步:形成单元矩阵,建立单元与外界的平衡关系:
0=+e e e f a K
式中
e K :单元刚度矩阵
e a :单元节点位移
e f :单元节点上的等效外力
刚度矩阵按下式计算:
⎰Ω=
e DBdV B K T e
节点等效外力为: F tdS x N bdV x N f e
e T T e
++=-⎰⎰ΓΩ)()( 单元刚度矩阵代表了结构单元的刚度或传热单元的传导性,节点外载荷单元内体力(或内热源)、面力(或热流)、及节点集中力的贡献。
第四步:集成。
将覆盖结构全域的所有单元的刚度矩阵和节点外力对平衡的贡献集成,建立整体结构的平衡方程。
∑=e
e K K
∑=e
e f f
第五步:求解平衡方程。
指定一些节点位移后,可将平衡方程按已知节点位移和未知的场变量分解为
两部分。
⎥⎦⎤⎢⎣⎡-=⎥⎦
⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡r a s u ss su
us uu f f a a K K K K 式中 u a 为未知节点变量
s a 为已知节点变量
a f 为外加的节点力
r f 为节点反作用力
求解变成获得已知位移的节点反作用力和已知的载荷节点位移。
第六步:回代。
根据计算出的节点变量,代入第二步的表达式中,获得单元应变、应力或热流等量。
举例
以杆单元为例,其框图如下
第一步:定义形函数)(x N ,进而通过单元节点变量a 描述单元域内连续的变量)(x u
e a x N x u )()(=
⎥⎦
⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=211)(u u l x l x x u 第二步:定义单元材料的响应;如应力、应变和热流等。
e Ba x u L x ==)]([)(ε
)()(x D x εσσ==
确定应力、应变关系
⎥⎦
⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=2111)(u u l l x ε εσE =
第三步:形成单元矩阵,建立单元与外界的平衡关系:
0=x l x = 1u )(x u
2u x
0=+e e e f a K
假设在此需要分析的问题是一端铰结杆在自重作用下的变形和应力,则有:
⎥⎦⎤⎢⎣⎡--⎪⎭⎫ ⎝⎛==⎰Ω
1111l AE DBdV B K e T e 第四步:集成。
将覆盖结构全域的所有单元的刚度矩阵和节点外力对平衡的贡献集成,建立整体结构的平衡方程。
∑=e
e K K
∑=e
e f f
有
⎥⎥⎦
⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--⎪⎭⎫ ⎝⎛20111112AL r u l AE γ 第五步:求解平衡方程。
得出位移。
E AL u 22γ=
2
1AL r γ-= 第六步:回代。
2L
e γσ=。