罐体壁厚承受压力计算公式
- 格式:docx
- 大小:24.73 KB
- 文档页数:2
压力容器、常压容器钢板壁厚计算选择和标准公式容器标准:《GB 150-2011压力容器》《NB/T 47003.1-2009钢制焊接常压容器》钢材标准:《GB 713-2008锅炉和压力容器用钢板》―― GB 150碳素钢和低合金钢的钢板标准牌号Q245R、Q345R、Q370R、18MnMoNbR、13MnNiMoR、15CrMoR、14Cr1MoR、12Cr2Mo1R、12Cr1MoVR 《GB/T 3274-2007碳素结构钢和低合金结构钢热轧厚钢板和钢带》——GB150 Q235B钢板标准《GB 24511-2009承压设备用不锈钢钢板及钢带》――GB150高合金钢的钢板标准《GB/T 4237-2007不锈钢热轧钢板和钢带》―― NB/T 47003高合金钢板标准,化学成分、力学性能《GB/T 3280-2007不锈钢冷轧钢板和钢带》《GB/T 20878-2007不锈钢和耐热钢牌号及化学成分》《GB/T 699-1999优质碳素结构钢》牌号08F、10F、15F、08、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、15Mn、20Mn、25Mn、30Mn、35Mn、40Mn、45Mn、50Mn、60Mn、65Mn、70Mn《GB/T 700-2006 碳素结构钢》――牌号Q195、Q215、Q235、Q275《GB/T 709-2006热轧钢板和钢带的尺寸、外形、重量级允许偏差》不锈钢牌号对照表圆筒直径:钢板卷焊的筒体,规定内径为公称直径。
其值从300〜6000mm , DN1000 以内50mm 进一档,DN1000 〜6000mm 以100mm 进一档。
钢板厚度:《GB 150-2011压力容器》,Q235B钢板厚度,用于容器壳体时 < 16mm用于其他受压元件时 < 30mm《NB/T 47003.1-2009钢制焊接常压容器》不包括腐蚀裕量的圆筒最小厚度:对碳素钢及低合金钢为3mm;对高合金钢为2 mm。
mmmm1.56Kpa4.11Kpa 1.8264q=Kpa其中ωo=1.2kN/m 2,βz=1,μs=1罐壁的设计外压ωk =βz μs μz ωo =储存介质时设计厚度 t 11、罐壁计算:二、罐壁的计算及稳定性校核一、设计条件2、风载荷作用下罐壁的稳定校核:从下向上第1至第6圈采用316+16MnR,以上采用316+Q235-B 按照GB50341-2003,罐壁壁厚按下列公式计算:储存水时设计厚度 t 221t 1C C ][D)3.0H (9.4++-⨯=φσρt 1t 2C ][D)3.0H (9.4+-⨯=φσt [] 2.5min 16.48cr E t DP H D ⎛⎫=⨯⨯ ⎪⎝⎭∑=eiE H H 5.2min⎪⎪⎭⎫ ⎝⎛=ii ei tt h H []=⎪⎭⎫⎝⎛⨯⨯=5.2min 8.16D t H D P E cr =+=q P k o ω25.21.522罐壁需要另设加强圈因为:所以,应设两个中间加强圈 2.631Kpa11.10mm25 t h 罐顶板的有效厚度,mm 5.41915002672.8mm 360623000.9211.0292475.6mm 360625000.849第一个加强圈位置在距罐顶包边角钢的距离: 三、罐顶的计算及稳定性校核地面粗糙度按A类选取,罐高为16m,所以μz取[P cr ]<P O第二个加强圈位置在距罐顶包边角钢的距离:因为第二个加强圈不在最薄壁板上,换算后距罐顶包边角钢的距离为4.28m(1)带肋球壳的许用外载荷:其中:t m 带肋球壳的折算厚度,mm 1、罐顶厚度的计算依据GB50341-2003规定,罐顶板的最小公称厚度(不包括腐蚀裕量)不应小于4.5mm,取带肋拱顶光面球壳的名义厚度 =6mm2、罐顶稳定性校核h 1 纬向肋宽度, mm b 1 纬向肋有效厚度, mm L 1S 纬向肋在径向的间距mm e 1 纬向肋与顶板在径向的组合截面形心到顶板中心的距离 mm R S 球壳的曲率半径,m E 设计温度下钢材的弹性模量 Mpat 1m 纬向肋与顶板组合截面的折算厚度,mmh 2 经向肋宽度, mm b 2 经向肋有效厚度, mm L 2S 经向肋在径向的间距mm e 1 经向肋与顶板在径向的组合截面形心到顶板中心的距离 mmn 1 纬向肋与顶板在径向的面积折算系数t 2m 经向肋与顶板组合截面的折算厚度,mm[]2300PP P cr <≤mH L E 915.1745.531311=⨯==mH L E 83.3745.532322=⨯==[]=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=2120001.0m hmt t Rs tE P =++=33233142mh m m t t t t =⎥⎥⎦⎤⎢⎢⎣⎡-+⎪⎪⎭⎫ ⎝⎛++=21132121111311242312e t n t t t h h L b h th h h h S m=+=Sh L t b h n 11111=⎥⎥⎦⎤⎢⎢⎣⎡-+⎪⎪⎭⎫ ⎝⎛++=22232222222321242312e t n t t t h h L b h t h h h h S m1.0272.11Kpa0.91KpaG 1=1.1G 1'=36300KgG 2≈7860Kg G 3≈1500KgP L2 = 1.2Kpa0.185s0.014m 14.4m0.000435.315s1.0639.72MN0.40.345m=m 1F r =6528148Kg 0.60610772521Kg62.99MN·m18.38Mpa12.15MpaN 1≈ 1.15MN A 1=πDt= 1.257m 27.85m 33、罐壁底部的地震弯矩按下式计算:(1)地震作用下罐壁底部产生的最大轴向压应力计算:M 1=0.45Q 0H W =4、罐壁许用临界应力按下式计算:5、罐壁的抗震验算:式中: C Z 综合影响系数,取C Z =α地震影响系数,取α =m 产生地震作用的储液等效质量(Kg)F r 动液系数,由GB50341-2003附录D表D.3.4选取得F r =m 1 储罐内储液总量(Kg) 由GB50341-2003附录D表D.3.2查取K C =1.2储液晃动基本周期按右式计算:由GB50341-2003附录D表D.3.3查取K S =2、在水平地震力作用下,罐壁底部水平地震剪力按下式计算:Q 0=10-6C Z αY 1mg=1、基本自振周期的计算:1.1 储罐的储液耦连振动基本周期按右式计算:式中:δ 3 罐壁距底板1/3高度处的有效厚度,δ3= H W 油罐设计最高液位(m),按充装系数得:H W =D/H W =25/14.4=1.736P L1 为罐顶结构自重 Kpa罐顶重量G 1'≈33000Kg 考虑到顶板自身搭接以及顶上栏杆等附件,顶板重量增加10%四、储罐抗震验算:(按GB50341-2003)Z 1 底圈罐壁的断面系数(m 3),Z 1=0.785D 2t=式中:N 1 罐壁底部垂直载荷(N),一般取罐体金属总重力的与储罐保温体重之和;(保温材料密度按250Kg/m 3计算)A 1 罐壁横截面积(m 2),n 2 经向肋与顶板在径向的面积折算系数罐顶保温层重量肋条重量 所以[P]>P L ,拱顶稳定性校核合格。
压力容器承受荷载计算公式压力容器是一种用于储存和输送气体、液体或蒸汽的设备,它承受着内部介质的压力,因此在设计和制造过程中需要考虑到承受荷载的计算。
在工程领域中,压力容器的设计和制造是一个非常重要的环节,因为一旦设计不当或制造不合格,可能会导致严重的事故发生。
因此,压力容器承受荷载的计算公式是非常关键的一部分。
在压力容器的设计中,承受荷载的计算公式是通过一系列的工程原理和公式推导出来的,它包括了内部压力、外部荷载、材料强度等因素。
在压力容器的设计中,需要考虑到以下几个方面:1. 内部压力,压力容器在使用过程中承受着来自介质的内部压力,这是设计中需要优先考虑的因素。
内部压力会导致容器壁面产生应力,因此需要通过公式计算出承受内部压力的能力。
2. 外部荷载,除了内部压力外,压力容器还需要考虑外部荷载的影响,比如风载、地震荷载等。
这些外部荷载会对容器产生额外的应力,因此需要通过公式计算出承受外部荷载的能力。
3. 材料强度,压力容器的材料强度是设计中需要考虑的另一个重要因素。
不同的材料有不同的强度特性,因此需要根据材料的强度特性来计算出容器的承受能力。
在实际的工程设计中,压力容器承受荷载的计算公式可以通过以下几个步骤来完成:1. 计算内部压力:根据介质的性质和工作条件,计算出压力容器内部的压力大小。
一般来说,内部压力可以通过以下公式计算得出:P = (F × A) / V。
其中,P表示内部压力,F表示介质的力,A表示容器的横截面积,V表示容器的体积。
2. 计算外部荷载,根据工程设计要求和实际工作条件,计算出压力容器所承受的外部荷载。
外部荷载的计算需要考虑到风载、地震荷载等因素,一般可以通过相关的工程设计规范和公式来计算得出。
3. 计算材料强度,根据压力容器所选用的材料,计算出材料的强度特性。
不同的材料有不同的强度特性,因此需要根据材料的强度特性来计算出容器的承受能力。
4. 综合计算:将内部压力、外部荷载和材料强度等因素综合考虑,通过相关的公式和原理计算出压力容器的承受能力。
附件1超高压容器爆破压力及壁厚计算公式(补充件)(一)超高压圆筒容器爆破压力的计算1.按材料拉伸实验数据计算(2)lnsb sbP Kσσ=-(附—1)式中 K—容器外径与内径之比;bP—爆破压力,MPa;bσ—材料在常温下的抗拉强度,MPa;sσ—材料在常温下的屈服点,MPa。
2.按材料扭转实验数据计算11 2.5 4.52[(2(3303240bP Aνννννν=-+-+011 2.25 4.254[(4()]|2.5273060Bνννννν-+-+011 2.125 4.1258[(8)(2.2525.52970Cνννννν-+-(附—2)式中 A、B、C—用12141A B Cτννν=++去拟合材料切应力切应变曲线所得的常数;iν、oν—容器内、外壁切应变,按式(附—3)和式(附—4)用试差法计算。
21(1)i ov ve K e-=-(附—3)111824111824i ov vi i io o oAv Bv CveAv Bv Cv-++=++(附—4)111824Av Bv Cvτ=++(附—5)3.超高压圆筒容器爆破压力按材料扭转实验数据计算的具体步骤: (1)根据超高压圆筒容器材料的切应力切应变τν-曲线(此曲线由该材料扭转实验数据求得),在塑性段取三组切应力和切应变,代入式(附—5),求得三个常数A 、B 、C 。
(2)根据式(附—3)和式(附—4),通过试差法确定超高压圆筒容器直径比为K 的容器的内外壁切应变i ν和o ν。
(3)将i ν、o ν之值代入式(附—2),即可求得爆破压力b P 。
4.多层套合圆筒的爆破压力各层材料相同时,按单层圆筒考虑;各层材料不同时,按各层材料分别计算,然后叠加或其强度按各层材料的壁厚比例综合考虑,再按单层圆筒方法计算。
(二)超高压圆筒容器设计压力和壁厚计算1.设计压力设计压力P 按下式计算:()b b P P n φ= (附—6)式中 b n —爆破安全系数;φ—设计温度下材料强度减弱系数;按拉伸实验数据计算圆筒容器爆破压力时,取3b n ≥;按扭转实验数据计算圆筒容器爆破压力时,取 2.7b n ≥。
压力容器壁厚计算
椭圆型封头
压力容器壁厚计算公式:
圆桶壁厚:封头壁厚S':
S
计算壁厚,mm P
计算压力,MPa D
内径,mm σ
设计温度下材料的许用应力,MPa(150℃以下Q235钢取113)φ焊接接头系数(一般取0.8)K
封头形状系数(标准椭圆形封头K=1)条件:
P
0.60MPa D
800.00mm σ
113.00MPa ρ
7930.00kg/m3φ
0.80K
1.00计算结果:
圆桶壁厚S
2.66mm 封头壁厚S' 2.6592798mm
设计圆桶壁厚:20
mm 设计封头壁厚:20
mm 桶体高度:
1800mm 圆桶的内表面积:
4.5216m2圆桶的体积:
0.90432m3圆桶的质量:
717.126kg 封头的内表面积:
0.785m2封头的质量:
124.501kg 容器共有2
个椭圆形封头容器的内表面积:
6.0916m2容器的总重:966.128kg
常规压力容器,CS每吨制造价:10000SUS304每吨制造价:60000内衬天然橡胶3mm,单价每平米:160内衬天然橡胶5mm,单价每平米:250EPOXY 防腐,单价每平米:85FRP 防腐,单价每平米:150容器的制造价:9661.2776衬胶费用:1522.9总价:11184.178
X 1.2=13421.013P PD s -=σφ2P
KPD
s 5.02'-=σφ。
压力容器壁厚计算公式压力容器是用于存储或传递压缩气体、液体、气固混合物或纯固体物质的容器。
它们在许多工业和农业应用中起着重要的作用,如石油化工、核能、航空航天等领域。
压力容器的设计需要考虑许多因素,其中之一是壁厚的计算。
1.设计压力(P):设计压力是指容器的最大使用压力。
它通常由设计标准或规范中规定的最大压力确定。
2.直径(D):直径是指容器横截面的最大宽度。
在计算壁厚时,需要考虑所选材料的强度和直径的大小。
3.容器材料:容器材料是选择合适的材料进行壁厚计算的重要因素。
材料的强度和抗压性能直接影响壁厚的计算。
4.强度计算:根据所选材料的特性,可以使用不同的强度计算公式,如薄壁理论、光滑壁薄壁理论、屈曲强度等来计算壁厚。
根据ASME(美国机械工程师学会)的规定,常用的薄壁理论公式如下:t=(P*D)/(2*S*F-0.2*P)其中,t表示壁厚,P表示设计压力,D表示直径,S表示所选材料的允许应力,F表示安全系数。
根据这个公式,壁厚的计算与设计压力、直径、材料的强度及安全系数有关。
这个公式是基于假设容器的压力均匀分布在容器壁上,并且不考虑应力集中和其他非均匀应力因素。
因此,在实际设计过程中,还需要考虑其他因素,如焊缝的强度、结构的稳定性等。
此外,在进行壁厚计算时,还需要参考相关的设计规范和标准,如ASME标准Section VIII,其中提供了更为详细和准确的壁厚计算方法,并考虑了更多的因素。
总之,压力容器壁厚的计算是设计过程中不可或缺的一部分,它需要考虑设计压力、直径、材料的强度等因素,并使用合适的计算公式和规范来确保容器的安全使用。
在实际设计过程中,还需要注意其他因素的影响,并根据实际情况进行调整。
壁厚与压力计算公式在我们的日常生活和各种工程领域中,壁厚与压力的计算可是相当重要的一部分呢!这可不是什么抽象难懂的概念,而是实实在在影响着我们身边许多东西的运行和安全。
先来说说什么是壁厚。
想象一下一根水管,水管壁的厚度就是壁厚啦。
那压力又是什么呢?就好像有人在用力推挤水管的内部,这个推挤的力量就是压力。
咱们来看看壁厚与压力的计算公式吧。
简单说,这个公式就像是一个神秘的魔法咒语,能告诉我们在特定的压力下,需要多厚的壁才能保证安全。
比如说,在一个高压气体管道中,如果压力特别大,那管道的壁厚就得足够厚,不然就可能会像气球吹得太大一样爆开,那可就危险啦!我想起之前在一个工厂里看到的情况。
那是一家生产化工产品的工厂,有一个大型的储存罐。
有一次,工程师们在讨论如何改进这个储存罐,因为它要承受更高的压力。
他们拿着厚厚的图纸,上面密密麻麻写着各种数据和计算公式,其中就包括壁厚与压力的计算。
我凑过去看,发现他们特别认真,一会儿测量现有的壁厚,一会儿计算可能增加的压力,然后根据公式来确定是否需要增加壁厚。
其中有一位工程师,他皱着眉头,手里拿着计算器不停地按,嘴里还念念有词:“这压力要是增加这么多,壁厚至少得再加5 毫米才行。
”旁边的人听了,也纷纷点头表示同意。
他们深知,如果计算错误,壁厚不够,储存罐在高压下发生泄漏甚至爆炸,那后果简直不堪设想。
这个公式的应用可不只是在工厂里哦!比如说在建筑领域,高楼大厦中的一些管道和结构部件,也需要根据承受的压力来计算合适的壁厚。
还有汽车的发动机缸体,壁厚不够的话,在高温高压的工作环境下也容易出问题。
其实,壁厚与压力的计算就像是给各种设备和结构穿上合适的“防护服”。
压力越大,就需要更厚更坚固的“防护服”来保护内部的运作。
在学习和理解这个公式的时候,可别被那些复杂的符号和数字吓到。
就把它当成一个解谜的游戏,每个符号都是一个线索,每个数字都是一个提示,只要我们用心去琢磨,就能找到答案。
罐体壁厚计算公式
罐体壁厚计算公式是指用于计算储罐或容器壁厚的公式。
一般而言,储罐或容器的壁厚需要根据储存物品的性质和压力等因素进行选择和设计。
以下是常见的储罐或容器壁厚计算公式:
1. 圆筒形储罐或容器壁厚计算公式:
t= (P*D)/(2*S*E+0.2*P)
其中,t为壁厚,P为设计压力,D为圆筒直径,S为材料的允许应力值,E为材料的弹性模量。
2. 球形储罐或容器壁厚计算公式:
t= (P*D)/(4*S*E+0.6*P)
其中,t为壁厚,P为设计压力,D为球半径,S为材料的允许应力值,E为材料的弹性模量。
需要注意的是,壁厚计算公式是依据一定的前提假设得出的,并不适用于所有情况。
因此,在进行储罐或容器设计时,还需要对实际情况进行综合考虑,包括物品性质、环境条件、安全要求等多方面因素,以确定最终的壁厚值。
管道承压压和壁厚计算公式管道的承压压力和壁厚计算是设计和制造管道时必不可少的步骤,对于管道的安全运行和使用至关重要。
下面将详细介绍管道承压压力和壁厚计算的公式和原理。
一、管道承压压力计算公式管道的承压压力计算主要基于薄壁容器的理论。
在设计和计算管道的承压压力时,需要考虑以下因素:1.材料的抗拉强度和屈服强度;2.外层环境压力;3.温度变化引起的内外压力差。
薄壁容器承压应力可由下列公式计算得出:σ = pd / (2t)其中,σ为承压应力(Pa),p为压力(Pa),d为管道内径(m),t为管道壁厚(m)。
根据公式可得,计算承压压力时,需要已知管道的内径和壁厚,以及设计中的压力要求。
管道壁厚计算主要考虑以下几个因素:1.材料的抗拉强度和屈服强度;2.管道内压力;3.管道外压力;4.温度变化引起的内外压力差。
根据ASME B31.3标准,管道的最小壁厚(tm)应满足以下公式:tm = (P * d) / (2 * S * E + 0.8 * P)其中,P为压力(MPa),d为管道内径(m),S为材料抗拉强度亿(MPa),E为焊接后的效率。
根据公式可以得知,管道的壁厚计算主要依据管道材料的强度和设计中的压力要求,同时需要考虑管道的焊接效率。
三、其他注意事项1.以上公式适用于常见的管道材料,如钢、铜、铝等。
对于一些特殊材料,需要参考专门的计算方法;2.在实际设计和制造过程中,还需要考虑管道的几何形状、材料的腐蚀性、加工和制造的工艺等因素;3.管道承压压力和壁厚计算仅作为设计和制造的基础参考,还需要考虑其他因素,如管道的连接方式、支撑和固定等。
在进行管道承压压力和壁厚计算时,需要综合考虑多种因素,确保管道设计和制造的安全可靠。
同时,还需遵守相关的标准和规范,如ASMEB31.3、GB150等,以确保管道的设计和制造符合要求,并能满足实际使用需求。
卧式储罐计算公式卧式储罐是一种常见的储存液体或气体的容器。
它采用水平放置的方式,通常用于储存石油、化工产品、液化气体等。
在设计和计算卧式储罐时,需要考虑到容器的结构、强度、稳定性和安全性等方面。
下面将介绍一些常用的卧式储罐计算公式。
1.储罐容积的计算:储罐容积是指储罐能够容纳的液体或气体的总体积。
计算储罐容积一般需要考虑到容器的几何形状和尺寸等参数。
常用的计算公式包括:-矩形底储罐容积计算公式:V=L*W*H其中,V为容积,L为储罐长度,W为储罐宽度,H为储罐高度。
-圆形底储罐容积计算公式:V=π*R^2*H其中,V为容积,π取3.14,R为储罐半径,H为储罐高度。
2.储罐壁厚的计算:储罐壁厚是指储罐壁体的厚度,主要用于承受内外压力差和容器自重等荷载。
计算储罐壁厚要考虑到材料的强度和应力等因素。
常用的计算公式包括:-常规卧式储罐壁厚计算公式:t=(P*D*S)/(2*F*E-0.2*P)其中,t为壁厚,P为设计压力,D为储罐直径,S为材料允许应力,F为安全系数,E为焊缝效率。
-强度计算公式:σ=(P*D)/(2*t)其中,σ为壁体应力,P为设计压力,D为储罐直径,t为壁厚。
3.储罐体积变化的计算:储罐在受到温度变化、压力变化等外界因素的影响时,会发生体积的变化。
计算储罐体积变化一般需要考虑到温度膨胀系数和压力系数等因素。
常用的计算公式包括:-温度变化引起的体积变化计算公式:ΔV=V*β*ΔT其中,ΔV为体积变化,V为初始容积,β为温度膨胀系数,ΔT为温度变化。
-压力变化引起的体积变化计算公式:ΔV=V*α*ΔP其中,ΔV为体积变化,V为初始容积,α为压力系数,ΔP为压力变化。
以上是一些常用的卧式储罐计算公式,供设计和计算人员参考。
但需要注意的是,不同的储罐结构和设计要求可能会有所不同,因此在实际应用中,需要结合具体情况和相关标准进行计算和设计。
Pc Diσφδδcδn Cδe0.97001130.853.294979 4.3949798 1.35 6.65以上是筒体计算壁厚参数:Pc:计算压力MPa,取设计压力Di:圆筒内径mmσ:设计温度下圆筒材料的许用应力φ:焊接接头系数C:厚度附加量C=C1+C2,C1为钢材厚度负偏差,C2为腐蚀裕量δ:圆筒计算厚度;δc:圆筒设计厚度;δn:圆筒名义厚度;δe:圆筒有效厚度;Pc Diσφδδcδn Cδe0.97001130.853.287242 4.3872428 1.9 6.1以上是封头计算壁厚参数:Pc:计算压力MPa,取设计压力Di:封头内径mmσ:设计温度下封头材料的许用应力φ:焊接接头系数C:厚度附加量C=C1+C2,C1为钢材厚度负偏差,C2为腐蚀裕量δ:封头计算厚度;δc:封头设计厚度;δn:封头名义厚度;δe:封头有效厚度;Pc Diσφδδcδn Cδe0.98113010.281359 1.3813594 1.45 2.55以上是接管补强计算Pc:计算压力MPa,取设计压力Di:接管内径mmσ:设计温度下接管材料的许用应力φ:焊接接头系数C:厚度附加量C=C1+C2,C1为钢材厚度负偏差,C2为腐蚀裕量δ:接管计算厚度;δc:接管设计厚度;δn:接管名义厚度;δe:接管有效厚度;d:开孔直径,圆形孔取接管内直径加两倍厚度附加量,椭圆形或长圆形孔取所考虑平面上的尺寸(弦长,A:开孔消弱所需要的补强截面积A1:壳体有效厚度减去计算厚度之外的多余面积A2:接管有效厚度减去计算厚度之外的多余面积A3:焊缝金属截面积Pσσt P T1P T2P T3P T41113113 1.25 1.15 1.25 1.15以上是内压容器(外压容器和真空容器)的试验压力,其参数:P:设计压力Mpaσ:容器元件材料在试验温度下的许用应力MPaσt:容器元件材料在设计温度下的许用应力MPaP T1:内压容器的液压试验压力MPaP T2:内压容器的气压试验压力MPaP T3:外压容器和真空容器的液压试验压力MPaP T4:外压容器和真空容器的气压试验压力Mpa压力容器气密性试验压力为压力容器的设计压力钢号在下列温度下的许用应力MpaQ235-B≤150℃200℃250℃11310594 20R钢板≤100℃150℃200℃250℃133132123110 16MnR≤200℃250℃钢板170156 20钢管≤150℃200℃250℃130123110 20G钢管≤100℃150℃200℃250℃137132123110d A A1A2A3A083.9276.4487281.486383.12025-88.1578虑平面上的尺寸(弦长,包括厚度附加量)。
压力容器-壁厚计算公式Pc Diσφδδcδn Cδe0.97001130.853.294979 4.3949798 1.35 6.65以上是筒体计算壁厚参数:Pc:计算压力MPa,取设计压力Di:圆筒内径mmσ:设计温度下圆筒材料的许用应力φ:焊接接头系数C:厚度附加量C=C1+C2,C1为钢材厚度负偏差,C2为腐蚀裕量δ:圆筒计算厚度;δc:圆筒设计厚度;δn:圆筒名义厚度;δe:圆筒有效厚度;Pc Diσφδδcδn Cδe0.97001130.853.287242 4.3872428 1.9 6.1以上是封头计算壁厚参数:Pc:计算压力MPa,取设计压力Di:封头内径mmσ:设计温度下封头材料的许用应力φ:焊接接头系数C:厚度附加量C=C1+C2,C1为钢材厚度负偏差,C2为腐蚀裕量δ:封头计算厚度;δc:封头设计厚度;δn:封头名义厚度;δe:封头有效厚度;Pc Diσφδδcδn Cδe0.98113010.281359 1.3813594 1.45 2.55以上是接管补强计算Pc:计算压力MPa,取设计压力Di:接管内径mmσ:设计温度下接管材料的许用应力φ:焊接接头系数C:厚度附加量C=C1+C2,C1为钢材厚度负偏差,C2为腐蚀裕量δ:接管计算厚度;δc:接管设计厚度;δn:接管名义厚度;δe:接管有效厚度;d:开孔直径,圆形孔取接管内直径加两倍厚度附加量,椭圆形或长圆形孔取所考虑平面上的尺寸(弦长,A:开孔消弱所需要的补强截面积A1:壳体有效厚度减去计算厚度之外的多余面积A2:接管有效厚度减去计算厚度之外的多余面积A3:焊缝金属截面积Pσσt P T1P T2P T3P T41113113 1.25 1.15 1.25 1.15以上是内压容器(外压容器和真空容器)的试验压力,其参数:P:设计压力Mpaσ:容器元件材料在试验温度下的许用应力MPaσt:容器元件材料在设计温度下的许用应力MPaP T1:内压容器的液压试验压力MPaP T2:内压容器的气压试验压力MPaP T3:外压容器和真空容器的液压试验压力MPaP T4:外压容器和真空容器的气压试验压力Mpa压力容器气密性试验压力为压力容器的设计压力钢号在下列温度下的许用应力MpaQ235-B≤150℃200℃250℃11310594 20R钢板≤100℃150℃200℃250℃133132123110 16MnR≤200℃250℃钢板170156 20钢管≤150℃200℃250℃130123110 20G钢管≤100℃150℃200℃250℃137132123110d A A1A2A3A083.9276.4487281.486383.12025-88.1578虑平面上的尺寸(弦长,包括厚度附加量)。
压力容器壁厚计算及说明一、压力容器的概念同时满足以下三个条件的为压力容器,否则为常压容器。
1、最高工作压力P :9.8×104Pa ≤P ≤9.8×106Pa ,不包括液体静压力;2、容积V ≥25L ,且P ×V ≥1960×104L Pa;3、介质:气体,液化气体或最高工作温度高于标准沸点的液体。
二、强度计算公式1、受内压的薄壁圆筒当K=1.1~1.2,压力容器筒体可按薄壁圆筒进行强度计算,认为筒体为二向应力状态,且各受力面应力均匀分布,径向应力σr =0,环向应力σt =PD/4s ,σz = PD/2s ,最大主应力σ1=PD/2s ,根据第一强度理论,筒体壁厚理论计算公式,δ理=PPD -σ][2 考虑实际因素,δ=P PD φ-σ][2+C 式中,δ—圆筒的壁厚(包括壁厚附加量),㎜;D — 圆筒内径,㎜;P — 设计压力,㎜;[σ] — 材料的许用拉应力,值为σs /n ,MPa ;φ— 焊缝系数,0.6~1.0;C — 壁厚附加量,㎜。
2、受内压P 的厚壁圆筒①K >1.2,压力容器筒体按厚壁容器进行强度计算,筒体处于三向应力状态,且各受力面应力非均匀分布(轴向应力除外)。
径向应力σr =--1(222a b Pa 22r b ) 环向应力σθ=+-1(222ab Pa 22r b ) 轴向应力σz =222a b Pa - 式中,a —筒体内半径,㎜;b —筒体外半径,㎜;②承受内压的厚壁圆筒应力最大的危险点在内壁,内壁处三个主应力分别为:σ1=σθ=P K K 1122-+ σ2=σz =P K 112-σ3=σr =-P第一强度理论推导处如下设计公式σ1=P K K 1122-+≤[σ] 由第三强度理论推导出如下设计公式σ1-σ3=P K K 1122-+≤[σ] 由第四强度理论推导出如下设计公式:P K K 132-≤[σ] 式中,K =a/b3、受外压P 的厚壁圆筒径向应力σr =---1(222a b Pb 22r a ) 环向应力σθ=-+-1(222ab Pb 22r a ) 4、一般形状回转壳体的应力计算经向应力 σz =sP 22ρ 环向应力 sP t z =+21ρσρσ 式中,P —内压力,MPa ;ρ1—所求应力点回转体曲面的第一主曲率半径,㎜;(纬)ρ2—所求应力点回转体曲面的第一主曲率半径,㎜;(经)s —壳体壁厚,㎜。
方形储罐壁厚的计算公式
步骤1:确定内压力
首先,需要确定方形储罐内所需承受的压力。
内压力通常由储罐内液体或气体的性质决定。
例如,储存液体的储罐内压力通常由液位高度计算得出。
对于气体压力的计算,则需要考虑气体的压力和温度。
步骤2:选择材料
根据所需承受的内压力,选择适合的材料。
储罐一般使用金属材料,如碳钢、不锈钢或铝合金。
选择的材料需要具有足够的强度和耐腐蚀性。
步骤3:计算应力
根据内压力和储罐的尺寸,计算储罐壁上的应力。
这可以使用力学原理,如胡克定律来完成。
应力计算通常需要考虑储罐壁上的横向应力和纵向应力。
步骤4:考虑安全系数
为了确保储罐的安全性,需要考虑适当的安全系数。
安全系数是将实际应力除以材料的屈服强度来得出的。
通常,安全系数应大于1步骤5:计算壁厚
根据所需的安全系数和应力计算结果,可以推导出储罐的壁厚计算公式。
这个公式将内压力、储罐尺寸和材料的力学特性综合在一起,以得出适当的壁厚。
t=(P*D)/(2*S*F)
其中
t是壁厚
P是内压力
D是储罐宽度或长度(取两者之中的较大值)
S是材料的屈服强度
F是安全系数
这个公式假设储罐壁是均匀厚度的,并且没有考虑到其他因素,如焊缝强度等。
因此,在实际应用中,可能需要进行进一步的调整和修正。
总结起来,方形储罐壁厚的计算公式是根据内压力、材料的力学特性和安全系数来确定的。
选择适当的材料和进行准确的计算对于确保储罐的安全性非常重要。
在实际应用中,还需要考虑其他因素,并遵循相应的设计标准和规范。
罐体壁厚承受压力计算公式
在工程设计中,对于承受压力的容器,如储罐、压力容器等,其壁厚的计算是非常重要的。
合理的壁厚设计可以保证容器在承受压力的情况下不会发生破裂或变形,从而确保设备的安全运行。
本文将介绍罐体壁厚承受压力的计算公式及相关知识。
1. 压力容器的分类。
压力容器根据其结构和用途的不同,可以分为很多种类,常见的有储罐、反应釜、换热器、分离器等。
这些压力容器在工业生产中起着至关重要的作用,因此其设计和制造都需要严格遵守相关的标准和规范。
2. 罐体壁厚承受压力的计算公式。
在设计压力容器的壁厚时,需要考虑到容器所承受的内压力、外压力以及温度等因素。
一般情况下,对于圆筒形的罐体,可以采用以下公式来计算其壁厚:\[t = \frac{P \cdot D}{2 \cdot S \cdot E + 0.2P}\]
其中,t为壁厚,单位为mm;P为设计压力,单位为MPa;D为容器直径,单位为mm;S为容器材料的允许应力,单位为MPa;E为容器材料的弹性模量,单位为MPa。
3. 参数说明。
在上述公式中,设计压力P是指容器在正常工作条件下所承受的最大压力,通常由工艺条件和安全要求来确定。
容器直径D是指容器的直径尺寸,是壁厚计算中的重要参数。
容器材料的允许应力S是指材料在工作条件下所能承受的最大应力,是由材料的强度和安全系数来确定的。
容器材料的弹性模量E是指材料的刚度,也是壁厚计算中的重要参数。
4. 壁厚计算的实例。
为了更好地理解上述公式,我们可以通过一个实际的例子来进行计算。
假设某
个储罐的设计压力为0.6MPa,直径为2000mm,采用碳钢材料,其允许应力为
150MPa,弹性模量为2.1×10^5MPa。
根据上述公式,可以计算出其壁厚为:
\[t = \frac{0.6 \times 2000}{2 \times 150 \times 2.1 \times 10^5 + 0.2 \times 0.6} = 6.35mm\]
因此,根据计算结果,该储罐的壁厚应该为6.35mm。
5. 壁厚计算的注意事项。
在进行压力容器的壁厚计算时,需要注意以下几个方面。
首先,要充分了解容
器的工作条件和使用要求,包括设计压力、温度、介质等因素,以便正确选择材料和计算壁厚。
其次,要仔细选择合适的公式和参数,确保计算结果的准确性。
最后,还需要对计算结果进行合理的安全余量考虑,以确保容器在实际使用中的安全性。
6. 结语。
罐体壁厚承受压力的计算公式是压力容器设计中的重要内容,合理的壁厚设计
对于保证压力容器的安全运行至关重要。
在实际工程中,需要根据具体的工艺条件和安全要求来进行壁厚计算,并严格遵守相关的标准和规范,以确保压力容器的设计和制造质量。
希望本文对读者能够有所帮助,谢谢阅读!。