计量经济学复习2
- 格式:doc
- 大小:116.50 KB
- 文档页数:9
计量经济学复习要点参考教材:李子奈 潘文卿 计量经济学 数据类型:截面、时间序列、面板第二章 简单线性回归回归分析的基本概念,常用术语现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值;简单线性回归模型是只有一个解释变量的线性回归模型; 回归中的四个重要概念1. 总体回归模型Population Regression Model,PRMt t t u x y ++=10ββ--代表了总体变量间的真实关系;2. 总体回归函数Population Regression Function,PRFt t x y E 10)(ββ+=--代表了总体变量间的依存规律;3. 样本回归函数Sample Regression Function,SRFtt t e x y ++=10ˆˆββ--代表了样本显示的变量关系; 4. 样本回归模型Sample Regression Model,SRMtt x y 10ˆˆˆββ+=---代表了样本显示的变量依存规律; 总体回归模型与样本回归模型的主要区别是:①描述的对象不同;总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所关的样本中变量y 与x 的相互关系;②建立模型的依据不同;总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的;③模型性质不同;总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变;总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型;线性回归的含义线性:被解释变量是关于参数的线性函数可以不是解释变量的线性函数线性回归模型的基本假设简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u 的假定零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定 普通最小二乘法原理、推导最小二乘法估计参数的原则是以“残差平方和最小”; Min21ˆ()niii Y Y =-∑01ˆˆ(,)ββ: 1121()()ˆ()nii i n ii XX Y Y XX ==--β=-∑∑ , 01ˆˆY Xβ=-βOLS 估计量的性质1线性:是指参数估计值0β和1β分别为观测值t y 的线性组合; 2无偏性:是指0β和1β的期望值分别是总体参数0β和1β; 3最优性最小方差性:是指最小二乘估计量0β和1β在在各种线性无偏估计中,具有最小方差; 高斯-马尔可夫定理OLS 参数估计量的概率分布OLS 随机误差项μ的方差σ2的估计 拟合优度的检验R 2 离差平方和的分解:TSS=ESS+RSS“拟合优度”是模型对样本数据的拟合程度;检验方法是构造一个可以表征拟合程度的指标——判定系数又称决定系数;121SSE SST SSR SSRR SST SST SST-===-,表示回归平方和与总离差平方和之比;反映了样本回归线对样本观测值拟合优劣程度的一种描述; 2 2[0,1]R ∈;3 回归模型中所包含的解释变量越多,2R 越大变量显着性检验,t 检验例子:回归报告函数形式对数、半对数模型系数的解释101ˆˆˆi iY X =β+β:X 变化一个单位Y 的变化 2^22()i Var x σβ=∑2^22ie n σ=-∑201ˆˆˆln ln i i Y X =β+β: X 变化1%,Y 变化1ˆβ%,表示弹性; 301ˆˆˆln i i Y X =β+β:X 变化一个单位,Y 变化百分之1001ˆβ 401ˆˆˆln i iY X =β+β:X 变化1%,Y 变化1ˆβ/100; 第三章 多元线性回归1、变量系数的解释剔除、控制其他因素的影响对斜率系数1ˆβ的解释:在控制其他解释变量X2不变的条件下,X1变化一个单位对Y 的影响;或者,在剔除了其他解释变量的影响之后,X1的变化对Y 的单独影响2、多元线性回归模型中对随机扰动项u 的假定,除了零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定以外,还要求满足无多重共线性假定;3、多元线性回归模型参数的最小二乘估计式;参数估计式的分布性质及期望、方差和标准误差;在基本假定满足的条件下,多元线性回归模型最小二乘估计式是最佳线性无偏估计式;最小二乘法 OLS 公式: Y ' X X)' (X ˆ-1=β估计的回归模型: 的方差协方差矩阵: 残差的方差 : βˆ的估计的方差协方差矩阵是:4、修正可决系数的作用和方法;5、F 检验是对多元线性回归模型中所有解释变量联合显着性的检验,F 检验是在方差分析基础上进行的; 6、t检验7、可化为线性回归的模型 8、约束回归第四章 放宽基本假设一、异方差什么是异方差 异方差的后果ˆˆY =X β+u βˆ2ˆˆ'uu n k -s =异方差的检验White 检验 异方差的处理 加权最小二乘法 异方差稳健标准误二、序列相关什么是序列相关 序列相关的后果序列相关的检验DW 检验、LM 检验 序列相关的处理 广义最小二乘法 Newey-West 稳健标准误三、多重共线性多重共线性的概念 多重共线性的后果 多重共线性的检验 多重共线性的处理四、工具变量什么时候需要工具变量 作为工具变量的条件 两阶段最小二乘法第五章 专门问题一、虚拟变量1. 虚拟变量的定义:定性变量二值与多值;虚拟变量有时候不一定只是0和1;2. 如何引入虚拟变量:如果一个变量分成N 组,引入该变量的虚拟变量形式是只能放入N-1个虚拟变量;3. 虚拟变量系数的解释:不同组均值的差基准组或对照组与处理组4. 以下几种模型形式表达的不同含义;1tt t t u D X Y +++=210βββ:截距项不同;2tt t t t u X D X Y +++=210βββ:斜率不同;3tt t t t t u X D D X Y ++++=3210ββββ:截距项与斜率都不同;其中D 是二值虚拟变量,X 是连续的变量;第八章 时间序列平稳性的概念 白噪声 随机游走 单位根的概念单位根的检验ADF 检验,ADF 的三种形式 单整趋势平稳与差分平稳 协整的概念 协整的检验 误差修正模型Eviews 回归结果界面解释表计量经济学复习题第二章习题:1、2、3、5、6、7、9、10、11、12第三章习题:1、2、3、4、5、6、7、8、9、10、11、12、13 第四章习题:2、5、6、8、9、10 第五章习题:1、2、3、5、6 第八章习题:1、2、5、6、7、8 1、判断下列表达式是否正确 2、给定一元线性回归模型:1叙述模型的基本假定;2写出参数0β和1β的最小二乘估计公式; 3说明满足基本假定的最小二乘估计量的统计性质; 4写出随机扰动项方差的无偏估计公式; 3、对于多元线性计量经济学模型:1该模型的矩阵形式及各矩阵的含义; 2对应的样本线性回归模型的矩阵形式; 3模型的最小二乘参数估计量;4、根据美国1961年第一季度至1977年第二季度的数据,我们得到了如下的咖啡需求函数的回归方程:D D D P I P t t t t t t tT Q 321'0097.0157.00961.00089.0ln 1483.0ln 5115.0ln 1647.02789.1ˆln ----++-=其中,Q=人均咖啡消费量单位:磅;P=咖啡的价格以1967年价格为不变价格;I=人均可支配收入单位:千元,以1967年价格为不变价格;P '=茶的价格1/4磅,以1967年价格为不变价格;T=时间趋势变量1961年第一季度为1,…,1977年第二季度为66;D 1=1:第一季度;D 2=1:第二季度;D 3=1:第三季度; 请回答以下问题:① 模型中P 、I 和P '的系数的经济含义是什么 ② 咖啡的需求是否很有弹性 ③ 咖啡和茶是互补品还是替代品④ 你如何解释时间变量T 的系数 ⑤ 你如何解释模型中虚拟变量的作用 ⑥ 哪一个虚拟变量在统计上是显着的 ⑦ 咖啡的需求是否存在季节效应5、为研究体重与身高的关系,我们随机抽样调查了51名学生其中36名男生,15名女生,并得到如下两种回归模型:h W5662.506551.232ˆ+-= t=h D W7402.38238.239621.122ˆ++-= t=其中,Wweight=体重 单位:磅;hheight=身高 单位:英寸 请回答以下问题:① 你将选择哪一个模型为什么② 如果模型确实更好,而你选择了,你犯了什么错误 ③ D 的系数说明了什么6、以t Q 表示粮食产量,t A 表示播种面积,t C 表示化肥施用量,经检验,它们取对数后都是)1(I 变量且互相之间存在)1,1(CI 关系;同时经过检验并剔除不显着的变量包括滞后变量,得到如下粮食生产模型:t t t t t t C C A Q Q μααααα+++++=--1432110ln ln ln ln ln 1 ⑴ 写出长期均衡方程的理论形式; ⑵ 写出误差修正项ecm 的理论形式; ⑶ 写出误差修正模型的理论形式;⑷ 指出误差修正模型中每个待估参数的经济意义;7、简述异方差对下列各项有何影响:1OLS 估计量及其方差;2置信区间;3显着性t 检验和F 检验的使用;8、假设某研究使用250名男性和280名女性工人的工资Wage 数据估计出如下OLS 回归:标准误其中WAGE 的单位是美元/小时,Male 为男性=1,女性=0的虚拟变量;用男性和女性的平均收入之差定义工资的性别差距;1性别差距的估计值是多少2计算截距项和Male系数的t统计量,估计出的性别差距统计显着不为0吗5%显着水平的t统计量临界值为3样本中女性的平均工资是多少男性的呢4对本回归的R2你有什么评论,它告诉了你什么,没有告诉你什么评价这个回归结果5另一个研究者利用相同的数据,但建立了WAGE对Female的回归,其中Female 为女性=1,男性=0的变量;由此计算出的回归估计是什么9、基于人口调查1998年的数据得到平均小时收入对性别、教育和其他特征的回归结果,见下表;其中:AHE=平均小时收入;College=二元变量大学取1,高中取0;Female女性取1,男性取0;Age=年龄年;Northeast居于东北取1,否则为0;Midwest居于中西取1,否则为0;South居于南部取1,否则为0;West居于西部取1,否则取0;表1:基于2004年CPS数据得到的平均小时收入对年龄、性别、教育、地区的回归结果概括统计量和联合检验SERR2注:括号中是标准误;(1)计算每个回归的调整R2;(2)利用表1中列1的回归结果回答:大学毕业的工人平均比高中毕业的工人挣得多吗多多少这个差距在5%显着性水平下统计显着吗男性平均比女性挣的多吗多多少这个差距在5%显着性水平下统计显着吗(3)年龄是收入的重要决定因素吗请解释;使用适当的统计检验来回答;(4)Sally是29岁女性大学毕业生,Betsy是34岁女性大学毕业生,预测她们的收入;(5)用列3的回归结果回答:地区间平均收入存在显着差距吗利用适当的假设检验解释你的答案;(6)为什么在回归中省略了回归变量West如果加上会怎样;解释3个地区回归变量的系数的经济含义;7Juantia是南部28岁女性大学毕业生,Jennifer是中西部28岁女性大学毕业生,计算她们收入的期望差距。
《计量经济学导论》考研伍德里奇考研复习笔记二第1章计量经济学的性质与经济数据1.1 复习笔记一、什么是计量经济学计量经济学是以一定的经济理论为基础,运用数学与统计学的方法,通过建立计量经济模型,定量分析经济变量之间的关系。
在进行计量分析时,首先需要利用经济数据估计出模型中的未知参数,然后对模型进行检验,在模型通过检验后还可以利用计量模型来进行预测。
在进行计量分析时获得的数据有两种形式,实验数据与非实验数据:(1)非实验数据是指并非从对个人、企业或经济系统中的某些部分的控制实验而得来的数据。
非实验数据有时被称为观测数据或回顾数据,以强调研究者只是被动的数据搜集者这一事实。
(2)实验数据通常是通过实验所获得的数据,但社会实验要么行不通要么实验代价高昂,所以在社会科学中要得到这些实验数据则困难得多。
二、经验经济分析的步骤经验分析就是利用数据来检验某个理论或估计某种关系。
1.对所关心问题的详细阐述问题可能涉及到对一个经济理论某特定方面的检验,或者对政府政策效果的检验。
2构造经济模型经济模型是描述各种经济关系的数理方程。
3经济模型变成计量模型先了解一下计量模型和经济模型有何关系。
与经济分析不同,在进行计量经济分析之前,必须明确函数的形式,并且计量经济模型通常都带有不确定的误差项。
通过设定一个特定的计量经济模型,我们就知道经济变量之间具体的数学关系,这样就解决了经济模型中内在的不确定性。
在多数情况下,计量经济分析是从对一个计量经济模型的设定开始的,而没有考虑模型构造的细节。
一旦设定了一个计量模型,所关心的各种假设便可用未知参数来表述。
4搜集相关变量的数据5用计量方法来估计计量模型中的参数,并规范地检验所关心的假设在某些情况下,计量模型还用于对理论的检验或对政策影响的研究。
三、经济数据的结构1横截面数据(1)横截面数据集,是指在给定时点对个人、家庭、企业、城市、州、国家或一系列其他单位采集的样本所构成的数据集。
1、什么是计量经济学?计量经济学(Econometrics)意为“经济测量”,它是利用经济理论、数学、统计推断等工具,对经济现象进行分析的一门社会科学。
2、计量经济学分析经济问题的经典步骤Step1 理论或假说的陈述Step2 建立数学模型Step3 建立相应的计量经济学模型Step4 获取数据Step5 计量模型的参数估计Step6 检验模型设定是否正确Step7 假设检验(检验来自模型的假说)Step8 预测或控制◆关于数据1、数据分类(1)时间序列数据(Time Series Data):对一个变量在不同时间取值的一组观测结果。
如每年、每月、每季度等(2)横截面数据(Cross Section Data):对一个变量在同一个时间点上搜集的数据。
如同一年的分国别、分省、分厂家数据(3)混合数据(Pooled Data):时序和横截面的混合数据,既有分时,每一时点的观察对象又有不同(多个横截面单元) 广泛运用的一类特殊的混合数据——面板数据/综列数据/合成数据(Panel Data):在时间轴上对相同的横截面单元跟踪调查得到的数据。
如每年对各省GDP的报告。
2、研究结果永远不可能比数据的质量更好观测误差、近似进位计量、高度加总、选择性偏误3、数据来源:网站、统计年鉴、商业数据库等(1)统计局、央行、证券交易所、世行、IMF等官方网站(2)图书馆(纸质、电子版年鉴)(3)商业数据库◆例子例1:凯恩斯消费理论①人们倾向于随他们收入的增加而增加消费,但消费的增加不如收入的增加那么多。
②C=a+bI →确定性关系③Y=β1+β2X+μ→μ为扰动项,非确定性关系④搜集80~91年美国消费及收入数据⑤估计参数:解释:平均而言,收入↑1美元,消费↑72美分⑥检验模型设定的正确性:是否应当加入别的可能影响消费额的变量,如就业等。
⑦假设检验:H0 : β 2 < 1 (边际消费倾向<1)⑧预测:给定X,算Y控制:给定Y ,算X◆ 基本的统计学术语和概念 1、随机变量 (r.v)以一定的概率取到各种可能值的变量,取值由抽样或试验结果决定。
计量经济学复习资料一、引言计量经济学是研究经济现象的数量关系和经济变量之间相互影响的学科。
它通过运用统计学和数学方法,以实证的方式分析经济模型和数据,以期为经济理论的验证和决策制定提供科学依据。
计量经济学作为经济学的重要分支,在经济学领域里起着举足轻重的作用。
本文将为大家提供一个关于计量经济学的复习资料,以便大家更好地复习和理解这门学科。
二、计量经济学基础1. 理论基础:回顾计量经济学的理论基础,包括经济学中的基本原理、假设和模型,以及计量经济学方法的发展演变过程。
2. 计量经济学的基本概念:介绍计量经济学中的一些基本概念,如变量、参数、模型、数据等,帮助读者建立对计量经济学基础概念的理解和认知。
三、计量经济模型1. 线性回归模型:介绍线性回归模型的基本原理和假设,包括最小二乘估计法、截距项、解释变量的选择和回归结果的解释等。
2. 多元线性回归模型:介绍多元线性回归模型的基本原理、假设和参数估计方法,包括多重共线性、异方差和自相关等问题的处理方法。
3. 非线性回归模型:介绍非线性回归模型,如对数线性模型、二项式模型和估计方法等。
4. 时间序列模型:介绍时间序列模型的基本原理、假设和参数估计方法,包括平稳性、季节性和趋势性等问题的处理方法。
四、计量经济学常用方法1. 模型诊断:介绍计量经济学中的模型诊断方法,包括残差分析、异方差检验和自相关检验等。
2. 假设检验:介绍计量经济学中的假设检验方法,包括参数显著性检验、模型拟合优度检验和模型比较等。
3. 预测方法:介绍计量经济学中的预测方法,包括时间序列分析、回归分析和面板数据分析等。
4. 因果推断:介绍计量经济学中的因果推断方法,包括工具变量法、自然实验和计量分析的注意事项等。
五、计量经济学在实际应用中的案例研究1. 劳动经济学:介绍计量经济学在劳动经济学领域的实际应用,包括劳动力市场分析、教育回报率和人力资本投资等。
2. 金融经济学:介绍计量经济学在金融经济学领域的实际应用,包括资本市场分析、投资组合选择和风险管理等。
计量经济学期末考试复习资料第一章绪论参考重点:计量经济学的一般建模过程第一章课后题1.4.61.什么是计量经济学计量经济学方法与一般经济数学方法有什么区别答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科;计量经济学方法揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述;4.建立与应用计量经济学模型的主要步骤有哪些答:建立与应用计量经济学模型的主要步骤如下:1设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;2收集样本数据,要考虑样本数据的完整性、准确性、可比性和—致性;3估计模型参数;4检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验;6.模型的检验包括几个方面其具体含义是什么答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验;在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质;在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围;第二章经典单方程计量经济学模型:一元线性回归模型参考重点:1.相关分析与回归分析的概念、联系以及区别2.总体随机项与样本随机项的区别与联系3.为什么需要进行拟合优度检验4.如何缩小置信区间P46由上式可以看出1.增大样本容量;样本容量变大,可使样本参数估计量的标准差减小;同时,在同样置信水平下,n越大,t分布表中的临界值越小;2提高模型的拟合优度;因为样本参数估计量的标准差和残差平方和呈正比,模型的拟合优度越高,残差平方和应越小;5.以一元线性回归为例,写出β的假设检验1.对总体参数提出假设H 0:=0, H1:2以原假设H0构造t统计量,3由样本计算其值4给定显着性水平,查t分布表得临界值t/2n-2 5比较,判断若 |t|> t /2n-2,则拒绝H0 ,接受H1;若 |t| t /2n-2,则拒绝H 1 ,接受H 0 ;上届重点:一元线性回归模型的基本假设、随机误差项产生的原因、最小二乘法、参数经济意义、决定系数、第二章PPT 里的表中国居民人均消费支出对人均GDP 的回归、t 检验△平方代表意义;△平方的认识、能够读懂Eviews 输出的估计结果第二章课后题1.3.9.101.为什么计量经济学模型的理论方程中必须包含随机干扰项经典模型中产生随机误差的原因答:计量经济学模型考察的是具有因果关系的随机变量间的具体联系方式;由于是随机变量,意味着影响被解释变量的因素是复杂的,除了解释变量的影响外,还有其他无法在模型中独立列出的各种因素的影响;这样,理论模型中就必须使用一个称为随机干扰项的变量宋代表所有这些无法在模型中独立表示出来的影响因素,以保证模型在理论上的科学性;3.一元线性回归模型的基本假设主要有哪些违背基本假设的模型是否不可以估计答:线性回归模型的基本假设有两大类:一类是关于随机干扰项的,包括零均值,同方差,不序列相关,满足正态分布等假设;另一类是关于解释变量的,主要有:解释变量是非随机的,若是随机变量,则与随机干扰项不相关;实际上,这些假设都是针对普通最小二乘法的;在违背这些基本假设的情况下,普通最小二乘估计量就不再是最佳线性无偏估计量,因此使用普通最小二乘法进行估计己无多大意义;但模型本身还是可以估计的,尤其是可以通过最大似然法等其他原理进行估计;假设1. 解释变量X 是确定性变量,不是随机变量;假设2. 随机误差项具有零均值、同方差和不序列相关性:E i =0 i=1,2, …,nVar i =2 i=1,2, …,nCov i, j =0 i≠j i,j= 1,2, …,n假设3. 随机误差项与解释变量X 之间不相关:CovX i , i =0 i=1,2, …,n假设4. 服从零均值、同方差、零协方差的正态分布i ~N0, 2 i=1,2, …,n假设5. 随着样本容量的无限增加,解释变量X 的样本方差趋于一有限常数;即假设6. 回归模型是正确设定的9、10题为计算题,见课本P52,答案见P17第三章 经典单方程计量经济学模型:多元线性回归模型上届重点:F 检验、t 检验 调整的样本决定系数、“多元”里为什么要对△平方系数进行调整第三章课后题1.2.7.1.多元线性回归模型的基本假设是什么在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用答:多元线性回归模型的基本假定仍然是针对随机干扰项与针对解释变量两大类的假设;针对随机干扰项的假设有:零均值,同方差,无序列相关且服从正态分布;针对解释量的假设有;解释变量应具有非随机性,如果后随机的,则不能与随机干扰项相关;各解释变量之间不存在完全线性相关关系;在证明最小二乘估计量的无偏性中,利用了解释变量非随机或与随机干扰项不相关的假定;在有效性的证明中,利用了随机干扰项同方差且无序列相关的假定;2.在多元线性回归分析中,t检验和F检验有何不同在一元线性回归分析中二者是否有等价作用见课本P70答:在多元线性回归分析中,t检验常被用作检验回归方程中各个参数的显着性,而F检验则被用作检验整个回归关系的显着性;各解释变量联合起来对被解释变量有显着的线性关系,并不意味着每一个解释变量分别对被解释变量有显着的线性关系;在一元线性回归分析中,二者具有等价作用,因为二者都是对共同的假设——解释变量的参数等于零一一进行检验;7、9、10题为计算题,见课本P91,答案见P53第四章经典单方程计量经济学模型:放宽基本假定的模型重点掌握:参考重点:1.以多元线性回归为例说明异方差性会产生怎样的后果可能为论述题2.检验、修正异方差性的方法3.以多元线性回归为例说明序列相关会产生怎样的后果预测,矩阵表达式推到4.检验、修正序列相关的方法5.什么是DW检验法前提条件6.以多元线性回归为例说明多重共线性会产生怎样的后果7.检验、修正多重共线性的方法8.随机解释变量问题的三种分类分别造成的后果是什么9.工具变量法的前提假设1与所替代的随机解释变量高度相关2与随机干扰项不相关3与模型中其他解释变量不相关,以避免出现多重共线性上届重点:异方差、序列相关、多重共线性等违背基本假设的情况产生原因、后果、识别方式方法、、广义差分法第四章课后题1、2题为计算题,见课本P134,答案见P84第五章经典单方程计量经济学模型:专门问题上届重点:虚拟变量的含义与设定、滞后变量的含义、为何加入滞后和虚拟变量第五章课后题1.3.4.101.回归模型中引入虚拟变量的作用是什么有哪几种基本的引入方式它们各适合用于什么情况答:在模型中引入虚拟变量,主要是为了寻找某些定性因素对解释变量的影响;加法方式与乘法方式是最主要的引入方式;前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况;除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况;3.滞后变量模型有哪几种类型分布滞后模型使用OLS方法存在哪些问题答:滞后变量模型有分布滞后模型和自回归模型两大类,前者只有解释变量及其滞后变量作为模型的解释变量,不包含被解释变量的滞后变量作为模型的解释变量;而后者则以当期解释变量与被解释变量的若干期滞后变量作为模型的解释变量;分布滞后模型有无限期的分布滞后模型和有限期的分布滞后模型;自回归模型又以Coyck模型、自适应预期模型和局部调整模型最为多见;分布滞后模型使用OLS法存在以下问题:1对于无限期的分布滞后模型,由于样本观测值的有限性,使得无法直接对其进行估计;2对于有限期的分布滞后模型,使用OLS方法会遇到:没有先验准则确定滞后期长度,对最大滞后期的确定往往带有主观随意性;如果滞后期较长,由于样本容量有限,当滞后变量数目增加时,必然使得自由度减少,将缺乏足够的自由度进行估计和检验;同名变量滞后值之间可能存在高度线性相关,即模型可能存在高度的多重共线性;4.产生模型设定偏误的主要原因是什么模型设定偏误的后果以及检验方法有哪些答:产生模型设定偏误的原因主要有:模型制定者不熟悉相应的理论知识;对经济问题本身认识不够或不熟悉前人的相关工作:模型制定者手头没有相关变量的数据;解释变量无法测量或数据本身存在测量误差;模型设定偏误的后果有:1如果遗漏了重要的解释变量,会造成OLS估计量在小样本下有偏,在大样本下非一致;对随机干扰项的方差估计也是有偏的;2如果包含了无关的解释变量,尽管OLS估计量具有无偏性与一致性,但不具有最小方差性;3如果选择了错误的函数形式,则后果是全方位的,不但会造成估计的参数具有完全不同的经济意义,而且估计结果也不同;对模型设定偏误的检验方法有:检验是否含有无关变量,可以使用t检验与F 检验完成:检验是否有相关变量的遗漏或函数形式设定偏误,可以使用残差图示法,Ramsey提出的RESET检验来完成;10.简述约化建模理论与传统理论的异同点答:Hendry的约化建模理论的核心是“从一般到简单”的建模思想,即首先提出一个包括各种因素在内的“一般”模型,然后再通过观测数据,利用各种检验对模型进行检验并化简,最后得到一个相对简单的模型;传统建模理论的主导思想是“从简单到复杂”的建模思想,它首先提出一个简单的模型,然后从各种可能的备选变量中选择适当的变量进入模型,最后得到一个与数据拟合较好的较为复杂的模型;从二者的主要联系上看,它们都以对经济现象的解释为目标,以已有的经济理论为建模依据,以对数据的拟合程度作为模型优劣的重要的判定标准之一,也都有若干检验标推;从二者的主要区别上看,传统的建模理论往往更依赖于某种单一的经济理论,旧“从一般到简单”的建模理论则更注重将各种不同经济理论纳入到最初的“一般”模型中,甚至更多地是从直觉和经验来建立“一般”的模型;尽管两者都有若干种检验标准,但约化建模理论从实践上有更大量的诊断性检验来看每一步建模的可行性,或寻找改善模型的路径:与传统建模实践中存在的过渡“数据开采”问题相比,由于约化建模理论的初估模型是一个包括所有可能变量的“一般”模型,因此也就避免了过度的“数据开采”问题;另外,由于初始模型的“一般”性,所有研究者在建模的初期往往有着相同的“起点”,因此,在相同的约化程序下,最后得到的最终模型也应该是相同的;而传统建模实践中对同一经济问题往往有各种不同经济理论来解释,如果不同的研究者采用不同的经济理论建模,得到的最终模型也会不同;当然,由于约化建模理论有更多的检验,使得建模过程更复杂,相比之下,传统建模方法则更加“灵活”;第六章联立方程计量经济学模型理论与方法上届重点:内生变量、外生变量、先定变量、结构式模型、简化式模型、参数关系体系、模型识别第六章课后题1.2.3.1.为什么要建立联立方程计量经济学模型联立方程计量经济学模型适用于什么样的经济现象答:经济现象是极为复杂的,其中诸因素之间的关系,在很多情况下,不是单一方程所能描述的那种简单的单向因果关系,而是相互依存,互为因果的,这时,就必须用联立的计量经济学方程才能描述清楚;所以与单方程适用于单一经济现象的研究相比,联立方程计量经济学模型适用于描述复杂的经济现象,即经济系统;2.联立方程计量经济学模型的识别状况可以分为几类其含义各是什么答:联立方程计量经济学模型的识别状况可以分为可识别和不可识别,可识别又分为恰好识别和过度识别;如果联立方程计量经济学模型中某个结构方程不具有确定的统计形式,则称该方程为不可识别,或者根据参数关系体系,在已知简化式参数估计值时,如果不能得到联立方程计量经济学模型中某个结构方程的确定的结构参数估计值,称该方程为不可识别;如果一个模型中的所有随机方程都是可以识别的,则认为该联立方程计量经济学模型系统是可以识别的;反过来,如果一个模型系统中存在一个不可识别的随机方程,则认为该联立方程汁量经济学模型系统是不可以识别的;如果某一个随机方程具有唯一一组参数估计量,称其为恰好识别;如果某一个随机方程具有多组参数估计量,称其为过度识别;3.联立方程计量经济学模型的单方程估计有哪些主要方法其适用条件和统计性质各是什么答:单方程估计的主要方法有:狭义的工具变量法IV,间接最小二乘法ILS,两阶段最小二乘法2SLS;狭义的工具变量法IV和间接最小二乘法ILS只适用于恰好识别的结构方程的估计;两阶段最小二乘法2SLs既适用于恰好识别的结构方程,又适用于过度识别的结构方程;用工具变量法估计的参数,一般情况下,在小样本下是有偏的,但在大样本下是渐近无偏的;如果选取的工具变量与方程随机干扰项完全不相关,那么其参数估计量是无偏估计量;对于间接最小二乘法,对简化式模型应用普通最小二乘法得到的参数估计量具有线性性、无偏性、有效性;通过多数关系体系计算得到结构方程的结构参数估计量在小样本下是有偏的,在大样本下是渐近无偏的;采用二阶段最小二乘法得到结构方程的结构参数估计量在小样本下是有偏的,在大样本下是渐近无偏的;补充资料计算题一给出多元线性回归的结果1.判断模型估计的结果如何,拟合效果如何2.说明每一个参数所代表的经济意义3.判断有没有违背四个基本假设计算题二给出数值,计算:1.t检验,F检验的自由度2.在给定显着性水平下参数是否显着3.估计值是有偏、无偏、有效计算题三加入虚拟变量D1,D2,D3问:虚拟变量的经济含义。
计量经济学复习要点第一篇:计量经济学复习要点计量经济学复习要点第一章、概率论基础1.随机事件的概念P22.古典概行例题P5例1.1P2例1.2利用第一章的知识说明抽签的合理性如何利用第一章的知识估计一个池塘有多少鱼还有一个关于晚上紧急集合穿错鞋的题目,记不太清楚了3.期望与方差的概念,切比雪夫不等式,看例题1.4-例题1.8,不要求求出数4.变异系数的概念P175.大数定律和中心极限定律(具有独立同分布的随机变量序列的有限和近似地服从正态分布)的概念P24、P25第二章、矩阵代数1.矩阵的定义,加(page29)、减(page29)、乘(page30)、转置(page30)、逆(page31)知道怎么回事2.最小二乘法P39-P41(定义最小二乘解)3.第三节没有听,求听课学霸补充第三章、数据的分析方法和参数的统计推断1.数据的分析方法(算数平均、加权算数平均、几何平均、移动平均)(1)几种分析方法的定义(2)几中分析方法的不同(3)每种分析方法的具体作用(4)移动平均法中k的选择(5)指数平滑法的意义,α的选择,P552.t分布的概率密度函数3.矩估计法定义4.几大似然估计法P65,例题3.7例题3.85.贝叶斯估计和极大极小估计(应该是只看一下概念就可以了)6.假设检验(1)基本思想P75(2)双边假设检验(3)单边假设检验(4)参数检验P807.方差分析的思想、作用和模型第四章、一元线性回归(计算题)回归方程的求法,显著性检验,经济解释(各参数的解释),不显著的解释第六章、虚拟变量的回归模型1.虚拟变量的作用及模型2.应用虚拟变量改变回归直线的截距、斜率3.对稳定性的检验第二篇:2007计量经济学复习要点2007年计量经济学课程要点归纳1.十大经典假设的证明(关于两变量模型的性质检验)2.BLUE估计量的证明3.自相关检验方法(检验方法一定要记住)4.异方差检验方法(至少三种)5.孙老师讲过的附录要留意6.异方差与自相关的补救措施7.违反十大经典假设情况下的问题怎么解决(如多重共线性,异方差,自相关问题,虚拟变量的估计)注:以上重点均是提供参考,不做考试说明计量考察的重点是对计量模型的建立与估算,结果评价与补救思路的考察,没有大量的数学计算,请同学们放心!建议大家根据参考要点确定进度,并根据孙老师上课的重点决定自己的复习范围!希望同学们认真复习,考出好成绩!王琳第三篇:计量经济学复习笔记计量经济学复习笔记CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
第二章 一元线性回归模型1.随机误差项形成的原因:① 在解释变量中被忽略的因素 ② 变量观测值的观测误差 ③ 模型的关系误差或设定误差 ④ 其他随机因素的影响。
2.总体回归方程和样本回归方程的区别和联系:总体回归方程是对总体变量间关系的定量表述,条件均值E(Y|X=x)是x 的一个函数 ,记作:E(Y|X=x)=f(x),其中,f(x)为x 的某个函数 ,它表明在X=x 下,Y 的条件均值与x 之间的关系。
但实际中往往不可能得到总体的全部资料 ,只能先从总体中抽取一个样本,获得样本回归方程 ,并用它对总体回归方程做出统计推断。
通过样本回归方程按照一定的准则近似地估计总体回归方程 ,但由于样本回归方程随着样本的不同而有所不同,所以这种高估或低估是不可避免的。
3.随机误差项的假定条件:(1)零均值:随机误差项具有零均值,即E( )=0,i=1,2,… (2)随机误差项具有同方差: 即每个 对应的随机误差项 具有相同的常数方差。
Var( )=Var( )= ,i=1,2,… (3)无序列相关:即任意两个 和 所对应的随机误差项 、 是不相关的。
Cov( , )=E( )=0,i j,i,j=1,2,… (4)解释变量X 是确定性变量,与随机误差项不相关。
Cov( , )=E( )=0,此假定保证解释变量X 是非随机变量。
(5) 服从正态分布, ~N(0, )4.为什么用决定系数 评价拟合优度,而不用残差平方和作为评价标准?判定系数 = = 1- ,含义为由解释变量引起的被解释变量的变化占被解释变量总变化的比重,用来判定回归直线拟合的优劣。
该值越大说明拟合得越好。
而残差平方和值的大小受变量值大小的影响,不适合具有不同量纲的模型的比较。
5.可决系数 说明了什么?在简单线性回归中它与斜率系数的t 检验的关系是什么?可决系数 是对模型拟合优度的综合度量 ,其值越大,说明在Y 的总变差中由模型作出了解释的部分占得比重越大 ,模 型的拟合优度越高 ,模型总体线性关系的显著性越强。
计量经济学复习资料二一、填空题1、联立方程组计量经济学模型中,把()和()统称为前定变量。
2、如果一个定性变量有3种不同的类型,则在设置虚拟变量时,应该设置()个虚拟变量。
3、从是否可以识别的角度划分,联立方程组计量经济学模型可以分为()、()和()三种模型。
4、在单方程计量经济学模型中,把只包括()变量的当期和若干滞后期的模型称为分布滞后模型。
5、D.W统计量只能检验()阶的序列相关问题。
6、经济变量产生滞后效应的原因有()、()和()。
7、在单方程多元线性回归模型中,解释变量违背相互独立的假设所产生的问题是()。
8、在满足古典假定基础上,根据高斯—马尔可夫定理,普通最小二乘法得到的参数估计量具有__________、__________、__________统计性质。
9、一般来说,异方差性在截面数据中比在时间序列数据中更常出现,但在()的情况下,时间序列数据也常存在异方差。
10、二、判断题1、在包含有随机解释变量的单方程回归模型中,不能用杜宾-沃森统计量检验是否存在自相关问题。
( )2、对经典计量经济学模型,不满足古典假定的模型是不能估计的。
()3、计量经济学模型应用中的结构分析是对经济现象中变量之间相互关系的研究。
()4、对于不同的样本点,一个计量经济学模型中的随机误差项的方差不再是常数,而是互不相同,这时,该模型就出现了序列相关问题。
()5、对于不同的样本点,一个计量经济学模型中的随机误差项之间不再是完全互相独立,而是存在某种相关性,则称该模型存在异方差问题。
()6、在单方程计量经济学模型中,解释变量也称自变量,是用来解释作为研究对象的变量(即因变量)为什么变动和如何变动的变量。
()7、对计量经济学模型进行异方差检验的检验思路是检验随机误差项的方差与解释变量观测值之间的相关性。
()8、在一个多元线性回归模型中,如果各个解释变量之间存在完全线性相关,则该模型的参数不能被估计出来。
( )9、对存在异方差的计量经济学模型进行修正后,就可以完全消除异方差对模型的影响。
一、单选题
1、设OLS 法得到的样本回归直线为i i i e X Y ++=21ˆˆββ,则点),(Y X ( )
A.一定不在回归直线上
B.一定在回归直线上
C.不一定在回归直线上
D.在回归直线上方
2、在下列各种数据中,以下不应作为经济计量分析所用数据的是( )
A .时间序列数据 B.横截面数据
C .计算机随机生成的数据 D.虚拟变量数据
3、根据样本资料估计得出人均消费支出Y 对人均收入X 的回归模型为
i
Y ∧ln =2.00+0.75lnXi ,这表明人均收入每增加1%,人均消费支出将增加( )
A. 0.2%
B. 0.75%
C. 2%
D. 7.5%
4、多元线性回归分析中的 RSS 反映了( )
A .应变量观测值总变差的大小
B .应变量回归估计值总变差的大小
C .应变量观测值与估计值之间的总变差
D .Y 关于X 的边际变化
5、如果模型中的解释变量存在完全的多重共线性,参数的最小二乘估计量是( )
A .无偏的 B.有偏的 C.不确定 D.确定的
6、在经济发展发生转折时期,可以通过引入虚拟变量方法来表示这种变化。
例如,研究中国城镇居民消费函数时。
1991年前后,城镇居民商品性实际支出Y 对实际可支配收入X 的回归关系明显不同。
现以1991年为转折时期,设虚拟变量⎩⎨⎧=年以前,年以后,1991019911t D ,数据
散点图显示消费函数发生了结构性变化:基本消费部分下降了,边际消费倾向变大了。
则城镇居民线性消费函数的理论方程可以写作( )
A. t t t u X Y ++=10ββ
B. t t t t t u X D X Y +++=210βββ
C. t t t t u D X Y +++=210βββ
D.t
t t t t t u X D D X Y ++++=3210ββββ
7、在DW 检验中,当d 统计量为2时,表明( )
A.存在完全的正自相关
B.存在完全的负自相关
C.不存在自相关
D.不能判定
8、所谓异方差是指( ) 9、用模型描述现实经济系统的原则是
( )
A 、模型规模大小要适度,结构尽可能复杂
B 、以理论分析作先导,模型规模大小要适度
C 、模型规模越大越好;这样更切合实际情况
D 、以理论分析作先导,解释变量应包括所有解释变量
10、在检验异方差的方法中,不正确的是( )
A. Goldfeld-Quandt 方法
B. ARCH 检验法
C. White 检验法
D. DW 检验法
11、在下列产生序列自相关的原因中,不正确的是( )
A.经济变量的惯性作用
2
22
2)(.)(.)(.)(.σσσσ==≠≠i i i
i x Var D u Var C x Var B u Var A
B.经济行为的滞后作用
C.设定偏误
D.解释变量的共线性
12、回归分析中定义的( )
A.解释变量和被解释变量都是随机变量
B.解释变量为非随机变量,被解释变量为随机变量
C.解释变量和被解释变量都为非随机变
量
D.解释变量为随机变量,被解释变量为非随机变量
13、计量经济学的研究方法一般分为以下四个步骤()
A.确定科学的理论依据、模型设定、模型修定、模型应用
B.模型设定、估计参数、模型检验、模型应用
C.搜集数据、模型设定、估计参数、预测检验
D.模型设定、模型修定、结构分析、模型应用
14、在利用月度数据构建计量经济模型时,
如果一年里的12个月全部表现出季节模式,则应该引入虚拟变量个数为()
A. 4
B. 12
C. 11
D. 6
15、White检验可用于检验()
A.自相关性 B. 异方差性C.解释变量随机性 D.多重共线性
二、多项选择题
1、如果模型中存在序列自相关现象,则有如下后果()
A. 参数估计值有偏
B. 参数估计值的方差不能正确确定
C. 变量的显著性检验失效
D. 预测精度降低
E. 参数估计值仍是无偏的
2、在DW检验中,存在不能判定的区域是()
A. 0﹤d﹤l d
B. u d﹤d﹤4-u d
C. l d﹤d﹤u d
D. 4-u d﹤d﹤
4-l d
E. 4-l d﹤d﹤4
3、如果模型中解释变量之间存在共线性,则会引起如下后果()
A.参数估计值确定
B.参数估计值不确定
C.参数估计值的方差趋于无限大
D.参数的经济意义不正确
E.DW统计量落在了不能判定的区域
4、应用DW检验方法时应满足该方法的假定条件,下列是其假定条件的有()
A.解释变量为非随机的
B.截距离项不为零
C.随机误差项服从一阶自回归
D.数据无缺失项
E.线性回归模型中不能含有滞后内生变量
5、能够检验多重共线性的方法有()
A.简单相关系数矩阵法
B.t检验与F检验综合判断法
C. DW检验法
D.ARCH检验法
E. White 检验
三、判断题:判断正误,并给出理由
1、在对参数进行最小二乘估计之前,没有必要对模型提出古典假定。
2、拟合优度检验和F 检验是没有区别的。
3、在模型t t t t u X X Y +++=33221βββ的回归分析
结果报告中,有23.263489=F ,
000000.0=值的p F ,则表明解释变量t X 2 对t
Y 的影响是显著的。
4、虚拟变量的取值只能取0或1。
5、当异方差出现时,常用的t 和F 检验失效.。
四、计算分析题
美国各航空公司业绩的统计数据公布在《华尔街日报1999年年鉴》(The Wall Street Journal Almanac 1999)上。
航班正点到达的比率和每10万名乘客投诉的次
数的数据如下1。
1资料来源:(美)David R.Anderson 等《商务与经济统计》,第405页,机械工业出版社
利用EViews估计其参数结果为
(1)求出描述投诉率是如何依赖航班按时到达正点率的估计的回归方程。
(2)对估计的回归方程的斜率作出解释。
(3)如果航班按时到达的正点率为80%,估计每10万名乘客投诉的次数是多少?。