流体的发展史流体的物理性质流体的描述方法流线迹线
- 格式:ppt
- 大小:8.42 MB
- 文档页数:121
流体力学知识点总结流体力学是一门研究流体(包括液体和气体)运动规律以及流体与固体之间相互作用的学科。
它在工程、物理学、气象学、生物学等众多领域都有着广泛的应用。
下面将对流体力学中的一些重要知识点进行总结。
一、流体的性质1、流体的定义流体是一种在微小剪切力作用下就会连续变形的物质。
与固体不同,流体不能承受剪切力而保持固定的形状。
2、密度和重度密度是单位体积流体的质量,用ρ表示,单位通常为 kg/m³。
重度是单位体积流体所受的重力,用γ表示,单位通常为 N/m³,γ =ρg,其中 g 为重力加速度。
3、压缩性和膨胀性压缩性是指流体在压力作用下体积缩小的性质,膨胀性则是指流体在温度变化时体积膨胀的性质。
液体的压缩性和膨胀性通常较小,可视为不可压缩流体;而气体的压缩性和膨胀性较大。
4、粘性粘性是流体内部阻碍其相对运动的一种性质。
粘性力的大小与速度梯度和流体的粘性系数有关。
牛顿内摩擦定律给出了粘性力的表达式:τ =μ(du/dy),其中τ为粘性切应力,μ为动力粘性系数,du/dy 为速度梯度。
二、流体静力学1、静压力静止流体中,单位面积上所受的法向力称为静压力。
静压力的特性包括:方向总是垂直于作用面;静止流体中任意一点的静压力大小与作用面的方向无关。
2、静压强基本方程p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,γ 为流体的重度,h 为该点在液面下的深度。
3、压力体压力体是由受力曲面、液体的自由表面以及两者之间的铅垂面所围成的封闭体积。
通过压力体可以确定流体对物体表面的垂直作用力的方向。
三、流体运动学1、流线和迹线流线是某一瞬时在流场中画出的一条曲线,曲线上各点的切线方向与该点的速度方向相同。
迹线则是某一流体质点在一段时间内的运动轨迹。
2、流管和流束流管是在流场中通过封闭曲线所围成的管状区域,流管内的流体称为流束。
3、连续性方程对于定常流动,质量守恒定律可表示为连续性方程:ρ₁v₁A₁=ρ₂v₂A₂,即流过不同截面的流体质量流量相等。
流体力学中迹线流线的区别特点流体力学中,迹线和流线是描述流动的重要概念。
迹线(Streakline)是指流体中某一特定物质点在一段时间内的运动轨迹,而流线(Streamline)则是指流体中某一时刻瞬时速度方向的连续曲线。
我们来了解一下迹线的特点。
迹线是描述流动中物质点运动轨迹的曲线,可以看作是某一时刻流场中的真实物质线。
迹线具有以下几个特点:1. 迹线是流体中某一特定物质点在一段时间内的轨迹,可以用来观察流体的整体运动情况。
2. 迹线可以由流体中一些被染色或者带有特殊标记的粒子在流体中的运动轨迹得到。
3. 迹线可以是曲线、直线或者闭合曲线,具体取决于流场的性质和流体的运动状态。
4. 迹线可以用来研究流体的混合和扩散过程,通过观察迹线的变化可以推测流体中的扩散程度和混合程度。
然后,我们再来了解一下流线的特点。
流线是指流场中某一时刻瞬时速度方向的连续曲线,可以看作是流体运动方向的切线。
流线具有以下几个特点:1. 流线是流体中某一时刻瞬时速度方向的连续曲线,可以用来观察流体的局部运动情况。
2. 流线是与速度场垂直的曲线,即流线上任意一点的切线方向与速度向量方向相同。
3. 流线可以用来描述流体的运动轨迹和速度分布情况,通过观察流线的形状和分布可以推测流体的运动规律。
4. 流线可以用来研究流体的受力和动量传递过程,通过观察流线的变化可以推测流体受力的大小和方向。
在流体力学中,迹线和流线常常一起使用,来描述流体的运动情况。
迹线可以用来观察流体的整体运动轨迹和扩散程度,而流线则可以用来观察流体的局部运动方向和速度分布。
迹线和流线的区别主要体现在以下几个方面:1. 定义不同:迹线是描述某一特定物质点在一段时间内的运动轨迹,而流线是描述某一时刻瞬时速度方向的连续曲线。
2. 物理意义不同:迹线可以用来观察流体的整体运动情况和扩散程度,而流线可以用来观察流体的局部运动方向和速度分布。
3. 表示方式不同:迹线可以是曲线、直线或者闭合曲线,而流线通常是曲线。
1.1 流体的主要物理性质一.连续介质假设处于流体状态的物质,无论是液体还是气体,都是由大量不断运动着的分子所组成。
从微观角度来看,流体是离散的。
但流体力学是研究物体的宏观运动的,它是大量分子的平均统计特性。
1753年,欧拉采取了一个基本假设认为:流体质点(或流体微团)连续地毫无间隙地充满着流体所在的整个空间,这就是连续介质假设。
在大多数情况下,利用该基本假设得到的计算结果和实验结果符合得很好。
必须指出,连续介质模型也有一定的是适用范围。
以气体作用于物体表面上的力为例。
在标准情况下,的空气包含有个分子,分子间平均自由程,与所研究的在气体中的物体特征尺度L相比及其微小。
按气体分子运动观点,由于作热运动的大量气体分子不断撞击物体表面的结果,产生了作用于物体表面上的力。
它是大量气体分子共同作用的统计平均结果,而不是个别分子的具体运动决定,因而不必详细地研究个别分子的运动,而将气体看成连续介质以宏观的物理量来表征大量分子的共性。
但当气体体分子平均自由程与物体特征尺寸可以比拟时,这时就不能再应用连续介质的概念而必须考虑气体分子的结构了。
用连续介质假设简化时,只要研究描述流体宏观状态的物理量,如密度、速度、压强等。
二.流体的易流动性流体不能承受拉力,流体在静止时也不能承受切向剪应力。
即使是很小的切向力。
只要持续施加,都能使流体发生任意大的变形。
流体的这种宏观性质称易流动性,也正因此流体没有固定的形状。
三.流体的压缩性与膨胀性可压缩性—流体在外力作用下,其体积或密度可以改变的性质。
流体的压缩性常用压缩系数表示它表示在一定温度下,增大一个压力时,流体体积的相对缩小量,即或其中——单位质量流体的体积,即比容;——单位体积的质量,即密度。
压缩系数的倒数即流体的体积弹性模量E,它是单位体积的相对变化所需要的压力增量。
工程中常用体积弹性模量来衡量压缩性的大小。
E值越大流体就越不易被压缩。
E的单位与压强相同为Pa。
热膨胀性——流体在温度改变时,其体积或密度可以改变的性质。
流体复习整理资料第一章 流体及其物理性质1.流体的特征——流动性:在任意微小的剪切力作用下能产生连续剪切变形的物体称为流体。
也可以说能够流动的物质即为流体。
流体在静止时不能承受剪切力,不能抵抗剪切变形。
流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。
只要有剪切力的作用,流体就不会静止下来,将会发生连续变形而流动。
运动流体抵抗剪切变形的能力(产生剪切应力的大小)体现在变形的速率上,而不是变形的大小(与弹性体的不同之处)。
2.流体的重度:单位体积的流体所的受的重力,用γ表示。
g 一般计算中取9.8m /s 23.密度:=1000kg/,=1.2kg/,=13.6,常压常温下,空气的密度大约是水的1/8003. 当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。
通常液体和低速流动的气体(U<70m /s )可作为不可压缩流体处理。
4.压缩系数:弹性模数:21d /d pp E N m ρβρ==膨胀系数:)(K /1d d 1d /d TVV T V V t ==β5.流体的粘性:运动流体存在摩擦力的特性(有抵抗剪切变形的能力),这就是粘滞性。
流体的粘性就是阻止发生剪切变形的一种特性,而摩擦力则是粘性的动力表现。
温度升高时,液体的粘性降低,气体粘性增加。
6.牛顿摩擦定律: 单位面积上的摩擦力为:摩擦力为:此式即为牛顿摩擦定律公式。
其中:μ为动力粘度,表征流体抵抗变形的能力,它和密度的比值称为流体的运动粘3/g N m γρ=pVV p V V pd d 1d /d -=-=β21d 1d /d d p V m NV p pρβρ=-=hUμτ=dydu A h U AA T μμτ===ρμν=度ν摩擦力是成对出现的,流体所受的摩擦力总与相对运动速度相反。
为使公式中的τ值既能反映大小,又可表示方向,必须规定:公式中的τ是靠近坐标原点一侧(即t -t 线以下)的流体所受的摩擦应力,其大小为μ du/dy ,方向由du/dy 的符号决定,为正时τ与u 同向,为负时τ与u 反向,显然,对下图所示的流动,τ>0, 即t —t 线以下的流体Ⅰ受上部流体Ⅱ拖动,而Ⅱ受Ⅰ的阻滞。
流体力学复习资料流体力学是研究流体(包括液体和气体)的平衡和运动规律的学科。
它在工程、物理学、气象学、海洋学等众多领域都有着广泛的应用。
以下是为大家整理的流体力学复习资料,希望能对大家的学习有所帮助。
一、流体的物理性质1、流体的密度和比容密度(ρ)是指单位体积流体的质量,公式为:ρ = m / V 。
比容(ν)则是密度的倒数,即单位质量流体所占的体积,ν = 1/ρ 。
2、流体的压缩性和膨胀性压缩性表示流体在压力作用下体积缩小的性质,通常用体积压缩系数β来衡量,β =(1 / V)×(dV / dp)。
膨胀性是指流体在温度升高时体积增大的特性,用体积膨胀系数α来描述,α =(1 / V)×(dV / dT)。
3、流体的粘性粘性是流体抵抗剪切变形的一种属性。
牛顿内摩擦定律:τ =μ×(du / dy),其中τ为切应力,μ为动力粘度,du / dy 为速度梯度。
二、流体静力学1、静压强的特性静压强的方向总是垂直于作用面,并指向作用面内。
静止流体中任意一点处各个方向的静压强大小相等。
2、静压强的分布规律对于重力作用下的静止液体,其静压强分布公式为:p = p0 +ρgh ,其中 p0 为液面压强,h 为液体中某点的深度。
3、压力的表示方法绝对压力:以绝对真空为基准度量的压力。
相对压力:以大气压为基准度量的压力,包括表压力和真空度。
三、流体动力学基础1、流体运动的描述方法拉格朗日法:跟踪流体质点的运动轨迹来描述流体的运动。
欧拉法:通过研究空间固定点上流体的运动参数随时间的变化来描述流体的运动。
2、流线和迹线流线是在某一瞬时,在流场中所作的一条曲线,在该曲线上各点的速度矢量都与该曲线相切。
迹线是流体质点在一段时间内的运动轨迹。
3、连续性方程对于定常流动,质量守恒定律表现为连续性方程:ρ1v1A1 =ρ2v2A2 。
4、伯努利方程理想流体在重力作用下作定常流动时,沿流线有:p /ρ + gz +(1 / 2)v²=常量。