人教版七年级上册数学第一章检测卷
- 格式:doc
- 大小:63.50 KB
- 文档页数:13
人教版七年级数学上册第一章达标检测卷一、选择题(每题3分,共30分)1.如果温度上升3 ℃记作+3 ℃,那么温度下降2 ℃记作( )A .-2 ℃B .+2 ℃C .+3 ℃D .-3 ℃ 2.-12 022的相反数是( )A .12 022B .-12 022 C .2 022 D .-2 022 3.下列各数中,最小的数是( )A .-3B .0C .1D .24.有理数m ,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )A .|m |<1B .1-m >1C .mn >0D .m +1>05.下列计算中,正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-3 C .(-3)2÷(-2)2=32 D .0-7-2×5=-176.我国渤海、黄海、东海、南海海水含有不少化学元素,其中铝、锰元素总量均约为8×106 吨.用科学记数法表示铝、锰元素总量的和,接近值是( )A .8×106B .16×106C .1.6×107D .16×10127.点M ,N ,P 和原点O 在数轴上的位置如图所示,点M ,N ,P 对应的有理数为a ,b ,c (对应顺序暂不确定).如果ab <0,a +b >0,ac >bc ,那么表示数b 的点为( )A .MB .NC .PD .O 8.下列说法中,正确的是( )A .一个有理数不是正数就是负数B .|a |一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.已知|a +3|=5,b =-3,则a +b 的值为( )A .1或11B .-1或-11C .-1或11D .1或-11 10.已知有理数a ≠1,我们把11-a 称为a 的差倒数.如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.如果a 1=-2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是( )A .-7.5B .7.5C .5.5D .-5.5 二、填空题(每题3分,共30分)11.|-3|的相反数是________;-2 022的倒数是________.12.在数+8.3,-4,-0.8,-15,0,90,-343,-|-24|中,负数有____________________,分数有____________________.13.若A ,B ,C 三地的海拔高度分别是-102米,-80米,-25米,则最高点比最低点高________米. 14.近似数2.30精确到__________位.15.绝对值不大于3.14的所有有理数之和等于________;不小于-4而不大于3的所有整数之和等于________.16.在数轴上与表示-1的点相距2个单位长度的点表示的数是________. 17.有5袋苹果,以每袋50千克为标准,超过的千克数记为正数,不足的千克数记为负数.若称重的记录如下(单位:千克):+4,-5,+3,-2,-6,则这5袋苹果的总质量是________. 18.若x ,y 为有理数,且(3-x )4+|y +3|=0,则⎝ ⎛⎭⎪⎫x y 2 023的值为________.19.按照如图所示的计算程序,若x =2,则输出的结果是________.20.某校建立了一个身份识别系统,图①是某名学生的识别图案,灰色小正方形表示1,白色小正方形表示0,将第一行所代表的数字从左往右依次记为a ,b ,c ,d ,那么可以转换为该生所在的班级序号,其序号为a ×23+b ×22+c ×21+d ,如图①,第一行数字从左往右依次为0,1,0,1,序号为0×23+1×22+0×21+1=5,表示该生为5班学生,则图②识别图案的学生所在班级序号为________.三、解答题(23题6分,21,24,25题每题8分,其余每题10分,共60分) 21.将下列各数在数轴上表示出来,并按从小到大的顺序排列.(用“<”号连接起来)-22,-(-1),0,-|-2|,-2.5,|-3|22.计算:(1)-78+(+4)+200-(-96)+(-22);(2)-22-|-7|+3-2×⎝ ⎛⎭⎪⎫-12;(3)⎝ ⎛⎭⎪⎫-162÷⎝ ⎛⎭⎪⎫12-132÷|-6|2÷⎝ ⎛⎭⎪⎫-122;(4)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).23.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2.求a +ba +b +c+m 2-cd 的值.24.若“⊗”表示一种新运算,规定a ⊗b =a×b +a +b ,请计算下列各式的值. (1)-6⊗2; (2)[(-4)⊗(-2)]⊗12.25.在数轴上表示a ,0,1,b 四个数的点如图所示,已知OA =OB ,求|a +b |+⎪⎪⎪⎪⎪⎪a b +|a +1|的值.26.足球比赛中,根据场上攻守形势,守门员会在门前来回跑动.如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m):+10,-2,+5,-6,+12,-9,+4,-14(假定开始计时时,守门员正好在球门线上). (1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离是多少米?(3)如果守门员离开球门线的距离超过10 m(不包括10 m),则对方球员极可能挑射破门.请问在这段时间内,对方球员有几次挑射破门的机会?27.观察下列等式并回答问题.第1个等式:a1=11×3=12×⎝⎛⎭⎪⎫1-13;第2个等式:a2=13×5=12×⎝⎛⎭⎪⎫13-15;第3个等式:a3=15×7=12×⎝⎛⎭⎪⎫15-17;第4个等式:a4=17×9=12×⎝⎛⎭⎪⎫17-19;….(1)按发现的规律分别写出第5个等式和第6个等式;(2)求a1+a2+a3+a4+…+a100的值.答案一、1.A2.A3.A4.B5.D6.C 7.A8.C9.B10.A二、11.-3;-1 2 02212.-4,-0.8,-15,-343,-|-24|;+8.3,-0.8,-15,-34313.7714.百分15.0;-416.-3或117.244千克18.-119.-2620.6三、21.解:如图所示.-22<-2.5<-|-2|<0<-(-1)<|-3|. 22.解:(1)原式=-78+4+200+96-22=200.(2)原式=-4-7+3+1=-7.(3)原式=136÷⎝⎛⎭⎪⎫162÷36÷14=136×36×136×4=1 9.(4)原式=1-1+(-2.45-2.55)×8=-40.23.解:由题意,得a+b=0,cd=1,m=±2,所以m2=4.所以a+ba+b+c+m2-cd=0+c+4-1=0+4-1=3.24.解:(1)-6⊗2=-6×2+(-6)+2=-16.(2)[(-4)⊗(-2)]⊗12=[-4×(-2)+(-4)+(-2)]⊗12=2⊗1 2=2×12+2+12 =312.25.解:因为OA =OB ,所以a +b =0,a =-b ,由数轴知b >1,所以a <-1,所以a +1<0,所以原式=0+1-a -1=-a .26.解:(1)+10-2+5-6+12-9+4-14=0(m).所以守门员最后回到球门线上.(2)第一次:10 m ,第二次:10-2=8(m),第三次:8+5=13(m),第四次:13-6=7(m),第五次:7+12=19(m),第六次:19-9=10(m),第七次:10+4=14(m),第八次:14-14=0(m).因为19>14>13>10>8>7>0,所以守门员离开球门线的最远距离为19 m.(3)结合(2)中所求守门员离开球门线的距离,知第一次:10=10,第二次:8<10,第三次:13>10,第四次:7<10,第五次:19>10,第六次:10=10,第七次:14>10,第八次:0<10,所以对方球员有3次挑射破门的机会.27.解:(1)第5个等式:a 5=19×11=12×⎝ ⎛⎭⎪⎫19-111;第6个等式:a 6=111×13=12×⎝ ⎛⎭⎪⎫111-113. (2)a 1+a 2+a 3+a 4+…+a 100=12×⎝ ⎛⎭⎪⎫1-13+12×⎝ ⎛⎭⎪⎫13-15+12×⎝ ⎛⎭⎪⎫15-17+12×⎝ ⎛⎭⎪⎫17-19+…+12×(1199-1201)=12×(1-13+13-15+15-17+17-19+…+1199-1201)=12×200201=100201.。
2023-2024学年七年级数学上册《第一章有理数》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.﹣2的相反数是()A.﹣2 B.0 C.2 D.42.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨3.从数﹣6,1,﹣3,5,﹣2中任取三个数相乘,则其积最小的是()A.﹣60 B.﹣36C.﹣90 D.﹣304.检测4个足球质量,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的是()A.+0.9 B.-3.6 C.-0.8 D.+2.55.算式的值与下列选项值相等的是()A.B.C.D.6.|a-2|+|b+1|=0,则a+b等于()A.-1 B.1 C.0 D.-27.一根1米长的绳子,第一次剪去它的三分之一,如此剪下去,第五次后剩下的绳子的长度为()A.米B.米C.米D.米8.有理数a,b在数轴上的位置如图所示,则下列各式中错误的是()A.b<a B.|b|>|a| C.a+b>0 D.ab<0二、填空题:(本题共5小题,每小题3分,共15分.)9.比较大小:.(用“>”“=”或“<”填空).10.用四舍五入法将4.036取近似数并精确到0.01,得到的值是.11.一天早晨的气温是﹣2℃,半夜又下降了1℃,则半夜的气温是℃.12.某车间生产一批圆柱形机器零件,从中抽出了6件进行检验,把标准直径的长记为0,比标准直径长的记为正数,比标准直径短的记为负数,检查记录如下:则第个零件最符合标准.13.数轴上的点A,B是互为相反数,其中A对应的点是2,C是距离点A为6的点,则点B和C所表示的数的和为.三、解答题:(本题共5题,共45分)14.计算15.计算:(1);(2) .16.计算:(1)(2)17.某仓库原有某种商品300件,现记录了8天内该种商品进出仓库的件数如下所示:(“+”表示进库,“﹣”表示出库)+30,﹣10,﹣15,+25,+17,+35,﹣20,﹣15.(1)经过8天,仓库内的该种商品是增加了还是减少了?此时仓库还有多少件商品?(2)如果该种商品每次进出仓库都需要支付人工费每件3元,请问这8天要支付多少人工费?18.“十一”黄金周期间,某市外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)9月30日外出旅游人数记为a,请用含字母a的代数式表示10月2日外出旅游的人数:(2)请判断八天内外出旅游人数最多的是10月日,最少是10月日. (3)如果最多一天出游人数有3万人,且平均每人消费2000元,试问该城市10月5日外出旅游消费总额为万元.参考答案:1.C 2.B 3.B 4.C 5.A 6.B 7.B 8.C 9.>10.4.0411.-312.513.-6或614.解:﹣22﹣×[4﹣(﹣3)2]÷(﹣)=﹣4﹣×(4﹣9)×(﹣)=﹣4﹣×(﹣5)×(﹣)=﹣4﹣2=﹣6.15.(1)解:原式===== ;(2)解:原式=== .16.(1)解:;(2)解:= .17.(1)解:+30+(﹣10)+(﹣15)+(+25)+(+17)+(+35)+(﹣20)+(﹣15)=47(件)300+47=347(件)答:经过8天,仓库内的该种商品是增加了47件,此时仓库还有347件商品;(2)解:|+30|+|﹣10|+|﹣15|+|+25|+|+17|+|+35|+|﹣20|+|﹣15|=167(件)3×167=501(元)答:这8天要支付501元人工费.18.(1)解:由题意可知10月2日外出旅游的人数为:a+1.6+0.8=(a+2.4)万人(2)3;7(3)3600。
人教版七年级上册数学第1章《有理数》单元检测试卷题号一二三总分19 20 21 22 23 24分数1.点A在数轴上表示的数为-3,若一个点从点A向左移动4个单位长度,此时终点所表示的数是()A.-7 B.1 C.7 D.-12.如果水位下降2021m记作﹣2021m,那么水位上升2020m记作()A.﹣1m B.+4041m C.﹣4041m D.+2020m3.将下列四个数表示在数轴上,它们对应的点中,离原点最近的是()A.﹣0.4 B.0.6 C.1.3 D.﹣24.把有理数a、b在数轴上表示如图所示,那么则下列说法正确的是()A.a+b>0 B.a﹣b<0 C.a>﹣b D.﹣b>a5、若x是3的相反数,|y|=4,则x-y的值是()A.-7B.1C.-1或7D.1或-76、下列说法中正确的是()A.任何正整数的正因数至少有两个B.一个数的倍数总比它的因数大C.1是所有正整数的因数D.3的因数只有它本身7.当n为正整数时,(﹣1)2n+1﹣(﹣1)2n的值为()A.0 B.2 C.﹣2 D.2或﹣28.在分数3579,,,8123250中能化成有限小数的有()A.1个B.2个C.3个D.4个9.实数a、b在数轴上的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是()A .0a b +=B .0a b -=C .||||a b <D .0ab >10.文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店西边100米处,小明从书店沿街向东走了40米,接着又向西走了60米,此时小明的位置在( ) A .文具店B .玩具店C .文具店西边40米D .玩具店西边60米二、填空题: (每题3分,24分) 11.计算:=____________12.计算(−1.5)3×(−)2−1×0.62=___________. 13.的相反数是________.14.若,则________.15.、在数轴上得位置如图所示,化简:________.16. 当x________时,代数式的值为非负数.17. 一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是________个单位. 18.观察规律并填空. ⑴⑵⑶________(用含n 的代数式表示,n 是正整数,且 n ≥ 2)三.解答题(共46分,19题6分,20 ---24题8分)。
人教版七年级上册数学第一章测试卷一、单选题1.﹣1+3的结果是()A .﹣4B .4C .﹣2D .22.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米()A .73610⨯B .83.610⨯C .90.3610⨯D .93.610⨯3.如图,25的倒数在数轴上表示的点位于下列两个点之间()A .点E 和点FB .点F 和点GC .点G 和点HD .点H 和点I4.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A .10℃B .6℃C .﹣6℃D .﹣10℃5.早春时节天气变化无常,某日正午气温–3°C ,傍晚气温2°C ,则下列说法正确的是A .气温上升了5°C B .气温上升了1°C C .气温上升了2°CD .气温下降了1°C6.已知:a =-2+(-10),b =-2-(-10),c =-2×(-110),下列判断正确的是()A .a >b >cB .b >c >aC .c >b >aD .a >c >b7.数轴上的点A 表示的数是a ,当点A 在数轴上向右平移了6个单位长度后得到点B ,若点A 和点B 表示的数恰好互为相反数,则数a 是()A .6B .﹣6C .3D .﹣38.计算12+16+112+120+130+……+19900的值为()A .1100B .99100C .199D .10099二、填空题9.阅读材料:若a b =N ,则b=log a N ,称b 为以a 为底N 的对数,例如23=8,则log 28=log 223=3.根据材料填空:log39=_____.10.按照如图的操作步骤,若输入x的值为2,则输出的值是_____.(用科学计算器计算或笔算)11.已知1纳米=0.000000001米,用科学记数法表示1纳米=__________米.12.写出一个数,使这个数的绝对值等于它的相反数:__________.13.数轴上,如果点A表示–78,点B表示–67,那么离原点较近的点是__________.(填A或B)14.a的相反数是一32,则a的倒数是________.三、解答题15.计算:(1)17+(–14)–(–13)–6;(2)19×(–18);(3)–14–(–512)×411+(–2)3÷|–32+1|.16.阅读下列材料:计算:112÷(13–14+112).解:原式的倒数为(13–14+112)÷112=(13–14+112)×12=13×12–14×12+112×12=2.故原式=1 2.请仿照上述方法计算:(–142)÷(16–314+23–27).17.已知a 的相反数是2,b 的绝对值是3,c 的倒数是–1.(1)写出a ,b ,c 的值;(2)求3ac +2b 2的值.18.已知有理数a 、b 在数轴上的对应点如图所示.(1)已知a =–2.3,b =0.4,计算|a +b |–|a |–|1–b |的值;(2)已知有理数a 、b ,计算|a +b |–|a |–|1–b |的值.19.(1)某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位:元):星期一星期二星期三星期四星期五星期六星期日合计–27.8–70.3200138.1–8■■188458表中星期六的盈亏数被墨水涂污了,请你算出星期六的盈亏数,并说明星期六是盈还是亏?盈亏是多少?(2)某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?20.粮库6天内发生粮食进、出库的吨数如下(“+”表示进库,“-”表示出库):26+,32-,15-,34+,38-,20-.(1)经过这6天,库里的粮食是增多还是减少了?增加(减少)了多少?(2)经过这6天,管理员结算时发现库里还存480吨粮,那么6天前库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少装卸费?21.已知数轴上点A表示的数为6,B是数轴上在左侧的一点,且A,B两点间的距离为10。
2023-2024学年人教版版七年级数学上册《第一章 有理数》单元检测卷及答案学校:___________班级:___________姓名:___________考号:___________ 一.选择题(共10小题,满分30分,每小题3分) 1.(3分)−45的相反数是( ) A .−45B .−54C .45D .542.(3分)大庆油田发现预测地质储量12.68亿吨的页岩油,这标志着我国页岩油勘探开发取得重大战略突破.数字1268000000用科学记数法表示为( ) A .1.268×109B .1.268×108C .1.268×107D .1.268×1063.(3分)2023的倒数是( ) A .2023B .﹣2023C .−12023D .120234.(3分)我市某天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高( ) A .﹣10℃B .﹣6℃C .6℃D .10℃5.(3分)如图,数轴的单位长度为1,若点A 表示的数是﹣2,则点B 表示的数是( )A .0B .1C .2D .36.(3分)将34.945取近似数精确到十分位,正确的是( ) A .34.9B .35.0C .35D .35.057.(3分)若(m ﹣2)2与|n +3|互为相反数,则n m 的值是( ) A .﹣8B .8C .﹣9D .98.(3分)若两数之积为负数,则这两个数一定是( ) A .同为正数B .同为负数C .一正一负D .无法确定9.(3分)如果a >0>b ,那么下列各式成立的是( ) A .ab >0B .a +b <0C .a ﹣b <0D .ab <010.(3分)如图,把半径为0.5的圆放到数轴上,圆上一点A 与表示1的点重合,圆沿着数轴滚动一周,此时点A 表示的数是( )A .0.5+π或0.5﹣πB .1+2π或1﹣2πC .1+π或1﹣πD .2+π或2﹣π二.填空题(共8小题,满分32分,每小题4分)11.(4分)如果节约20度电记作+20度,那么浪费10度电记作 度. 12.(4分)比较大小:−(−27) −38.13.(4分)在﹣34中,底数是 ,指数是 .计算:﹣34= . 14.(4分)把7﹣(+5)+(﹣6)﹣(﹣4)写成省略加号和括号的形式为 . 15.(4分)绝对值小于3的所有整数的和是 . 16.(4分)计算:﹣16÷4×14= . 17.(4分)数轴上表示﹣2的点与表示6的点之间的距离为 . 18.(4分)已知|a |=2,b =3,则b ﹣a = . 三.解答题(共8小题,满分58分)19.(6分)补全数轴,并在数轴上表示下列各数,并用“<”把它们连接起来. 1.5,0,4,−12,﹣3.20.(6分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.求m +cd +a+bm的值. 21.(8分)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10); (2)−24−(13−1)×13×[6−(−3)]. 22.(8分)下面是亮亮同学计算一道题的过程: 15÷5×(﹣3)﹣6×(32+23)=15÷(﹣15)﹣6×32+6×23⋯⋯① =﹣1﹣9+4……② =﹣6……③(1)亮亮计算过程从第 步出现错误的;(填序号)(2)请你写出正确的计算过程.23.(6分)定义一种新的运算x∗y=x+2yx,如3∗1=3+2×13=53,求(2*3)*2的值.24.(6分)数轴上点A、B、C的位置如图所示,A、B对应的数分别为﹣5和1,已知线段AB的中点D与线段BC的中点E之间的距离为5.(1)求点D对应的数;(2)求点C对应的数.25.(8分)某巡警骑摩托车在一条东西大道上巡逻.某天他从岗亭出发,晚上停留在A处.规定向东方向为正,当天行驶记录如下(单位:千米):+10,﹣8,+6,﹣13,+7,﹣12,+3,﹣1(1)A在岗亭何方?通过计算说明A距离岗亭多远?(2)在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站次.(3)若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?26.(10分)概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把a÷a÷a÷⋯÷a︸n个a(a≠0)记作aⓝ,读作“a的圈n次方”.初步探究(1)直接写出计算结果:2③=,(−12)⑤=;(2)关于除方,下列说法错误的是A.任何非零数的圈2次方都等于1;B.对于任何正整数n,1ⓝ=1;C.3④=4③D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=;5⑥=;(−12)⑩=.(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于;(3)算一算:122÷(−13)④×(−12)⑤−(−13)⑥÷33.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)−45的相反数是()A.−45B.−54C.45D.54【分析】根据相反数的定义即可求解.【解答】解:−45的相反数是45.故选:C.2.(3分)大庆油田发现预测地质储量12.68亿吨的页岩油,这标志着我国页岩油勘探开发取得重大战略突破.数字1268000000用科学记数法表示为()A.1.268×109B.1.268×108C.1.268×107D.1.268×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:1268000000=1.268×109.故选:A.3.(3分)2023的倒数是()A.2023B.﹣2023C.−12023D.12023【分析】乘积是1的两数互为倒数,由此即可得到答案.【解答】解:2023的倒数是12023.故选:D.4.(3分)我市某天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A.﹣10℃B.﹣6℃C.6℃D.10℃【分析】用最高气温减去最低气温,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8)=2+8=10℃.故选:D.5.(3分)如图,数轴的单位长度为1,若点A表示的数是﹣2,则点B表示的数是()A.0B.1C.2D.3【分析】根据图形得出点A、点B距离4个单位长度,题干中明确数轴单位长度为1,利用点A表示的数即可推理出点B表示的数.【解答】解:∵数轴的单位长度为1,线段AB=4个单位长度,点A表示的数是﹣2.∴﹣2+4=2∴点B表示的数是2.故选:C.6.(3分)将34.945取近似数精确到十分位,正确的是()A.34.9B.35.0C.35D.35.05【分析】把百分位上的数字4进行四舍五入即可得出答案.【解答】解:34.945取近似数精确到十分位是34.9;故选:A.7.(3分)若(m﹣2)2与|n+3|互为相反数,则n m的值是()A.﹣8B.8C.﹣9D.9【分析】首先根据互为相反数的定义,可得(m﹣2)2+|n+3|=0,再根据乘方运算及绝对值的非负性,即可求得m、n的值,据此即可解答.【解答】解:∵(m﹣2)2与|n+3|互为相反数∴(m﹣2)2+|n+3|=0∴m﹣2=0,n+3=0解得m=2,n=﹣3∴n m=(﹣3)2=9故选:D.8.(3分)若两数之积为负数,则这两个数一定是()A.同为正数B.同为负数C.一正一负D.无法确定【分析】根据有理数的乘法法则,举反例,排除错误选项,从而得出正确结果.【解答】解:例如(﹣2)×1=﹣2,2×(﹣2)=﹣4,所以C正确故选:C.9.(3分)如果a >0>b ,那么下列各式成立的是( ) A .ab >0B .a +b <0C .a ﹣b <0D .ab <0【分析】A 、根据有理数的乘法运算法则进行判断; B 、根据有理数的加法运算法则进行判断; C 、根据有理数的减法运算法则进行判断; D 、根据有理数的除法运算法则进行判断. 【解答】解:A 、∵a >0>b ∴ab <0,选项错误,不符合题意; B 、∵a >0>b ∴当|a |>|b |时,a +b >0当|a |<|b |时,a +b <0,选项错误,不符合题意; C 、∵a >0>b∴a ﹣b =a +|b |>0,选项错误,不符合题意; D 、∵a >0>b∴ab <0,选项正确,符合题意;故选:D .10.(3分)如图,把半径为0.5的圆放到数轴上,圆上一点A 与表示1的点重合,圆沿着数轴滚动一周,此时点A 表示的数是( )A .0.5+π或0.5﹣πB .1+2π或1﹣2πC .1+π或1﹣πD .2+π或2﹣π【分析】根据半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周,滚动的距离就是圆的周长,再由圆的周长公式得出周长为π,分两种情况,即可得答案. 【解答】解:由半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周到达A 点 故滚动一周后A 点与1之间的距离是π 故当A 点在1的左边时表示的数是1﹣π 当A 点在1的右边时表示的数是1+π. 故选:C .二.填空题(共8小题,满分32分,每小题4分)11.(4分)如果节约20度电记作+20度,那么浪费10度电记作﹣10度.【分析】根据节约20度电记作+20度,可以表示出浪费10度,本题得以解决.【解答】解:∵节约20度电记作+20元∴浪费10度电记作﹣10元.故答案为:﹣10.12.(4分)比较大小:−(−27)>−38.【分析】先求出﹣(−27)=27,再根据正数大于一切负数比较即可.【解答】解:∵﹣(−27)=27∴﹣(−27)>−38故答案为:>.13.(4分)在﹣34中,底数是3,指数是4.计算:﹣34=﹣81.【分析】根据幂的定义:形如a n中a是底数,n是指数,及乘方计算法则计算解答.【解答】解:﹣34中,底数是3,指数是4,﹣34=﹣81故答案为:3,4,﹣81.14.(4分)把7﹣(+5)+(﹣6)﹣(﹣4)写成省略加号和括号的形式为7﹣5﹣6+4.【分析】直接去括号即可.【解答】解:原式=7﹣5﹣6+4.故答案为:7﹣5﹣6+4.15.(4分)绝对值小于3的所有整数的和是0.【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【解答】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,±2.所以0+1﹣1+2﹣2=0.故答案为:0.16.(4分)计算:﹣16÷4×14=﹣1.【分析】首先统一成乘法,再约分计算即可.【解答】解:原式=﹣16×14×14=−1故答案为:﹣1.17.(4分)数轴上表示﹣2的点与表示6的点之间的距离为8.【分析】用数轴上右边的数6减去左边的(﹣2),再根据减去一个数等于加上这个数的相反数进行计算即可求解.【解答】解:6﹣(﹣2)=6+2=8.故答案为:8.18.(4分)已知|a|=2,b=3,则b﹣a=1或5.【分析】根据绝对值的意义得出a的值,然后根据有理数减法运算即可.【解答】解:∵|a|=2,b=3∴a=±2,b=3∴当a=2,b=3时,b﹣a=3﹣2=1;当a=﹣2,b=3时,b﹣a=3﹣(﹣2)=5;故答案为:1或5.三.解答题(共8小题,满分58分)19.(6分)补全数轴,并在数轴上表示下列各数,并用“<”把它们连接起来.1.5,0,4,−12和﹣3.【分析】补全数轴,并在数轴上表示出各数,并用“<”把它们连接起来即可.【解答】解:如图所示由图可知,﹣3<−12<0<1.5<4.20.(6分)若a、b互为相反数,c、d互为倒数,m的绝对值为2.求m+cd+a+bm的值.【分析】根据a、b互为相反数,可得:a+b=0;c、d互为倒数,可得:cd=1;m的绝对值为2,可得:m=±2,据此求出m+cd+a+bm的值是多少即可.【解答】解:∵a、b互为相反数∴a+b=0;∵c 、d 互为倒数 ∴cd =1; ∵m 的绝对值为2 ∴m =±2 ∴m =2时 m +cd +a+bm=2+1+0 =3 ∴m =﹣2时 m +cd +a+bm=﹣2+1+0 =﹣121.(8分)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10); (2)−24−(13−1)×13×[6−(−3)].【分析】(1)利用有理数的加减运算的法则进行解答即可; (2)先算乘方,括号里的运算,再算乘法,最后算加减即可. 【解答】解:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10) =﹣7﹣5﹣4+10 =﹣6;(2)−24−(13−1)×13×[6−(−3)] =﹣16﹣(−23)×13×9 =﹣16+2 =﹣14.22.(8分)下面是亮亮同学计算一道题的过程: 15÷5×(﹣3)﹣6×(32+23)=15÷(﹣15)﹣6×32+6×23⋯⋯①=﹣1﹣9+4……②=﹣6……③(1)亮亮计算过程从第 ① 步出现错误的;(填序号)(2)请你写出正确的计算过程.【分析】(1)根据题目中的解答过程,可以发现最先错在哪一步以及错误的原因;(2)先算乘除,后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;注意乘法分配律的运用,写出正确的解答过程即可.【解答】解:(1)亮亮计算过程从第①步出现错误的;(填序号)故答案为:①;(2)15÷5×(﹣3)﹣6×(32+23) =3×(﹣3)﹣6×32−6×23=﹣9﹣9﹣4=﹣22.23.(6分)定义一种新的运算x ∗y =x+2y x ,如3∗1=3+2×13=53,求(2*3)*2的值. 【分析】根据新定义运算列式子计算即可.【解答】解:根据题中的新定义得:(2*3)*2=(2+2×32)∗2=4∗2=4+44=2. 24.(6分)数轴上点A 、B 、C 的位置如图所示,A 、B 对应的数分别为﹣5和1,已知线段AB 的中点D 与线段BC 的中点E 之间的距离为5.(1)求点D 对应的数;(2)求点C 对应的数.【分析】(1)先求出AB 的长,再根据中点的性质可得;(2)根据两点间的距离公式可得.【解答】解:(1)1﹣(﹣5)=66÷2﹣1=3﹣1=2因D 点在0点的左侧所以用负数表示,是﹣2.答:D 点对应的数是﹣2.(2)5﹣2=3因C点在0点的右侧,所以用正数表示是+5.答:C点对应的数是+5.25.(8分)某巡警骑摩托车在一条东西大道上巡逻.某天他从岗亭出发,晚上停留在A处.规定向东方向为正,当天行驶记录如下(单位:千米):+10,﹣8,+6,﹣13,+7,﹣12,+3,﹣1(1)A在岗亭何方?通过计算说明A距离岗亭多远?(2)在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站4次.(3)若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?【分析】(1)明确“正”和“负”表示的意义,再进行判断;(2)巡警巡逻时经过岗亭东面6千米处加油站,要注意超过了加油站要返回的距离;(3)计算巡警经过的路程,再乘每行1千米的耗油.【解答】解:(1)根据题意:(+10)+(﹣8)+(+6)+(﹣13)+(+7)+(﹣12)+(+3)+(﹣1)=﹣8∵规定向东方向为正∴A在岗亭西方答:A在岗亭西方,A距离岗亭8千米;(2)第一次向东走10千米,从0﹣10,经过一次第二次又向西走8千米,10﹣2,经过一次第三次又向东走6千米,2﹣8,经过一次第四次又向西走13千米,8﹣(﹣5),经过一次第五次又向东走7千米,﹣5﹣2,不经过第六次又向西走12千米,2﹣(﹣10),不经过第七次又向东走3千米,﹣10﹣(﹣7),不经过第八次又向西走1千米,7—8,不经过所以巡警巡逻时经过岗亭东面6千米处加油站,应该是4次.故答案为:4;(3)|+10|+|﹣8|+|+6|+|﹣13|+|+7|+|﹣12|+|+3|+|﹣1|=60(km)60×0.05=3(升)答:该摩托车这天巡逻共耗油3升.26.(10分)概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把a÷a÷a÷⋯÷a︸n个a(a≠0)记作aⓝ,读作“a的圈n次方”.初步探究(1)直接写出计算结果:2③=12,(−12)⑤=﹣8;(2)关于除方,下列说法错误的是CA.任何非零数的圈2次方都等于1;B.对于任何正整数n,1ⓝ=1;C.3④=4③D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=132;5⑥=154;(−12)⑩=28.(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于1a n−2;(3)算一算:122÷(−13)④×(−12)⑤−(−13)⑥÷33.【分析】初步探究(1)根据新定义计算;(2)根据新定义可判断C错误;深入思考(1)把有理数的除方运算转化为乘方运算进行计算;(2)利用新定义求解;(3)先把除方运算转化为乘方运算进行计算,然后进行乘除运算.【解答】解:初步探究(1)2③=12,(−12)⑤=﹣8;(2)C 选项错误;深入思考(1)(﹣3)④=132;5⑥=154;(−12)⑩=28. (2)a ⓝ=1a n−2;(3)原式=122÷32×(﹣23)﹣34÷33=﹣131.故答案为12,﹣8,C 与132与154和28。
初中数学人教版七年级上册第一单元《有理数》综合测试卷一、选择题1.下列各对数中,互为相反数的是()A.+(﹣2)与﹣(+2)B.﹣(﹣3)与|﹣3|C.﹣32与(﹣3)2D.﹣23与(﹣2)32.−12的相反数是()A.12B.−12C.-2D.2 3.(2024七上·渠县期末)−2024的绝对值是()A.2024B.−2024C.12024D.−1 20244.已知a,b为有理数,且a>0,b<0,a<|b|,则a,b,−a,−b的大小顺序是()A.b<−a<a<−b B.−a<a<−b<bC.−a<b<a<−b D.−b<a<−a<b5.(2015七上·大石桥竞赛)把数轴上表示数2的点移动3个单位后,表示的数为()A.5B.1C.5或-1D.5或16.(2023七上·肇庆月考)下列各组数中互为相反数的是()A.−12与−2B.−1与−(+1)C.−(−3)与−3D.2与|−2|7.(2024·赤峰)如图,数轴上点A,M,B 分别表示数a,a+b,b,若AM>BM,则下列运算结果一定是正数的是()A.a+b B.a−b C.a b D.|a|−b8.(2022七上·京山期中)下列结论中正确的是()A .0既是正数,又是负数B .0是最小的正数C .0是最大的负数D .0既不是正数,也不是负数9.(2022七上·鸡西期中)如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数10.(2023七上·应城期中)已知有理数a ,b ,c 满足abc <0,则a |a|+|b|b +c |c|−|abc|abc 的值是( )A .±1B .0或2C .±2D .±1或±2二、填空题11.(2017七上·黄冈期中)-2的绝对值是 12.(2020七上·兴庆期末)12的相反数是 .13.(2020七上·龙泉驿期中)在数轴上,与原点距离为6的点所表示的数是 . 14.已知|a −b |=b −a ,且|a |=6,|b |=3,则a +b 的值为 .15.对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么-3克表示 .三、计算题16.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为3,求m +cd +a+bm.四、综合题17.有5筐蔬菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,+6,−4,+2,−1.(1)总计超过或不足多少千克?(2)5筐蔬菜的总重量是多少千克?18.某共享单车厂一周计划生产700辆自行车,平均每天生产100辆,由于各种原因,实际每天生产量与计划量相比有出入,表格是某周的生产情况.(超产为正、减产为负)(1)根据记录,求产量最多的一天比产量最少的一天多生产几辆自行车?(2)该厂实行每周计件工资制,每生产一辆车可得50元加工费,若超额完成任务,则超过部分每辆另奖10元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?19.(2018七上·顺德月考)邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km到达B村,然后向西骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?20.(2021七上·高安期中)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c 0,b﹣a 0,c﹣a 0.(2)化简:|b﹣c|+|b﹣a|﹣|c﹣a|.21.如图1,在数轴上点A表示数a,点B表示数b,O为原点,且a,b满足|a+5|+(b+2a)2= 0.(1)a=_____,b=______;(2)点P是数轴上一个动点,其表示的数是x,当AP=3BP时,求x;(3)如图2,E,F为线段OB上两点,且满足BF=2EF,OE=4,动点M从点A,动点N从点F同时出发,分别以2个单位/秒,1个单位/秒的速度沿直线AB向右运动,是否存在某个时刻,点M和点N相距一个单位?若存在,求此时点M表示的数;若不存在,请说明理由.。
人教版七年级上册数学单元测试试卷第一章《有理数》第Ⅰ卷考试时间:120分钟总分:100分得分:一、选择题(共10题,每小题2分,共20分)1.(2分)用科学记数法表示2500000000是()A.2.5×109B.0.25×10C.2.5×1010D.0.25×10102.(2分)-2022的倒数是()A.-2022B.2022C.12022-D.120223.(2分)下列各组数中,互为相反数的是()A.43和34-B.13和0.333-C.a 和a -D.14和44.(2分)温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃5.(2分)下列说法错误的是()A.开启计算器使之工作的按键是ONB.输入 5.8-的按键顺序是C.输入0.58的按键顺序是58⋅D.按键6987-=能计算出6987--的结果6.(2分)小时候我们常常唱的一首歌“小燕子穿花衣,年年春天来这里”,研究表明小燕子从北方飞往南方过冬,迁徙路线长达25000千米左右,将数据25000用科学记数法表示为()A.32510⨯B.42.510⨯C.52.510⨯D.50.2510⨯7.(2分)若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是()A.b a b a -<<<-B.b b a a <-<<-C.a b b a<-<<-D.a b b a<<-<-8.(2分)a、b 两数在数轴上的位置如图所示,下列结论正确的是()A.a>b B.|a|=﹣a C.a<﹣b D.|a|>|b|9.(2分)小明家的汽车在阳光下暴晒后车内温度达到了60℃,打开车门后经过8min 降低到室外同温32℃,再启动空调关车门,若每分钟降低4℃,降到设定的20℃共用时间是()A.13minB.12minC.11minD.10min10.(2分)已知4,5x y ==,且x y >,则2x y -的值为()A.13-B.13+C.3-或13+D.3+或13-二、填空题(共10题;每题2分,共20分)11.(2分)45-的倒数是.12.(2分)比较大小:15-16-(填“>”“<”或“=”)13.(2分)如果向东走35米记作+35米,那么向西走50米记作米。
人教版七年级上册数学 第一章 有理数 单元检测试卷一、单选题(共10小题,每题3分,共30分)1.−15的相反数是( ) A .−15B .15C .−5D .52. 2021年5月国家统计局公布了第七次人口普查结果,我国人口数约为14.12亿,其中14.12亿用科学记数法表示为( )A .14.12×108B .0.1412×1010C .1.412×109D .1.412×1083.在 −(−5) , −|−3| ,4, −4 这4个数中,最小的有理数是( ) A .−(−5)B .−|−3|C .4D .−44.如果给出两个说法:①用四舍五入法对3.355取近似值,精确到百分位得3.35;②近似数5.2万精确到千位;那么( )A .①②都正确B .①正确,②不正确C .①不正确,②正确D .①②都不正确5.已知|x |=3,|y |=2,且xy >0,则x ﹣y 的值等于( ) A .5或﹣5B .1或﹣1C .5或1D .﹣5或﹣16.数轴上点A 表示的数是-2,那么与点A 相距5个单位长度的点表示的数是 ( )A .-7B .3C .-7或3D .以上都不对7.下列说法中正确的个数是( )①|a| 一定是正数;②−a 一定是负数;③−(−a) 一定是正数;④a 3 一定是分数.A .0个B .1个C .2个D .3个8.已知 a,b 表示两个非零的实数,则 |a|a +|b|b的值不可能是( )A.2B.–2C.1D.09.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.小明买了一件商品,比标价少付了40元,那么他购买这件商品花了()A.80元B.120元C.160元D.200元10.若a=-2020,则式子|a2+2019a+1|+|a2+2021a−1|的值是()A.4036B.4038C.4040D.4042二、填空题(共5小题,每题3分,共15分)11.如图,数轴上点A,B所表示的两个数的和的绝对值是.12.观察图形,并用你发现的规律直接写出图4中的y的值是.13.用计算器计算并填空:112=,1112=,11112,你发现计算结果有什么规律?根据你发现的规律,不用计算器计算:1111112=14.若a,b都是不为零的有理数,那么|a|a+ |b|b的值是.15.若整数a、b、c、d满足abcd=21,且a>b>c>d,则|c﹣a|+|b﹣d|=.三、计算题(24分)16(8分).计算。
1第一章有理数单元练习时间:60分钟 满分:100分 姓名:_______一、选择题(本大题共10小题,每小题3分,满分30分)1.中国古代著作《九章算术》在世界数学史上首次正式引入负数,用正、负数来表示具有相反意义的量.若收入300元记作+300元,则支出180元应记作( ) A. +180元 B.+300元 C.-180元 D.-480元2.有理数2024的相反数是( )A.2024B.-2024元C.20241-元 D.20241元 3.下列选项记录了我国四个城市某年一月份的平均气温,其中平均气温最低的是( ) A. 北京-4.6℃ B.上海5.6℃ C.天津-3.2℃ D.重庆8.1℃ 4. 在数轴上,表示-2的点与表示7的点之间的距离是( ) A.2 B.5 C.7 D.95. 飞机上有一种零件的尺寸标准是±2005(单位:mm ),则下列零件尺寸不合格的是( ) A.196mm B.198mm C.204mm D.210mm6. 下列说法正确的是( )A. 所有的整数都是正数B.整数和分数统称有理数C.0是最小的有理数 D 零既可以是正整数,也可以是负整数.7. 为了检测篮球是否合格,将其质量超过标准的克数记为正数,不足的克数记为负数,在下面得到的四个检测结果中,质量最接近标准的一个是( )A.-0.6B.0.7C.-2.5D.-3.5 8. 如果a a -=,则( )A.a 是正数B.a 是负数C.a 是零D.a 是负数或零 9.如图,将一刻度尺放在数轴上(数轴的单位长度是1),刻度尺上“0”和“3”分别对应数轴上的3和0,那么刻度尺上“5.6”对应数轴上的数为( )A.-1.4B.-1.6C.-2.6D.1.610.如图,数轴上点A ,B 表示的数分别为a ,b ,且b a <,则b b a a --,,,的大小关系为( ) A.b a a b <<-<- B.b a b a <<-<- C.b a a b <-<<- D.a a b b <-<<- 二、填空题(本大题共6小题,每小题3分,满分18分) 11.比较大小5-____3-.12.化简:7--=____,)(7--=____. 13.在数轴上,点A 所表示的数为-1,那么在数轴上与点A 相距2个单位长度的点表示的数是________. 14.23-与它的相反数之间有____个整数. 15.绝对值大于1.5且小于3的整数是_______.16.如图,圆的周长为4个单位长度.在该圆周上4等分点处分别标上数字0、1、2、3,让圆周上表示数字0的点与数轴上表示的点重合,将该圆沿着数轴的负方向滚动,则数轴上表示数的点对应圆周上的数字是______.三、解答题(共6大题,共54分)17.(6分)把下列各有理数填在相应的大括号内:313.0221,4130741.0,35,,,,,,----- 整数集合{ }; 负分数集合{ }; 正有理数集合{ }; 18. (6分)比较下列各组数的大小。
人教版七年级数学上册第一章有理数单元测试卷(2024年秋)七年级数学上(R版)时间:90分钟满分:120分一、选择题(每题3分,共30分)1.[新考向数学文化2024长春一模]《九章算术》是中国古代第一部数学专著,成书于公元一世纪左右.书中注有“今两算得失相反,要令正负以名之”,意思是:在计算过程中遇到具有相反意义的量,要用正数与负数来区分它们.如果盈利50元记作“+50元”,那么亏损30元记作()A.+30元B.-50元C.-30元D.+50元2.-12的相反数是()A.-2B.-12C.2D.123.在-(-10),0,-|-0.3|,-15中,负数的个数为()A.2B.3C.4D.14.[新趋势跨学科2024威海环翠区期末]下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃-183-252.78-196-268.9则沸点最低的液体是()A.液态氧B.液态氢C.液态氮D.液态氦5.在数轴上表示-2的点与表示3的点之间的距离是()A.5B.-5C.1D.-16.为响应“双减”政策,开展丰富多彩的课余活动,某中学购买了一批足球,如图,张老师检测了4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是()A B C D7.下列说法中,错误的是()A.数轴上的每一个点都表示一个有理数B.任意一个有理数都可以用数轴上的点表示C.在数轴上,确定单位长度时可根据需要恰当选取D.在数轴上,与原点的距离是36.8的点有两个8.如图,数轴上的点M表示有理数2,则表示有理数6的点是()A.A B.B C.C D.D9.下列说法中,错误的有()①-247是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统称为有理数;⑤0是最小的有理数;⑥3.14不是有理数.A.1个B.2个C.3个D.4个10.[2024徐州二模]有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是()A.a>b B.-a>-bC.|a|>|b|D.|-a|>|-b|二、填空题(每题4分,共24分)11.[真实情境题航空航天]2024年4月25日,神舟十八号载人飞船发射取得成功,神舟十八号载人飞船与长征二号F遥十八运载火箭组合体,总重量为400多吨,总高度近60米,数据60的相反数是,绝对值是.12.小明在写作业时不慎将墨水滴在数轴上(如图),根据图中的数据,判断墨迹盖住的整数有个.13.[2024杭州西湖区月考]比较大小(填“>”“<”或“=”):(1)-715(2)----14.当x=时,|x-6|+3的值最小.15.[新考法分类讨论法]如果点M,N在数轴上表示的数分别是a,b,且|a|=2,|b|=3,那么M,N两点之间的距离为.16.[新考法分类讨论法2024烟台栖霞市月考]点A为数轴上表示-2的点,当点A沿数轴以每秒3个单位长度的速度移动4秒到达点B时,点B所表示的有理数为.三、解答题(共66分)17.(6分)把下列各数填在相应的大括号内:15,-12,0.81,-3,14,-3.1,-4,171,0,3.14.正数集合:{…};负数集合:{…};正整数集合:{…};负整数集合:{…};负分数集合:{…};有理数集合:{…}.18.(6分)化简下列各数:(1)-(-68);(2)-(+0.75);(3)--19.(8分)在数轴上表示下列各数,并用“<”将它们连接起来.-4,|-2.5|,-|3|,-112,-(-1),0.20.(10分)如图,已知数轴的单位长度为1,DE的长度为1个单位长度.(1)如果点A,B表示的数互为相反数,求点C表示的数.(2)如果点B,D表示的数的绝对值相等,求点A表示的数.(3)若点A为原点,在数轴上有一点F,当EF=3时,求点F表示的数.21.(10分)[2024杭州滨江区期末]某班抽查了10名同学的跑步成绩,以30秒为达标线,超出的部分记为正数,不足的部分记为负数,记录的结果如下(单位:秒):+8,-3,+12,-7,-10,-4,-8,+1,0,+10.(1)这10名同学的达标率是多少?(2)这10名同学的平均成绩是多少?22.(12分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B,C,D处的其他甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B 记为A→B(+1,+4),从B到A记为B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,请回答下列问题:(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出点P的位置.23.(14分)已知在纸面上有一数轴,如图,根据给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)在数轴上标出与点A的距离为2的点(用不同于A,B的其他字母表示).(3)折叠纸面.若在数轴上表示-1的点与表示5的点重合,回答以下问题:①数轴上表示10的点与表示的点重合.②若数轴上M,N两点之间的距离为2024(点M在点N的左侧),且M,N两点经折叠后重合,求M,N两点表示的数分别是多少.参考答案一、1.C2.D3.A4.D5.A6.A7.A8.D9.D10.B二、11.-60;6012.1013.(1)<(2)<14.615.1或516.-14或10三、17.解:正数集合:{15,0.81,14,171,3.14,…};负数集合:{-12,-3,-3.1,-4,…};正整数集合:{15,171,…};负整数集合:{-3,-4,…};负分数集合:{-12,-3.1,…};有理数集合:{15,-12,0.81,-3,14,-3.1,-4,171,0,3.14,…}.18.解:(1)-(-68)=68.(2)-(+0.75)=-0.75.(3)---=-23.19.解:在数轴上表示各数如图所示:-4<-|3|<-112<0<-(-1)<|-2.5|.20.解:(1)由点A,B表示的数互为相反数,可确定数轴原点O如下图:所以点C表示的数为5.(2)由点B,D表示的数的绝对值相等,可知点B,D表示的数互为相反数,从而可确定数轴原点O如下图:所以点A表示的数为12.(3)由题意可知点F在点E的左边或右边.当点F在点E的左边时,如图:所以点F表示的数为-5;当点F在点E的右边时,如图:所以点F表示的数为1.故当EF=3时,点F表示的数为-5或1.21.解:(1)因为30秒为达标线,超出的部分记为正数,不足的部分记为负数,10名同学中成绩为非正数的个数为6,所以这10名同学的达标率=610×100%=60%.(2)这10名同学的平均成绩=[(30+8)+(30-3)+(30+12)+(30-7)+(30-10)+(30-4)+(30-8)+(30+1)+30+(30+10)]÷10=299÷10=29.9(秒).22.解:(1)+3;+4;+2;0;+1;-2(2)1+4+2+1+2=10.所以该甲虫走过的最短路程为10.(3)点P如图所示.23.解:(1)A点表示的数为1,B点表示的数为-3.(2)在数轴上与点A的距离为2的点分别表示3和-1,即数轴上的点C和点D,如图.(3)①-6②易知折痕与数轴的交点表示的数为2.因为M,N两点之间的距离为2024,且M,N两点经折叠后重合,所以M,N两点与折痕与数轴的交点之间的距离为12×2024=1012.又因为点M在点N的左侧,所以点M表示的数为-1010,点N表示的数为1014.。
第一章检测卷
时间:120分钟 满分:120分
一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)
1.如果将“收入100元”记作“+100元”,那么“支出50元”应记作( )
A .+50元
B .-50元
C .+150元
D .-150元
2.2017年春节黄金周宜春市共接待游客2234000人次,将2234000用科学记数法表示为( )
A .22.34×105
B .2.234×105
C .2.234×106
D .0.2234×107
3.已知□×⎝ ⎛⎭⎪⎫-12017=-1,则□等于( ) A.12017
B .2016
C .2017
D .2018 4.下列各式计算正确的是( )
A .-3+23=-323
B .-10÷52
=25
C .(-2)2
=-4 D.⎝ ⎛⎭⎪⎫-123=-18 5.如图,数轴上P ,Q ,S ,T 四点表示的整数分别是p ,q ,s ,t ,且有p +q +s +t =-2(数轴上每1小格为1个单位长度),则原点应是点( )
A .P
B .Q
C .S
D .T
6.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|,……依此类推,则a 2017的值为
( )
A .-1009
B .-1008
C .-2017
D .-2016
二、填空题(本大题共6小题,每小题3分,共18分)
7.-3的相反数是________,-2018的倒数是________.
8.近似数0.598精确到________位.
9.一天早晨的气温为-3℃,中午上升了5℃,半夜又下降了7℃,则半夜的气温为________.
10.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是________和________.
11.如图是一个简单的数值运算程序.当输入x 的值为-1时,则输出的数值为________.
输入x ―→×(-3)―→-2―→输出
12.已知四个互不相等的整数a ,b ,c ,d 满足abcd =77,则a +b +c +d =________.
三、(本大题共5小题,每小题6分,共30分)
13.把下列各数分别填在表示它所属的括号里:
0,-35,2017,-3.1,-2,34
. (1)正有理数集合:{ …};
(2)整数集合:{ …};
(3)负分数集合:{ …}.
14.将下列各数在如图所示的数轴上表示出来,并用“>”把这些数连接起来:
-112
,0,2,-|-3|,-(-3.5).
15.计算:
(1)-(-4)+|-5|-7;
(2)1+(-2)+|-2-3|-5.
16.计算:
(1)(-24)×⎝ ⎛⎭⎪⎫12
-123-38;
(2)-14
-(1-0×4)÷13×[(-2)2-6].
17.列式并计算:
(1)什么数与-512的和等于-78
?
(2)-1减去-23与25
的和,所得的差是多少?
四、(本大题共3小题,每小题8分,共24分)
18.已知|a +3|+(b -1)2=0.
(1)求a ,b 的值;
(2)求b
2018-⎝ ⎛⎭
⎪⎫a 32017的值.
19.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.
(1)以小明家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;
(2)求小彬家与学校之间的距离;
(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?
20.某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,-3,+2,+1,-2,-1,0,-2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?
五、(本大题共2小题,每小题9分,共18分)
21.如果规定符号“*”的意义是a*b=
ab
a+b
,如1*2=
1×2
1+2
,求
2*(-3)*4的值.
22.某班6名同学的身高(单位:cm)情况如下表:
(1)完成表中空白的部分;
(2)他们的最高身高与最矮身高相差多少?
(3)他们6人的平均身高是多少?
六、(本大题共12分)
23.下面是按规律排列的一列式子:
第1个式子:1-⎝
⎛⎭⎪⎫1+-12; 第2个式子:2-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34;
第3个式子:3-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦
⎥⎤1+(-1)34⎣⎢⎡⎦⎥⎤1+(-1)45⎣⎢⎡⎦
⎥⎤1+(-1)56. (1)分别计算这三个式子的结果(直接写答案);
(2)写出第2017个式子的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.
参考答案与解析
1.B 2.C 3.C 4.D 5.C 6.B
7.3 -12018
8.千分 9.-5℃ 10.4 -4 11.1 12.±4
13.解:(1)2017,34(2分) (2)0,2017,-2(4分) (3)-35
,-3.1(6分)
14.解:数轴表示如图所示,(3分)
由数轴可知-(-3.5)>2>0>-112
>-|-3|.(6分) 15.解:(1)原式=4+5-7=9-7=2.(3分)
(2)原式=1-2+5-5=-1.(6分)
16.解:(1)原式=-12+40+9=37.(3分)
(2)原式=-1-1×3×(-2)=-1+6=5.(6分)
17.解:(1)-78-⎝ ⎛⎭⎪⎫-512=-1124
.(3分) (2)-1-⎝ ⎛⎭
⎪⎫-23+25=-1+415=-1115.(6分) 18.解:(1)因为|a +3|+(b -1)2=0,且|a +3|≥0,(b -
1)2≥0.∴a+3=0,b -1=0,∴a=-3,b =1.(4分)
(2)由(1)知a =-3,b =1,故b 2018-⎝ ⎛⎭⎪⎫a 32017=12018-⎝ ⎛⎭
⎪⎫-332017=
1-(-1)=2.(8分)
19.解:(1)如图所示.(2分)
(2)2-(-1)=3(km).
答:小彬家与学校之间的距离是3km.(5分)
(3)2+1.5+|-4.5|+1=9(km),9km =9000m ,9000÷250=36(min).(7分)
答:小明跑步一共用了36min.(8分)
20.解:由题意得55×8+2+(-3)+2+1+(-2)+(-1)+0+(-2)-400=37(元),(5分)所以他卖完这8套儿童服装后是盈利,(7分)盈利37元.(8分)
21.解:根据题意得2*(-3)*4=2×(-3)2+(-3)*4=6*4=6×46+4
=2.4.(9分)
22.解:(1)168 0 163 169 +5(3分)
(2)根据表格知道最高为171cm ,最矮为163cm ,所以他们的最高与最矮身高相差171-163=8(cm).(6分)
(3)166+-1+2+0-3+3+56
=166+1=167(cm).所以他们6人的平均身高是167cm.(9分)
23.解:(1)第1个式子:12;第2个式子:32;第3个式子:52
.(6分)
(2)第2017个式子:2017-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦
⎥⎤1+(-1)34 …⎣⎢⎡⎦⎥⎤1+(-1)40324033⎣⎢⎡⎦⎥⎤1+(-1)40334034=2017-12×43×34×…×40344033×40334034=2017-12=201612
.(12分)。