2014年江苏高考数学试卷第19题的探究-最新教育资料
- 格式:doc
- 大小:15.00 KB
- 文档页数:1
南通数学网 初高中课件、教案、习题应有尽有 2014年普通高等学校招生全国统一考试(江苏卷)解析版数学Ⅰ江苏苏州 何睦 江苏扬州 孟伟业 江苏南京 王刚 整理提供一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A I ▲ . 【答案】{1,3}-【解析】由题意得{1,3}A B =-I 【考点】交集、并集、补集 (B).2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ . 【答案】21【解析】由题意2(52i)=25+20i 42120i z =+-=+,其实部为21. 【考点】复数的概念 (B).3. 右图是一个算法流程图,则输出的n 的值是 ▲ . 【答案】5【解析】本题实质上就是求不等式220n>的最小整数解,220n>整数解为5n ≥,因此输出的5n =. 【考点】流程图 (A).4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是 ▲ . 【答案】13【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概念为2163P ==. 【考点】古典概型 (B).5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 ▲ . 【答案】6π 【解析】由题意cos sin(2)33ππϕ=⨯+,即21sin()32πϕ+=, 所以2236k ππϕπ+=+或252()36k k ππϕπ+=+∈Z ,即22k πϕπ=-或2()6k k πϕπ=+∈Z . 又0ϕπ≤<,所以6πϕ=.【考点】函数sin()y A x ωϕ=+的图象与性质 (B),三角函数的概念(B). (三角函数图象的交点与已开始 0←n 1+←n n 202>n输出n 结束 (第3题)NY知三角函数值求角)6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm. 【答案】24【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.015+0.025)⨯10⨯60=24. 【考点】总体分布的估计 (A). (频率分布直方图)7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ .【答案】4【解析】设公比为q ,因为21a =,则由8642a a a =+得6422q q q =+,4220q q --=, 解得22q =或21q =-(舍),所以4624a a q ==. 【考点】等比数列 (C). (等比数列的通项公式)8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V 的值是 ▲ . 【答案】32【解析】设甲、乙两个圆柱的底面和高分别为1r 、1h ,2r 、2h ,则112222r h r h ππ=,1221h r h r =, 又21122294S r S r ππ==,所以1232r r =,则222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==. 【考点】柱、锥、台、球的表面积与体积 (A).9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长 为 ▲ . 255【解析】圆4)1()2(22=++-y x 的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为2222(1)3512d +⨯--==+,所求弦长为2292552245l r d =-=-【考点】直线与圆、圆与圆的位置关系 (B). (直线与圆相交的弦长问题)10. 已知函数2()1f x x mx =+-,若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 ▲ .组距频率100 80 90 110 0.0100.015 0.020 0.025 0.030 底部周长/cm(第6题)【答案】2,0⎛⎫- ⎪⎪⎝⎭【解析】画出二次函数的分析简图:由图象分析可得结论:开口向上的二次函数()f x在[],m n上恒小于0的充要条件为()0,()0.f mf n<⎧⎨<⎩开口向下的二次函数()f x在[],m n上恒大于0的充要条件为()0,()0.f mf n>⎧⎨>⎩22()0,2(1)0.230.2mf mmf mm⎧<<⎪⎛⎫<⎧⎪⇒⇒∈ ⎪⎨⎨ ⎪+<⎩⎝⎭⎪-<<⎪⎩. (江苏苏州何睦)【考点】一元二次不等式(C). (一元二次方程根的分布、二次函数的性质)【变式】变式1已知函数,1)(2-+=mxxxf若对于任意()1,+∈mmx,都有0)(<xf成立,则实数m的取值范围是__________ . ⎥⎦⎤⎢⎣⎡-0,22(江苏苏州何睦)变式 2 已知函数,1)(2-+=mxxxf若对于任意[)1,+∈mmx,都有0)(<xf成立,则实数m的取值范围是__________ .⎥⎦⎤⎝⎛-0,22(江苏苏州何睦)变式3 已知函数,1)(2-+=mxxxf若存在]1,[+∈mmx,使得0)(<xf成立,则实数m的取值范围是__________ . ⎪⎪⎭⎫⎝⎛-22,23(江苏苏州何睦)变式 4 已知函数12)(2++=xxxf,若存在实数t,当],1[mx∈时,xtxf≤+)(恒成立,则实数m的最大值是__________ . 4 (江苏苏州陈海锋)变式5 若关于x的不等式012≥-++mmxx恒成立,则实数=m________. 2(江苏苏州陈海锋)变式6 设)(xf是定义在R上的奇函数,且当0≥x时,2)(xxf=,若对任意的]2,[+∈t tx,不等式)(2)(xftxf≥+恒成立,则实数t的取值范围是________.[)+∞,2(江苏苏州陈海锋)11. 在平面直角坐标系xOy中,若曲线xbaxy+=2(a,b为常数)过点)5,2(-P,且该曲线在点P处的切线与直线0327=++y x 平行,则b a +的值是 ▲ . 【答案】3-【解析】曲线2b y ax x =+过点(2,5)P -,则452ba +=-①,又22b y ax x '=-,所以7442b a -=-②,由①、②解得1,2.a b =-⎧⎨=-⎩所以3a b +=-.【考点】导数的几何意义 (B).12. 如图,在平行四边形ABCD 中,已知8AB =,5AD =,3CP PD =u u u r u u u r ,2AP BP ⋅=u u ur u u u r ,则AB AD ⋅u u u r u u u r 的值是 ▲ . 【答案】22【解析】解法一:(基底法)考虑将条件中涉及的,AP BP u u u r u u u r向量用基底,AB AD u u u r u u u r表示,而后实施计算.14AP AD DP AD AB =+=+u u u r u u u r u u u r u u u r u u u r ,34BP BC CP AD AB =+=-u u u r u u u r u u u r u u u r u u u r .则2213132()()44216AP BP AD AB AD AB AD AD AB AB ⋅==+⋅-=-⋅-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .因为8,5AB AD ==,则3122564162AB AD =-⨯-⋅u u ur u u u r ,故22AB AD ⋅=u u u r u u u r . (江苏苏州 何睦)解法二:(坐标法)不妨以A 点为坐标原点,AB 所在直线作为x 轴建立平面直角坐标系,可设(0,0),(8,0),(.),(2,),(8,)A B D a t P a t C a t ++,则(2,)AP a t =+u u u r ,(6,)BP a t =-u u u r. 由2AP BP ⋅=u u u r u u u r,得22414a t a +-=,由5AD =,得2225a t +=,则411a =,所求822AB AD a ⋅==u u u r u u u r. (江苏苏州 何睦)【考点】平面向量的加法、减法及数乘运算 (B),平面向量的数量积 (C).13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,21()22f x x x =-+. 若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ .【答案】10,2⎛⎫ ⎪⎝⎭【解析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可知1(0)2f =,当1x =时,1()2f x =极大,7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =的图象与直线y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =与函数21()2,[0,3)2f x x x x =-+∈的图象有4个交点,则10,2a ⎛⎫∈ ⎪⎝⎭. A B DP(第12题)(江苏扬州 孟伟业)【考点】函数与方程 (A),函数的基本性质 (B). (函数的零点,周期函数的性质,函数图象的交点问题)14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ . 62-【解析】由正弦定理得22a b c =,由余弦定理结合基本不等式有: 2222222222231231(2242242cos 2222a b a b a b a b a b cC abab ab ab ++-+++-====2231226242a b -≥=,当且仅当6a =时等号成立. (江苏苏州 何睦) 【考点】正弦定理、余弦定理及其应用 (B),基本不等式 (C). 变式1 △ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为________.21(江苏无锡 张芙华) 变式2 △ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A CB B AC C B A cos sin sin cos sin sin cos sin sin +=,若2ab c的最大值为_______. 23(江苏无锡 张芙华) 变式3 在△ABC 中,设AD 为BC 边上的高,且AD = BC ,b ,c 分别表示角B ,C 所对的边长,则b cc b+的取值范围是________. []5,2 (江苏苏州 陈海锋)变式4 已知三角形ABC ∆的三边长c b a ,,成等差数列,且84222=++c b a ,则实数b 的取值范围是_________. (]72,62(江苏南通 丁勇)拓展 在△ABC 中,已知(),0,1m n ∈,且sin sin sin m A n B C +=,求cos C 的最小值. 解:由正弦定理得ma nb c +=,由余弦定理结合基本不等式有:222222222(1)(1)21cos [(1)(1)]222a b c m a n b mnab a bC m n mnab ab b a+--+--===-+--22(1)(1)m n mn --.(当且仅当2222(1)(1)m a n b -=-时等号成立).(江苏常州 封中华)二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15. (本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.【解析】本小题主要考查三角函数的基本关系式、两角和与差及二倍角的公式,考查运算求解能力.满分14分.(1) 因为α∈π,π2⎛⎫⎪⎝⎭,sin α5,所以cos α=2251sin α-.故sin π4α⎛⎫+ ⎪⎝⎭=sin π4cos α+cos π4sin α2252510⎛+= ⎝⎭. (2) 由(1)知sin2α=2sin αcos α=525425⎛=- ⎝⎭, cos2α=1-2sin 2α=1-25325⨯=⎝⎭,所以cos 5π5π5π2cos cos 2sin sin 2666ααα⎛⎫-=+ ⎪⎝⎭=3314433525⎛+⎛⎫⨯+⨯-= ⎪ ⎝⎭⎝⎭【考点】同角三角函数的基本关系式 (B),两角和(差)的正弦、余弦及正切 (C),二倍角的正弦、余弦及正切 (B),运算求解能力.16. (本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,6PA =,8BC =,5DF =.求证:(1) 直线//PA 平面DEF ;(2) 平面⊥BDE 平面ABC .【解析】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力. 满分14分.(1) 因为D ,E 分别为棱PC ,AC 的中点, 所以DE ∥PA .又因为PA ⊄ 平面DEF ,DE ⊂平面DEF , 所以直线PA ∥平面DEF .(2) 因为D ,E ,F 分别为棱PC ,AC ,AB 的中点, PA =6,BC =8,所以DE ∥PA ,DE =12PA =3,EF =12BC =4. 又因为DF =5,故DF 2=DE 2+EF 2,(第16题)PDCEFBA所以∠DEF =90°,即DE 丄EF . 又PA ⊥AC ,DE ∥PA ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC , 所以DE ⊥平面ABC .又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC .【考点】直线与平面平行、垂直的判定及性质 (B),两平面平行、垂直的判定及性质 (B),空间想象能力和推理论证能力.17. (本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆22221(0)x y a b a b+=>>的左、右焦点,顶点B的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1) 若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2) 若1F C AB ⊥,求椭圆离心率e 的值.【解析】本小题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运算求解能力. 满分14分.设椭圆的焦距为2c ,则1(,0)F c -,2(,0)F c .(1) 因为()0,B b ,所以222BF b c a =+=,又22BF =故2a =因为点41,33C ⎛⎫⎪⎝⎭在椭圆上,所以22161991a b +=,解得21b =.故所求椭圆的方程为2212x y +=.(2) 解法一(官方解答):(垂直关系的最后表征)因为()0,B b ,2(,0)F c 在直线AB 上, 所以直线AB 的方程为1x yc b+=. 解方程组22221,1,x y c b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ 得()2122221222,a c x a c b c a y a c ⎧=⎪+⎪⎨-⎪=⎪+⎩, 220,.x y b =⎧⎨=⎩ 所以点A 的坐标为22222222(),a c b c a a c a c ⎛⎫- ⎪++⎝⎭. 又AC 垂直于x 轴,由椭圆的对称性,可得点C 的坐标为22222222(),a c b a c a c a c ⎛⎫- ⎪++⎝⎭. 因为直线1F C 的斜率为()()()22222222322023b a c b a c a c a c a c c c a c ---+=+--+,直线AB 的斜率为b c-,且1F C AB ⊥, 所以()222313b a c b a c c c -⎛⎫⋅-=- ⎪+⎝⎭,又222b a c =-,整理得225a c =. F 1 F 2Oxy BCA故215e =,因此5e =.解法二:(垂直关系的先行表征)设000012(,),(.),(,0),(,0)C x y A x y F c F c --, 由1,FC AB ⊥得001y b x c c ⋅=-+-,由A 在2BF 上,则001x y c b-+=; 联立20000,.cx by c bx cy bc ⎧-=-⎪⎨-=⎪⎩解得:20222022,2.ca x b c bc y b c ⎧=⎪⎪-⎨⎪=⎪-⎩又00(,)C x y 在椭圆上,代入椭圆方程整理得2242224(2)c a c a c +=-,即225a c =, 所以椭圆的离心率为5e =【考点】中心在坐标原点的椭圆的标准方程与几何性质 (B),直线的平行关系与垂直关系 (B),直线方程 (C),运算求解能力. (椭圆的标准方程、椭圆的离心率)18. (本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区. 规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆. 且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO . (1) 求新桥BC 的长;(2) 当OM 多长时,圆形保护区的面积最大?【解析】本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力. 满分16分.解法一(官方解法一):(1) 如图,以O 为坐标原点,OC 所在直线为x 轴, 建立平面直角坐标系xOy . 由条件知()()0,60,170,0A C , 直线BC 的斜率4tan 3BCk BCO =-∠=-.170 m60 m 东北OA BM C170 m60 m xyOA BM C(第18题)又因为AB BC ⊥,所以直线AB 的斜率34AB k =. 设点B 的坐标为(),a b ,则041703BC b k a -==--,60304AB b k a -==-解得80,120a b ==.所以22(17080)(0120)150BC -+-. 因此新桥BC 的长为150m.(2) 设保护区的边界圆M 的半径为r m ,OM d = m (060)d ≤≤. 由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-=.由于圆M 与直线BC 相切,故点()0,M d 到直线BC 的距离是r ,即2236806803543d dr --==+. 因为O 和A 到圆M 上任意一点的距离均不少于80 m , 所以80(60)80r d r d -≥⎧⎨--≥⎩,,即68038056803(60)80.5dd d d -⎧-≥⎪⎪⎨-⎪--≥⎪⎩,解得1035d ≤≤.故当10d =时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.解法二(官方解法二):(1) 如图,延长OA ,CB 于点F . 因为4tan 3FOC ∠=,所以4sin 5FOC ∠=,3cos 5FOC ∠=.因为OA = 60,OC = 170,所以680tan 3OF OC FOC =∠=,850cos 3OC CF FOC ==∠. 从而5003AF OF OA =-=.因为OA OC ⊥,所以4cos sin 5AFB FCO ∠=∠=.又因为AB BC ⊥,所以400cos 3BF AF AFB =∠=.从而150BC CF BF =-=.因此新桥BC 的长为150 m.(2) 设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD BC ⊥,且MD 是圆M 的半径,并设MD r = m ,OM d = m (060)d ≤≤. 因为OA OC ⊥,所以sin cos CFO FCO ∠=∠. 故由(1)知3sin 68053MD MD r CFO MF OF OM d ∠====--,所以68035dr -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,170 m60 m xyOA BM C(第18题)F D所以80(60)80,r d r d -≥⎧⎨--≥⎩, 即68038056803(60)80.5dd d d -⎧-≥⎪⎪⎨-⎪--≥⎪⎩,解得1035d ≤≤.故当10d =时,68035dr -=最大,即圆面积最大. 所以当OM =10 m 时,圆形保护区的面积最大.(1)的解法三:连结AC ,由题意知6tan 17ACO ∠=,则由两角差的正切公式可得: 2tan tan()3ACB BCO ACO ∠=∠-∠=,故cos 150BC ACB AC =∠⋅= m. 所以新桥BC 的长度为150m. (江苏苏州 何睦)(2)的解法三:设BC 与圆切于点N ,连接MN ,过点A 作//AH BC 交MN 于点H . 设OM a =,则60AM a =-,由古桥两端O 和A 到该圆上任意一点的距离均不少于80 m , 那么80(60)80r a r a -≥⎧⎨--≥⎩,解得1035a ≤≤. 由4tan tan 3AMH OCN ∠=∠=,可得3(60)5MH a =-,由(1)的解法二可得100AB =,所以33100(60)13655MN x x =+-=-+,故MN 即圆的半径的最大值为130,当且仅当10a =时取得半径的最大值.综上可知,当10OM = m 时,圆形保护区的面积最大. (江苏兴化 顾卫)【考点】直线方程 (C),直线与圆、圆与圆的位置关系 (B),解三角形 (B),建立数学模型及运用数学知识解决实际问题的能力.19. (本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1) 证明:)(x f 是R 上的偶函数;(2) 若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3) 已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立. 试比较1e -a 与1e -a 的大小,并证明你的结论.【解析】本小题主要考查初等函数的基本性质、导数的应用等基本知识,考查综合运用数学思想方法分析与解决问题的能力. 满分16分.(1) 因为对任意x ∈R ,都有()()()e e e e xx x x f x f x -----=+=+=,所以()f x 是R 上的偶函数.(2) 解法一(官方解答):由条件知()()e e 1e 10,x x x m --+-≤-+∞在上恒成立. 令e (0)x t x =>,则1t >,所以21111111t m t t t t -≤-=--+-++-对于任意1t >成立.因为()()1111211311t t t t -++≥-⋅=--,所以1113111t t -≥--++-, 当且仅当2t =,即ln2x =时等号成立.因此实数m 的取值范围是1,3⎛⎤-∞- ⎥⎝⎦.解法二:考虑不等式两边同乘x e ,则不等式转化为2[(e )1]1(1)e x x m m +≤+-在(0,)+∞上恒成立. 令e (1)x t t =>,则问题可简化为:2(1)10mt m t m +-+-≤在()1,t ∈+∞上恒成立. 构造函数2()(1)1g t mt m t m =+-+-,由图象易得当0m ≥时不符合题意. 当0m <时,11,2(1)0.m m g -⎧≤⎪⎨⎪<⎩或11,21()0.2m m m g m-⎧≥⎪⎪⎨-⎪<⎪⎩解得13m ≤-.综上可知,实数m 的取值范围为1(,]3-∞-. (江苏苏州 陈海锋)(3) 令函数()()31e 3e x x g x a x x =+--+,则()()21e 31e x x g x a x '=-+-.当1x ≥时,1e 0ex x ->,210x -≥,又0a >,故()0g x '>,所以()g x 是[)1,+∞上的单调增函数,因此()g x 在[)1,+∞上的最小值是()11e e 2g a -=+-.由于存在[)01,x ∈+∞,使0030e e (3)0x x a x x -+--+<成立,当且仅当最小值()10g <, 故1e e 20a -+-<,即1e e 2a -+>.令函数()(e 1)ln 1h x x x =---,则()e 11h x x-'=-,令()0h x '=,得e 1x =-. 当()0,e 1x ∈-时,()0h x '<,故()h x 是()0,e 1-上的单调减函数. 当()e 1,x ∈-+∞时,()0h x '>,故()h x 是()e 1,-+∞上的单调增函数. 所以()h x 在()0,+∞上的最小值时()e 1h -.注意到()()1e 0h h ==,所以当()()1,e 10,e 1x ∈-⊆-时,()()()e 110h h x h -≤<=. 当()()e 1,e e 1,x ∈-⊆-+∞时,()()e 0h x h <=,所以()0h x <对任意的()1,e x ∈成立. ①当()1e e ,e 1,e 2a -⎛⎫+∈⊆⎪⎝⎭时,()0h a <,即()1e 1ln a a -<-,从而1e 1e a a --<; ②当e a =时,1e 1e a a --=;③当()e,(e 1,)a ∈+∞⊆-+∞时,()()e 0h a h >=,即()1e 1ln a a ->-,故1e 1e a a -->.综上所述,当1e e ,e 2a -⎛⎫+∈⎪⎝⎭时,1e 1e a a --<,当e a =时,1e 1e a a --=,当()e,a ∈+∞时,1e 1e a a -->. (3)的民间思路:难题分解1:如何根据条件求出参数a 的取值范围? 分解路径1:直接求函数的最值.解:令30000()()(3)g x f x a x x =--+,只要在0[1,)x ∈+∞上,0min ()0g x <即可. 002200()1'()3(1)x x e g x a x e-=+-. 当01x =时,0'()0g x =.; 当01x >时,2010x ->,02()10x e ->,则0'()0g x >.故在区间[1,)+∞上,0'()0g x ≥,即函数0()g x 为[1,)+∞的增函数,则1min 0()(1)20g x g e e a -==+-<,解得12e e a -+>.(江苏苏州 何睦)分解路径2:参数分离可以吗?解:欲使条件满足,则)03x ⎡∈⎣,此时3030x x -+>,则0300()3f x a x x >-+, 构造函数00300()()3f x g x x x =-+,即求此函数在03x ⎡∈⎣上的最小值. 0003200003200()(3)()(33)()(3)o x x x x e e x x e e x g x x x ----+-+-+'=-+. 因为03x ⎡∈⎣,000032000,30,0,330x x x x e e x x e e x --->-+>+>-+<, 则000032000()(3)()(33)0x x x x e e x x e e x ----+-+-+>. 则0()0g x '>在03x ⎡∈⎣上恒成立,故10min()(1)2e e g x g -+==, 故12e e a -+>(江苏苏州 何睦)难题分解2:如何根据求得的参数a 的取值范围比较1e -a 与1e -a 的大小? 分解路径1:(取对数)1-a e 与1-e a 均为正数,同取自然底数的对数, 即比较(1)ln a e -与(1)ln e a -的大小,即比较ln 1e e -与ln 1aa -的大小. 构造函数ln ()(1)1xh x x x =>-,则211ln ()(1)x x h x x --'=-, 再设1()1ln m x x x =--,21()xm x x-'=,从而()m x 在(1,)+∞上单调递减, 此时()(1)0m x m <=,故()0h x '<在(1,)+∞上恒成立,则ln ()1xh x x =-在(1,)+∞上单调递减.当12e e a e -+<<时,11e a a e -->;当a e =时,11a e e a --=;当a e >时,11e a a e --<.(江苏苏州 何睦) 分解路径2:(变同底,构造函数比大小) 要比较1ea -与e 1a-的大小,由于e 1(1)ln e aae--=,那么1[(1)ln (1)]1e e a a a a e e-----=,故只要比较1a -与(1)ln e a -的大小.令()(1)ln (1)h x e x x =---,那么1'()1e h x x-=-. 当1x e >-时,'()0h x <;当01x e <<-时,'()0h x >.所以在区间(0,1)e -上,()h x 为增函数;在区间(1,)e -+∞上,()h x 为减函数.又()0h e =,(1)0h =,则(1)0h e ->,1()02e e h -+>;那么当12e e a e -+<<时,()0h a >,()1h a e >,11e a a e -->;a e >当a e ≥时,()0h a ≤,()01h a e <≤,11e a a e --≤.综上所述,当12e e a e -+<<时,11e a a e -->;当a e =时,11a e e a --=;当时,11e a a e --<. (江苏苏州 王耀)【考点】函数的基本性质 (B),利用导数研究函数的单调性与极值 (B),综合运用数学思想方法分析与解决问题的能力.20. (本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1) 若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”;(2) 设}{n a 是等差数列,其首项11=a ,公差0<d . 若}{n a 是“H 数列”,求d 的值; (3) 证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a += (∈n N *)成立.【解析】本小题主要考查数列的概念、等差数列等基础知识,考查探究能力及推理论证能力. 满分16分.(1) 证明:由已知,当1n ≥时,111222n n n n n n a S S +++=-=-=,于是对任意的正整数n ,总存在正整数1m n =+,使得2n n m S a ==,所以{}n a 是“H 数列”.(2) 解法一(官方解答):由已知,得2122S a d d =+=+,因为{}n a 是“H 数列”,所以存在正整 数m ,使得2m S a =,即()211d m d +=+-,于是()21m d -=.因为0d <,所以20m -<,故1m =,从而1d =-. 当1d =-时,2n a n =-,()32n n n S -=是小于2的整数,*n ∈Ν.于是对任意的正整数n ,总存在正整数()3222n n n m S -=-=-,使得2n m S m a =-=,所以{}n a 是“H 数列”,因此d 的值为1-.解法二:由{}n a 是首项为1的等差数列,则1(1)m a m d =+-,22n n n S n d -=+,又数列是“H 数列”,不妨取2n =时,存在满足条件的正整数m ,使得1(1)2m d d +-=+,即(2)1m d -=,(i )当3m ≥时,此时0d >,不符合题意,应舍去; (ii )当2m =时,不存在满足条件的d ;(iii )当1m =时,1d =-. 此时数列{}n a 的通项公式为2n a n =-, 下面我们一起来验证{}n a 为“H 数列”:2n a n =-;232n n n S -=,此时2432n n m -+=,容易验证m 为正整数. (江苏苏州 何睦) 解法三:由题意设1(1)m a m d =+-;又等差数列{}n a 的前n 项和22n n nS n d -=+;由题意知对任意正整数n ,总存在正整数m ,使得n m S a =,21(1)2n nm d n d -+-=+(*);那么m 随着n 的变化而变化,可设满足函数关系式()m f n =.又0d <,那么要使(*)对任意自然数n 恒成立,则21()2m f n n Bn C ==++;代入得:221(1)(1)222d n n d Bnd d Cd n d ++-+=-+,即有1210d Bd d Cd ⎧=-⎪⎨⎪-+=⎩; 又当1n =时,1m n ==,即112B C ++=,由此可以解得3,22B C =-=,1d =-. 此时2n a n =-. (江苏苏州 王耀)解法四:,n m n N S a ∀∈=,所以1(2)n m S a n '-=≥,由题意得1n n S S -≤,所以m m a a '≤,即m m '≥. 对于任意的n ,存在,m m '使得n m m a a a '=-, 即1(1)1(1)[1(1)]n d m d m d '+-=+-=+-, 化简可得11n m m d'=--+.(*) 当1d <-时,此时1d不是整数,此时(*)式不满足; 当10d -<<时,此时11d ->,而0m m '-≥,所以113n m m d'=--+≥恒成立,不对n N ∀∈恒成立,所以1d =-. (江苏兴化 顾卫)解法五:由}{n a 是首项为1的等差数列,且数列}{n a 是“H 数列”,则2221S a a =+>,又0d <,所以22111S a a =+==,则20a =,从而211d a a =-=-,此时2n a n =-,21322n S n n =-+,由n m S a =得,2342n n m -+=为正整数,从而数列}{n a 是“H 数列”.(江苏常州 封中华) (3) 解法一(官方解答):设等差数列{}n a 的公差为d , 则()()()*11111()n a a n d na n d a n =+-=+--∈Ν. 令()()11,1n n b na c n d a ==--,则*()n n n a b c n =+∈Ν. 下证{}n b 是“H 数列”.设{}n b 的前n 项和为n T ,则()()*112n n n T a n +=∈Ν, 于是对任意的正整数n ,总存在正整数()12n n m +=,使得n m T b =,所以{}n b 是“H 数列”. 同理可证{}n c 也是“H 数列”.所以,对任意的等差数列{}n a ,总存在两个“H 数列” {}n b 和{}n c ,使得*()n n n a b c n =+∈Ν成立.解法二:由(2)的解答过程可知:等差数列{}n b 中若111b d =-时, {}n b 是“H 数列”, 则1111(1)2n b b n d b b n =+-=-. 同理等差数列{}n c 中若121c d =时,{}n c 是“H 数列”,121(1)n c c n d c n =+-=. 任意的等差数列{}n a ,则可表示为n a An B =+. 令11b c A -+=,12b B =,此时12B b =,12B c A =+.所以对任意的等差数列{}n a ,总存在两个等差“H 数列”{}n b 和{}n c , 使得*()n n n a b c n N =+∈成立.【考点】数列的概念 (A)、等差数列 (C),探究能力及推理论证能力.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4—1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,C 、D 是圆O 上位于AB 异侧的两点. 证明:∠ OCB =∠ D .【解析】本小题主要考查圆的基本性质,考查推理论证能力. 本小题满分10分.证明:因为,B C 是圆O 上的两点,所以OB OC =. 故OCB B ∠=∠.又因为,C D 是圆O 上位于AB 异侧的两点, 故,B D ∠∠为同弧所对的两个圆心角, 所以B D ∠=∠. 因此OCB D ∠=∠.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵A 121x -⎡⎤=⎢⎥⎣⎦,B 1121⎡⎤=⎢⎥-⎣⎦,向量2y ⎡⎤=⎢⎥⎣⎦α,x ,y 为实数.若=A αB α,求x +y 的值. 【解析】本小题主要考查矩阵的乘法等基础知识,考查运算求解能力. 本小题满分10分.解:由已知,得1222212y x y xy --+⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦A α,1122214y y y +⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦B α. 因为=A αB α,所以22224y y xy y -++⎡⎤⎡⎤=⎢⎥⎢⎥+-⎣⎦⎣⎦,故222,24,y y xy y -+=+⎧⎨+=-⎩ 解得1,24.x y ⎧=-⎪⎨⎪=⎩ 所以72x y +=.(第21—A 题)C .[选修4—4:坐标系与参数方程](本小题满分10分) 在平面直角坐标系xOy 中,已知直线l 的参数方程21,2)(2;x t y ⎧=⎪⎪⎨⎪=⎪⎩为参数,直线l 与抛物线24y x=相交于A 、B 两点,求线段AB 的长.【解析】本小题主要考查直线的参数方程、抛物线的标准方程等基础知识,考查运算求解能力. 本小题满分10分.解法一(官方解答):将直线l 的参数方程21,22x y ⎧=⎪⎪⎨⎪=+⎪⎩代入抛物线方程24y x =, 得222(2)4(1)22+=-. 解得120,2t t ==-所以1282AB t t =-=解法二:将直线l 的参数方程化为直角坐标方程为3x y +=,联立方程组23,4x y y x +=⎧⎨=⎩解得12x y =⎧⎨=⎩,或97.x y =⎧⎨=-⎩,即交点,A B 分别为()1,2和()9,6-,所以22(19)(26)8 2.AB =-++= (江苏镇江 陈桂明) 解法三:将直线l 的参数方程化为直角坐标方程为3x y +=,联立方程组23,4,x y y x +=⎧⎨=⎩ 消去y 有21090x x -+=,则121210,9x x x x +==.所以2212121()411100368 2.AB k x x x x =++-+-=(江苏镇江 陈桂明)D .[选修4—4:不等式证明选讲](本小题满分10分) 已知x >0,y >0,证明:22(1)(1)9x y x y xy ++++≥.【解析】本小题主要考查算术-几何平均不等式,考查推理论证能力.本小题满分10分.证明:因为0,0x y >>,所以223130x y xy ++≥, 故222233(1)(1)339x y x y xy x y xy ++++≥.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22. (本小题满分10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1) 从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2) 从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x 1、x 2、x 3, 随机变量X 表示x 1、x 2、x 3中的最大数,求X 的概率分布和数学期望E (X ).【解析】本小题主要考查排列与组合、离散型随机变量的均值等基础知识,考查运算求解能力. 满分10分.解:(1) 取出的2个颜色相同的球可能是2个红球、2个黄球或2个绿球,所以222432296315.3618C C C P C ++++=== (2) 随机变量X 的所有可能的取值为2,3,4.{}4X =表示的随机事件是取到的4个球是4个红球,故44491(4)126C P X C ===;{}3X =表示的随机事件是取到的4个球是3个红球和1个其它颜色的球,或3个黄球和1个其它颜色的球,故313145364913(3)63C C C C P X C +===;于是13111(2)1(3)(4)1.6312614P X P X P X ==-=-==--= 所以随机变量X 的概率分布如下表:X 2 3 4 P111413631126因此随机变量X 的数学期望120()234.14631269E X =⨯+⨯+⨯=23. (本小题满分10分)已知函数sin ()(0)xf x x x=>,设()n f x 是1()n f x -的导数,n ∈*N . (1) 求12πππ2()()222f f +的值;(2) 证明:对于任意n ∈*N ,等式1πππ2()()444n n nf f -+=都成立.【解析】本题主要考查简单的复合函数的导数,考查探究能力及应用数学归纳法的推理论证能力.(1) 解:由已知102sin cos sin ()()()x x x f x f x x x x''===-, 故21223cos sin sin 2cos 2sin ()()()x x x x x f x f x x x x x x '⎛⎫''==-=--+ ⎪⎝⎭,所以12234216(),()22f f πππππ=-=-+,即122f π⎛⎫ ⎪⎝⎭+2122f ππ⎛⎫=- ⎪⎝⎭.(2) 证明一(官方解法):由已知得:0()sin xf x x =,等式两边分别对x 求导:00()()cos f x xf x x '+=, 即01()()cos sin()2f x xf x x x π+==+,类似可得:122()()sin sin()f x xf x x x π+=-=+,2333()()cos sin()2f x xf x x x π+=-=+, 344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n *∈Ν都成立. (ⅰ) 当1n =时,由上可知等式成立;(ⅱ) 假设当n k =时等式成立,即1()()sin()2k k k kf x xf x x π-+=+. 因为[]111()()()()()(1)()()k k k k k k k kf x xf x kf x f x kf x k f x xf x --+'''+=++=++, (1)sin()cos()()sin 2222k k k k x x x x ππππ'+⎡⎤⎡⎤'+=++=+⎢⎥⎢⎥⎣⎦⎣⎦, 所以1(1)(1)()()sin 2k k k k f x xf x x π++⎡⎤++=+⎢⎥⎣⎦.因此当1n k =+时,等式成立.综合(ⅰ),(ⅱ)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n *∈Ν都成立. 令4x π=,可得1()()sin()()44442n n n nf f x n πππππ*-+=+∈Ν.所以12)444n n nf f n πππ*-⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭Ν. 解法二:令=)(x g n *1),()(N n x xf x nf n n ∈+-所以x x xf x f x g cos )()()(101=+=,又)()()()1()()()()(111x g x xf x f n x f x x f x f n x g n n n n n n n++-=++='++'=' 故ΛΛ,sin )(,cos )(,sin )()(4312x x g x x g x x g x g -=-=-='= 所以)()(4x g x g n n =+,即22)4(=πn g ,命题得证.(江苏南通陆王华)。
2014年江苏省高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1、(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=、2、(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为、3、(5分)如图是一个算法流程图,则输出的n的值是、4、(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是、5、(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是、6、(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm、7、(5分)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是、8、(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是、9、(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为、10、(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是、11、(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P (2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是、12、(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是、13、(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是、14、(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是、二、解答题(本大题共6小题,共计90分)15、(14分)已知α∈(,π),sinα=、(1)求sin(+α)的值;(2)求cos(﹣2α)的值、16、(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5、求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC、17、(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a >b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C、(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值、18、(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m 处(OC为河岸),tan∠BCO=、(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?19、(16分)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数、(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m 的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a﹣1与a e﹣1的大小,并证明你的结论、20、(16分)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”、(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n (n∈N*)成立、三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21、(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D、【选修4-2:矩阵与变换】22、(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值、【选修4-3:极坐标及参数方程】23、在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为、【选修4-4:不等式选讲】24、已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy、(二)必做题(本部分包括25、26两题,每题10分,共计20分)25、(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同、(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E (X)、26、(10分)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n ∈N*、(1)求2f1()+f2()的值;()+f n()|=都成立、(2)证明:对任意n∈N*,等式|nf n﹣1参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1、(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3} 、分析:根据集合的基本运算即可得到结论、解答:解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}点评:本题主要考查集合的基本运算,比较基础、2、(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为21、分析:根据复数的有关概念,即可得到结论、解答:解:z=(5+2i)2=25+20i+4i2=25﹣4+20i=21+20i,故z的实部为21,故答案为:21点评:本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础、3、(5分)如图是一个算法流程图,则输出的n的值是5、分析:算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案、解答:解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,∵24=16<20,25=32>20,∴输出n=5、故答案为:5、点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键、4、(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是、分析:首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可、解答:解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=、故答案为:、点评:本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件、5、(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是、分析:由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=、根据φ的范围和正弦函数的单调性即可得出、解答:解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,∴=、∵0≤φ<π,∴,∴+φ=,解得φ=、故答案为:、点评:本题考查了三角函数的图象与性质、三角函数求值,属于基础题、6、(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有24株树木的底部周长小于100cm、分析:根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm的频率,再根据频数=样本容量×频率求出底部周长小于100cm的频数、解答:解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)×10=0.4,∴底部周长小于100cm的频数为60×0.4=24(株)、故答案为:24、点评:本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=、7、(5分)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是4、分析:利用等比数列的通项公式即可得出、解答:解:设等比数列{a n}的公比为q>0,a1>0、∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2、∴a6===1×22=4、故答案为:4、点评:本题考查了等比数列的通项公式,属于基础题、8、(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是、分析:设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比、解答:解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===、故答案为:、点评:本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目、9、(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为、分析:求出已知圆的圆心为C(2,﹣1),半径r=2、利用点到直线的距离公式,算出点C到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长、解答:解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:、点评:本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题、10、(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0)、分析:由条件利用二次函数的性质可得,由此求得m的范围、解答:解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0)、点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题、11、(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P (2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3、分析:由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案、解答:解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣3点评:本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键、12、(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是22、分析:由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案、解答:解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22、点评:本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键、13、(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f (x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,)、分析:在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a 的范围即可、解答:解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知、故答案为:(0,)、点评:本题考查函数的图象以函数的零点的求法,数形结合的应用、14、(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是、分析:根据正弦定理和余弦定理,利用基本不等式即可得到结论、解答:解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是、故答案为:、点评:本题主要考查正弦定理和余弦定理的应用,结合基本不等式的性质是解决本题的关键、二、解答题(本大题共6小题,共计90分)15、(14分)已知α∈(,π),sinα=、(1)求sin(+α)的值;(2)求cos(﹣2α)的值、分析:(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值、解答:解:α∈(,π),sinα=、∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣、(2)∵α∈(,π),sinα=、∴cos2α=1﹣2sin2α=,sin2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣、cos(﹣2α)的值为:﹣、点评:本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力、16、(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5、求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC、分析:(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可、解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC、点评:本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目、17、(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a >b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C、(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值、分析:(1)根据椭圆的定义,建立方程关系即可求出a,b的值、(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值、解答:解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1、(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,﹣),且A,C关于x轴对称,∴C(,),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=、点评:本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大、18、(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m 处(OC为河岸),tan∠BCO=、(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?分析:(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大、解答:解:(1)如图,过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴、设AF=4x(m),则BF=3x(m)、∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m、∵,∴CE=(m)、∴(m)、∴,解得:x=20、∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO、设OM=xm,则OP=m,PM=m、∴PC=m,PQ=m、设⊙M半径为R,∴R=MQ=m=m、∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80、解得:10≤x≤35、∴当且仅当x=10时R取到最大值、∴OM=10m时,保护区面积最大、点评:本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题、19、(16分)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数、(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m 的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a﹣1与a e﹣1的大小,并证明你的结论、分析:(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围;(3)构造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论、解答:解:(1)∵f(x)=e x+e﹣x,∴f(﹣x)=e﹣x+e x=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,即m(e x+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴e x+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=e x,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣,当且仅当t=2时等号成立,∴m、(3)令g(x)=e x+e﹣x﹣a(﹣x3+3x),则g′(x)=e x﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,当x∈(e﹣1,e)⊆(e﹣1,+∞)时,h(x)<h(e)=0,∴h(x)<0,对任意的x∈(1,e)成立、①a∈((e+),e)⊆(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而e a﹣1<a e﹣1,②当a=e时,a e﹣1=e a﹣1,③当a∈(e,+∞)⊆(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e﹣1)lna,从而e a﹣1>a e﹣1、点评:本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大、20、(16分)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”、(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n (n∈N*)成立、分析:(1)利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”即可得到a n,再利用“H”数列的意义即可得出、(2)利用等差数列的前n项和即可得出S n,对∀n∈N*,∃m∈N*使S n=a m,取n=2和根据d<0即可得出;(3)设{a n}的公差为d,构造数列:b n=a1﹣(n﹣1)a1=(2﹣n)a1,c n=(n﹣1)(a1+d),可证明{b n}和{c n}是等差数列、再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出、解答:解:(1)当n≥2时,a n=S n﹣S n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2、当n=1时,S1=a1、当n≥2时,S n=a n+1、∴数列{a n}是“H”数列、(2)S n==,对∀n∈N*,∃m∈N*使S n=a m,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1、(3)设{a n}的公差为d,令b n=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,b n﹣b n=﹣a1,+1c n=(n﹣1)(a1+d),对∀n∈N*,c n﹣c n=a1+d,+1则b n+c n=a1+(n﹣1)d=a n,且数列{b n}和{c n}是等差数列、数列{b n}的前n项和T n=,令T n=(2﹣m)a1,则、当n=1时,m=1;当n=2时,m=1、当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*、因此对∀n∈N*,都可找到m∈N*,使T n=b m成立,即{b n}为H数列、数列{c n}的前n项和R n=,令c m=(m﹣1)(a1+d)=R n,则m=、∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*、因此对∀n∈N*,都可找到m∈N*,使R n=c m成立,即{c n}为H数列、因此命题得证、点评:本题考查了利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”求a n、等差数列的前n项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题、三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21、(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D、分析:利用OC=OB,可得∠OCB=∠B,利用同弧所对的圆周角相等,即可得出结论、解答:证明:∵OC=OB,∴∠OCB=∠B,∵∠B=∠D,∴∠OCB=∠D、点评:本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题、【选修4-2:矩阵与变换】22、(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值、分析:利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y的值、解答:解:∵矩阵A=,B=,向量=,A=B,∴,∴x=﹣,y=4,∴x+y=点评:本题考查矩阵的乘法,考查学生的计算能力,属于基础题、【选修4-3:极坐标及参数方程】23、在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为、分析:直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长、解答:解:直线l的参数方程为(t为参数),化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2﹣10x+9=0,∴交点A(1,2),B(9,﹣6),∴|AB|==8、故答案为:8、点评:本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题、【选修4-4:不等式选讲】24、已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy、分析:由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论、解答:证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy、点评:本题考查不等式的证明,正确运用均值不等式是关键、(二)必做题(本部分包括25、26两题,每题10分,共计20分)25、(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同、(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E (X)、分析:(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可、解答:解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=、(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X234P故X数学期望E(X)=、点评:本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题、26、(10分)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n ∈N*、(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n()+f n()|=都成立、﹣1分析:(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证、解答:解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵f n(x)为f n﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,猜想得,nf n﹣1下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,(x)+xf k(x)]′=kf k﹣1′(x)+f k(x)+xf k′(x)∵[kf k﹣1=(k+1)f k(x)+xf k+1(x)又===,∴那么n=k+1(k>1且k∈N*)时、等式也成立,(x)+xf n(x)=sin(x +)对任意n∈N*恒成立,由①②得,nf n﹣1令x=代入上式得,nf n()+f n ()=sin (+)=±cos=±,﹣1()+f n ()|=都成立所以,对任意n∈N*,等式|nf n﹣1点评:本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力31/ 31。
2014年普通高等学校招生全国统一考试(江苏卷)解析版数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A I . 2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 . 3. 右图是一个算法流程图,则输出的n 的值是 .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是 .5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 .6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 . 8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V 的值是 .100 80 90 110 120 130 底部周长/cm(第6题)(第3题)9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长 为 .10. 已知函数2()1f x x mx =+-,若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 .11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 .12. 如图,在平行四边形ABCD 中,已知8AB =,5AD =,3CP PD =u u u r u u u r ,2AP BP ⋅=u u u r u u u r ,则AB AD ⋅u u u r u u u r的值是 .13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,21()22f x x x =-+. 若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值; (2)求)265cos(απ-的值.16. (本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,6PA =,8BC =,5DF =.求证:(1) 直线//PA 平面DEF ;(2) 平面⊥BDE 平面ABC .(第16题)PDCEFBA(第12题)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆22221(0)x y a b a b +=>>的左、右焦点,顶点B的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1) 若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2) 若1F C AB ⊥,求椭圆离心率e 的值.18. (本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区. 规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆. 且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO . (1) 求新桥BC 的长;(2) 当OM 多长时,圆形保护区的面积最大?19. (本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1) 证明:)(x f 是R 上的偶函数;(2) 若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3) 已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立. 试比较1e -a 与1e -a 的大小,并证明你的结论.设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1) 若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”;(2) 设}{n a 是等差数列,其首项11=a ,公差0<d . 若}{n a 是“H 数列”,求d 的值; (3) 证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a += (∈n N *)成立.数学Ⅱ(附加题)21.[选修4—1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,C 、D 是圆O 上位于AB 异侧的两点. 证明:∠ OCB =∠ D .22.[选修4—2:矩阵与变换](本小题满分10分)已知矩阵A 121x -⎡⎤=⎢⎥⎣⎦,B 1121⎡⎤=⎢⎥-⎣⎦,向量2y ⎡⎤=⎢⎥⎣⎦α,x ,y 为实数.若=A αB α,求x +y 的值. 23.[选修4—4:坐标系与参数方程](本小题满分10分) 在平面直角坐标系xOy 中,已知直线l 的参数方程21,2)(2;xt t y t ⎧=-⎪⎪⎨⎪=+⎪⎩为参数,直线l 与抛物线24y x =相交于A 、B 两点,求线段AB 的长.24.[选修4—4:不等式证明选讲](本小题满分10分) 已知x >0,y >0,证明:22(1)(1)9x y x y xy ++++≥. 25. (本小题满分10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1) 从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2) 从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x 1、x 2、x 3, 随机变量X 表示x 1、x 2、x 3中的最大数,求X 的概率分布和数学期望E (X ). 26. (本小题满分10分)已知函数sin ()(0)xf x x x=>,设()n f x 是1()n f x -的导数,n ∈*N . (1) 求12πππ2()()222f f +的值;(2) 证明:对于任意n ∈*N ,等式1πππ2()()444n n nf f -+=都成立.(第21—A 题)参考答案一、选择题 1.【答案】{1,3}-解析:由题意得{1,3}A B =-I 【考点】交集、并集、补集 (B). 【答案】}3,1{-【解析】根据集合的交集运算,两个集合的交集就是所有既属于集合A 又属于集合B 的元素组成的集合,从所给的两个集合的元素可知,公共的元素为-1和3,所以答案为}3,1{-【点评】本题重点考查的是集合的运算,容易出错的地方是审错题目,把交集运算看成并集运算。
2014年江苏高考数学真题及答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应.....位置上.... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲.2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为▲.3. 右图是一个算法流程图,则输出的n 的值是▲.4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是▲.5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),zxxk 它们的图象有一个横坐标为3π的交点,则ϕ的值是▲.6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有▲株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是▲.8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V的值是▲.9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为▲.10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是▲.11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数) zxxk 过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是▲.12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,PD CP 3=,2=⋅BP AP ,则AD AB ⋅的值是▲.202>n组距13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是▲.14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,学科网解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分zxxk 别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .(第16题)PD C EFB A17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a by a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形学科网保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,学科网求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,学科网总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a += (∈n N *)成立.2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2014•江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3} .2.(5分)(2014•江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为21 .3.(5分)(2014•江苏)如图是一个算法流程图,则输出的n的值是 5 .4.(5分)(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.P=.5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.的交点,可得.根据的交点,.,∴,+,..6.(5分)(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有24 株树木的底部周长小于100cm.=7.(5分)(2014•江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是 4 .,=8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.=,,它们的侧面积相等,==..9.(5分)(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.=,=2=10.(5分)(2014•江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).,,解得﹣(﹣11.(5分)(2014•江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P (2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3 .(,(,,解得:12.(5分)(2014•江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是22 .=3,=+,=﹣,=3,=2解:∵=3=+,=﹣,•=+)•(﹣|•﹣|••=22=+,=﹣,是解答的关键.13.(5分)(2014•江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,).|的图象如图:由图象可知,)14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.b=2c(bcosC==≥=≤cosC<的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.(﹣,=﹣=+cos+cos sin=∴sin(+.,.,∴cos(﹣=cos cos2+sin sin2=(.16.(14分)(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.的中点,∴DE=PA=3的中点,∴EF=BC=417.(14分)(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.的坐标为(,,即,(则椭圆的方程为x+b+﹣x=∵A(∴C()==×(.18.(16分)(2014•江苏)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?.,∴CE=OP=m∴PC=PQ=∴R=MQ=m=∴136﹣﹣x≥80.19.(16分)(2014•江苏)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a ﹣1与a e﹣1的大小,并证明你的结论.m≤m≤,当且仅当.=e+﹣>)﹣,﹣=0①a∈(()20.(16分)(2014•江苏)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.,,即,解得,则,三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)(2014•江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修4-2:矩阵与变换】22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.=BA=,向量==B,,∴x=﹣∴x+y=【选修4-3:极坐标及参数方程】23.(2014•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.的参数方程为∴|AB|==8【选修4-4:不等式选讲】24.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.≥3,+y≥≥3(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).P=,P26.(10分)(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.代入式子求值;代入所给的式子求解验证.,∴xf代入上式得,)f))x+)对任意成立,则上式成立;,=,x+代入上式得,(f)(+=±,(f)都成立.。
2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2014•江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3}.考点:交集及其运算.专题:集合.分析:根据集合的基本运算即可得到结论.解答:解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}点评:本题主要考查集合的基本运算,比较基础.2.(5分)(2014•江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为21.考点:复数的基本概念;复数代数形式的乘除运算.专题:数系的扩充和复数.分析:根据复数的有关概念,即可得到结论.解答:解:z=(5+2i)2=25+20i+4i2=25﹣4+20i=21+20i,故z的实部为21,故答案为:21点评:本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础.3.(5分)(2014•江苏)如图是一个算法流程图,则输出的n的值是5.考点:程序框图.专题:算法和程序框图.分析:算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案.解答:解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,∵24=16<20,25=32>20,∴输出n=5.故答案为:5.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.4.(5分)(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.考点:古典概型及其概率计算公式.专题:概率与统计.分析:首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可.解答:解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=.故答案为:.点评:本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.考点:三角方程;函数的零点.专题:三角函数的求值;三角函数的图像与性质.分析:由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=.根据φ的范围和正弦函数的单调性即可得出.解答:解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,∴=.∵0≤φ<π,∴,∴+φ=,解得φ=.故答案为:.点评:本题考查了三角函数的图象与性质、三角函数求值,属于基础题.6.(5分)(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有24株树木的底部周长小于100cm.考点:频率分布直方图.专题:概率与统计.分析:根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm的频率,再根据频数=样本容量×频率求出底部周长小于100cm的频数.解答:解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)×10=0.4,∴底部周长小于100cm的频数为60×0.4=24(株).故答案为:24.点评:本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.7.(5分)(2014•江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是4.考点:等比数列的通项公式.专题:等差数列与等比数列.分析:利用等比数列的通项公式即可得出.解答:解:设等比数列{a n}的公比为q>0,a1>0.∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2.∴a6===1×22=4.故答案为:4.点评:本题考查了等比数列的通项公式,属于基础题.8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.考点:棱柱、棱锥、棱台的体积;旋转体(圆柱、圆锥、圆台).专题:立体几何.分析:设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比.解答:解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.点评:本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.9.(5分)(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.考点:直线与圆的位置关系.专题:直线与圆.分析:求出已知圆的圆心为C(2,﹣1),半径r=2.利用点到直线的距离公式,算出点C到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长.解答:解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:.点评:本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.10.(5分)(2014•江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).考点:二次函数的性质.专题:函数的性质及应用.分析:由条件利用二次函数的性质可得,由此求得m的范围.解答:解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.11.(5分)(2014•江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3.考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案.解答:解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣3点评:本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键.12.(5分)(2014•江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是22.考点:向量在几何中的应用;平面向量数量积的运算.专题:平面向量及应用.分析:由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.解答:解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.点评:本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.13.(5分)(2014•江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f (x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,).考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可.解答:解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知.故答案为:(0,).点评:本题考查函数的图象以函数的零点的求法,数形结合的应用.14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.考点:余弦定理;正弦定理.专题:三角函数的图像与性质;解三角形.分析:根据正弦定理和余弦定理,利用基本不等式即可得到结论.解答:解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是.故答案为:.点评:本题主要考查正弦定理和余弦定理的应用,利用基本不等式是解决本题的关键.二、解答题(本大题共6小题,共计90分)15.(14分)(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.考点:两角和与差的正弦函数;两角和与差的余弦函数.专题:三角函数的求值;三角函数的图像与性质.分析:(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值.解答:解:α∈(,π),sinα=.∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣.(2)∵α∈(,π),sinα=.∴cos2α=1﹣2sin2α=,sin2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣.cos(﹣2α)的值为:﹣.点评:本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力.16.(14分)(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB 的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.考点:平面与平面垂直的判定;直线与平面垂直的判定.专题:空间位置关系与距离;空间角;立体几何.分析:(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC 即可.解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.点评:本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.17.(14分)(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.考点:椭圆的简单性质;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的定义,建立方程关系即可求出a,b的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.解答:解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1.(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,),且A,C关于x轴对称,∴C(,﹣),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=.点评:本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大.18.(16分)(2014•江苏)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?考点:圆的切线方程;直线与圆的位置关系.专题:直线与圆.分析:(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x 的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大.解答:解:(1)如图,过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴.设AF=4x(m),则BF=3x(m).∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m.∵,∴CE=(m).∴(m).∴,解得:x=20.∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO.设OM=xm,则OP=m,PM=m.∴PC=m,PQ=m.设⊙M半径为R,∴R=MQ=m=m.∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80.解得:10≤x≤35.∴当且仅当x=10时R取到最大值.∴OM=10m时,保护区面积最大.点评:本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.19.(16分)(2014•江苏)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a﹣1与a e﹣1的大小,并证明你的结论.考点:利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围;(3)构u造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论.解答:解:(1)∵f(x)=e x+e﹣x,∴f(﹣x)=e﹣x+e x=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,即m(e x+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴e x+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=e x,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣,当且仅当t=2时等号成立,∴m.(3)令g(x)=e x+e﹣x﹣a(﹣x3+3x),则g′(x)=e x﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,当x∈(e﹣1,e)⊆(e﹣1,+∞)时,h(x)<h(e)=0,∴h(x)<0,对任意的x∈(1,e)成立.①a∈((e+),e)⊆(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而e a﹣1<a e﹣1,②当a=e时,a e﹣1=e a﹣1,③当a∈(e,+∞)⊆(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e﹣1)lna,从而e a﹣1>a e﹣1.点评:本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大.20.(16分)(2014•江苏)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.考点:数列的应用;等差数列的性质.专题:等差数列与等比数列.分析:(1)利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”即可得到a n,再利用“H”数列的意义即可得出.(2)利用等差数列的前n项和即可得出S n,对∀n∈N*,∃m∈N*使S n=a m,取n=2和根据d<0即可得出;(3)设{a n}的公差为d,构造数列:b n=a1﹣(n﹣1)a1=(2﹣n)a1,c n=(n﹣1)(a1+d),可证明{b n}和{c n}是等差数列.再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出.解答:解:(1)当n≥2时,a n=S n﹣S n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n=1时,S1=a1.当n≥2时,S n=a n+1.∴数列{a n}是“H”数列.(2)S n==,对∀n∈N*,∃m∈N*使S n=a m,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{a n}的公差为d,令b n=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,b n+1﹣b n=﹣a1,c n=(n﹣1)(a1+d),对∀n∈N*,c n+1﹣c n=a1+d,则b n+c n=a1+(n﹣1)d=a n,且数列{b n}和{c n}是等差数列.数列{b n}的前n项和T n=,令T n=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对∀n∈N*,都可找到m∈N*,使T n=b m成立,即{b n}为H数列.数列{c n}的前n项和R n=,令c m=(m﹣1)(a1+d)=R n,则m=.∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对∀n∈N*,都可找到m∈N*,使R n=c m成立,即{c n}为H数列.因此命题得证.点评:本题考查了利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”求a n、等差数列的前n 项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)(2014•江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.考点:弦切角.专题:直线与圆.分析:利用OC=OB,可得∠OCB=∠B,利用同弧所对的圆周角相等,即可得出结论.解答:证明:∵OC=OB,∴∠OCB=∠B,∵∠B=∠D,∴∠OCB=∠D.点评:本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题.【选修4-2:矩阵与变换】22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.考点:矩阵与向量乘法的意义.专题:矩阵和变换.分析:利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y 的值.解答:解:∵矩阵A=,B=,向量=,A=B,∴,∴x=﹣,y=4,∴x+y=点评:本题考查矩阵的乘法,考查学生的计算能力,属于基础题.【选修4-3:极坐标及参数方程】23.(2014•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.考点:直线的参数方程.专题:计算题;坐标系和参数方程.分析:直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长.解答:解:直线l的参数方程为,化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2﹣10x+9=0,∴交点A(1,2),B(9,﹣6),∴|AB|==8.点评:本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.【选修4-4:不等式选讲】24.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.解答:证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.点评:本题考查不等式的证明,正确运用均值不等式是关键.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可.解答:解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X 2 3 4P故X数学期望E(X)=.点评:本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题.26.(10分)(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.考点:三角函数中的恒等变换应用;导数的运算.专题:函数的性质及应用;三角函数的求值.分析:(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.解答:解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵f n(x)为f n﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kf k﹣1(x)+xf k(x)]′=kf k﹣1′(x)+f k(x)+xf k′(x)=(k+1)f k(x)+xf k+1(x)又===,∴那么n=k+1(k>1且k∈N*)时.等式也成立,由①②得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,令x=代入上式得,nf n﹣1()+f n()=sin(+)=±cos=±,所以,对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.点评:本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力.。
2014年普通高等学校招生全国统一考试(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲ . 2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ . 3. 右图是一个算法流程图,则输出的n 的值是 ▲ .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的 乘积为6的概率是 ▲ .5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象 有一个横坐标为3π的交点,则ϕ的值是 ▲ .6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图 所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ .8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别 为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V的值是 ▲ .9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 ▲ .10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x , 都有0)(<x f 成立,则实数m 的取值范围是 ▲ . 11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 ▲ . 12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,3=,2=⋅BP AP ,则AD AB ⋅的值是▲ .13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分) 已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.(第3题)100 80 90 110 120 130 底部周长/cm(第6题)(第12题)16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a by a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河 岸AB 垂直;保护区的边界为圆心M 在线段OA 上 并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO . (1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?(第16题)P D CE F B A(第18题)19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(0300x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明: }{n a 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(∈n N *)成立.参考答案15.(1)∵α∈(,π),=∴=∴=+=(2)=12=,=2==+=+()=16. (1)∵D,E,分别为PC,AC,的中点 ∴DE ∥PA 又∵DE⊂平面PAC ,PA ⊄平面PAC∴直线PA ∥平面DEF(2)∵E,F 分别为棱AC,AB 的中点,且 BC=8,由中位线知EF=4∵D,E,分别为PC,AC,的中点,且PA=6,由中位线知DE=3,又∵DF=5∴DF ²=EF ²+DE ²=25,∴DE ⊥EF ,又∵DE ∥PA ,∴PA ⊥EF ,又∵PA ⊥AC ,又∵AC ⋂ EF=E ,AC ⊂平面ABC ,EF ⊂平面ABC ,∴PA ⊥平面ABC ,∴DE ⊥平面ABC ,∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC17.(1)∵BF 2 =,将点C (,)代入椭圆22221(0)x y a b a b+=>>,∴221611(0)99a b a b+=>>,且c ²+b ²=a ²∴a= ,b=1, ∴椭圆方程为2212x y +=(2)直线BA 方程为y=x+b,与椭圆22221(0)x y a b a b+=>>联立得x ²x=0. ∴点A (,),∴点C (,),F 1()直线CF 1 斜率k= ,又∵F 1C ⊥AB ,∴·=∴=1,∴e=18. (1)过点B 作BE ⊥OC 于点E ,过点A 作AD ⊥BE 于点F 。
2014年江苏高考数学试题(含详解)2014年普通高等学校招生统一考试(江苏卷)数学试题参考公式:圆柱的侧面积公式:S圆柱=cl, 其中c是圆柱底面的周长,l为母线长. 圆柱的体积公式:V圆柱=Sh,其中S是圆柱的底面积,h为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题..卡相应位置上.......1.已知集合{2134}B=-,,,则,,,,{123}A=--I.A B=【答案】{13}-,2.已知复数2=-(i为虚数单位),则z的实部(52)z i为.【答案】213.右图是一个算法流程图,则输出的n的值是.【答案】54.从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是.【答案】135.已知函数cos=与sin(2)(0)y x≤,它们的图象=+<πy xϕϕ有一个横坐标为 3π的交点,则ϕ的值是 . 【答案】6π 6.设抽测的树木的底部周长均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100 cm . 【答案】247.在各项均为正数的等比数列{}na 中,若21a =,8642a a a =+,则6a 的值是 .【答案】48.设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294SS=,则12VV 的值是 .【答案】329.在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为 .25510.已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是 .【答案】20⎛⎫ ⎪⎝⎭11.在平面直角坐标系xOy 中,若曲线2by axx=+(a b,为常数)过点(25)P -,,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是 . 【答案】3-12.如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=u u u r u u u r u u u r u u u r,,则AB AD⋅u u u r u u u r的值是 . 【答案】2213.已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a =-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是 . 【答案】()102, 14.若ABC ∆的内角满足sin 22sin A B C=,则cos C 的最小值是 .62- 二、解答题:本大题共6小题, 共计90 分. 请在答题卡指定区域内........作答, 解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14 分)已知()2απ∈π,,5sin α= (1)求()sin 4απ+的值; (2)求()cos 26α5π-的值. 【答案】本小题主要考查三角函数的基本关系式、两角和与差及二倍角的公式,考查运算求解能力. 满分14分. (1)∵()5sin 2ααπ∈π,,, ∴225cos 1sin αα=--=()210sin sin cos cos sin sin )444αααααπππ+=++=;(2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=, ∴()()3314334cos 2cos cos2sin sin 2666525ααα5π5π5π+-=+=+⨯-=16.(本小题满分14 分)如图,在三棱锥P ABC -中,D E F,,分别为棱PC AC AB,,的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线PA ∥平面DEF ; (2)平面BDE ⊥平面ABC .【答案】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.(1)∵D E ,为PC AC ,中点 ∴DE ∥PA∵PA ⊄平面DEF ,DE ⊂平面DEF ∴PA ∥平面DEF(2)∵D E ,为PC AC ,中点 ∴132DE PA == ∵E F ,为AC AB ,中点 ∴142EF BC == ∴222DE EFDF += ∴90DEF ∠=°,∴DE ⊥EF∵//DE PA PA AC ⊥,,∴DE AC ⊥ ∵AC EF E =I ∴DE ⊥平面ABC∵DE ⊂平面BDE , ∴平面BDE ⊥平面ABC . 17.(本小题满分14 分)如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b+=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为()4133,,且22BF =的方程;(2)若1FC AB ⊥,求椭圆离心率e 的值.【答案】本小题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运算求解能力. 满分14分.(1)∵()4133C ,,∴22161999a b +=∵22222BF b c a =+=,∴22(2)2a ==,∴21b =∴椭圆方程为2212x y +=(2)设焦点12(0)(0)()F c F c C x y -,,,,,∵A C ,关于x 轴对称,∴()A x y -,∵2B F A ,,三点共线,∴b yb c x+=--,即0bx cy bc --=① ∵1FC AB ⊥,∴1yb xc c⋅=-+-,即2xc by c -+=②①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩∴()2222222a c bc C b c b c --,∵C 在椭圆上,∴()()222222222221a cbc b c b c a b --+=,化简得225ca =,∴5c a =, 518.(本小题满分16分)如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=. (1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大? 解:本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力.满分16分. 解法一:(1) 如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy . 由条件知A (0, 60),C (170, 0), 直线BC 的斜率k BC =-tan ∠BCO =-43. 又因为AB ⊥BC ,所以直线AB 的斜率k AB =34. 设点B 的坐标为(a ,b ),则k BC =04,1703b a -=-- k AB =603,04b a -=- 解得a =80,b=120. 所以BC 22(17080)(0120)150-+-=.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60).由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-=由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r , 即|3680|680355d d r --==.因为O 和A 到圆M 上任意一点的距离均不少于80 m, 所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035d r -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803. CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=. 因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO ==45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半 径,并设MD =r m ,OM =d m(0≤d ≤60). 因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO ,故由(1)知,sin ∠CFO =3,68053MD MD rMF OF OM d ===--所以68035d r -=.因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035d r -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.19.(本小题满分16分)已知函数()e e xxf x -=+其中e是自然对数的底数.(1)证明:()f x 是R 上的偶函数; (2)若关于x 的不等式()e 1xmf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -与e 1a -的大小,并证明你的结论.【答案】本小题主要考查初等函数的基本性质、导数的应用等基础知识,考查综合运用数学思想 方法分析与解决问题的能力.满分16分. (1)x ∀∈R ,()ee ()xx f x f x --=+=,∴()f x 是R 上的偶函数(2)由题意,(e e )e 1xxxm m --++-≤,即(e e 1)e 1xxxm --+--≤∵(0)x ∈+∞,,∴e e 10xx-+->,即e 1e e 1xxxm ---+-≤对(0)x ∈+∞,恒成立令e (1)xt t =>,则211t m t t --+≤对任意(1)t ∈+∞,恒成立∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立∴13m -≤ (3)'()e e xxf x -=-,当1x >时'()0f x >,∴()f x 在(1)+∞,上单调增令3()(3)h x a x x =-+,'()3(1)h x ax x =--∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减∵存在0[1)x ∈+∞,,使得3()(3)f x a x x <-+,∴1(1)e 2e f a =+<,即()11e 2ea >+ ∵e-1e 111ln ln ln e (e 1)ln 1ea a a a a a ---=-=--+设()(e 1)ln 1m a a a =--+,则()e 1e 111'()1e 2e a m a a aa ---=-=>+, 当()11e e 12ea +<<-时,'()0m a >,()m a 单调增; 当e 1a >-时,'()0m a <,()m a 单调减 因此()m a 至多有两个零点,而(1)(e)0m m == ∴当e a >时,()0m a <,e 11e a a --<;当()11e e 2e a +<<时,()0m a <,e 11e a a -->; 当e a =时,()0m a =,e 11e a a--=.20.(本小题满分16分)设数列{}na 的前n 项和为nS .若对任意的正整数n ,总存在正整数m ,使得nmSa =,则称{}na 是“H 数列”.(1)若数列{}na 的前n 项和2()n nSn *=∈N ,证明:{}na是“H 数列”;(2)设{}na 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}na ,总存在两个“H 数列”{}nb 和{}nc ,使得()nnna b c n *=+∈N 成立.【答案】本小题主要考查数列的概念、等差数列等基础知识,考查探究能力及推理论证能力, 满分16分.(1)当2n ≥时,111222n n n nnn a S S---=-=-=当1n =时,112a S ==∴1n =时,11S a =,当2n ≥时,1nn Sa +=∴{}na 是“H 数列” (2)1(1)(1)22nn n n n S na d n d --=+=+对n *∀∈N ,m *∃∈N 使nmSa =,即(1)1(1)2n n n d m d -+=+-取2n =得1(1)d m d +=-,12m d =+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =- (3)设{}na 的公差为d令111(1)(2)nb a n a n a =--=-,对n *∀∈N ,11n n bb a +-=-1(1)()n c n a d =-+,对n *∀∈N ,11n n cc a d+-=+则1(1)nnnb c a n d a +=+-=,且{}{}nnb c ,为等差数列 {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N因此对n ∀,都可找到m *∈N ,使nmT b =成立,即{}nb 为“H 数列”.{}nc 的前n项和1(1)()2nn n R a d -=+,令1(1)()n mc m ad R =-+=,则(1)12n n m -=+∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N即对n *∀∈N ,都可找到m *∈N ,使得nmR c =成立,即{}n c 为“H 数列” 因此命题得证.数学Ⅱ(附加题)21.【选做题】本题包括A, B,C,D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.【选修4-1:几何证明选讲】(本小题满分10分)如图,AB 是圆O 的直径,C 、 D 是圆O 上位于AB 异侧的两点 证明:∠OCB =∠D .本小题主要考查圆的基本性质,考查推理论证能力.满分10分.证明:因为B , C 是圆O 上的两点,所以OB =OC . 故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点, 故∠B ,∠D 为同弧所对的两个圆周角, 所以∠B =∠D . 因此∠OCB =∠D . B.【选修4-2:矩阵与变换】(本小题满分10分)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α,x y ,为实数,若A α=B α,求x y ,的值.【答案】本小题主要考查矩阵的乘法等基础知识,考查运算求解能力.满分10分.222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=, C.【选修4-4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为2122x y ⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 与抛物线24yx=交于A B,两点,求线段AB 的长.【答案】本小题主要考查直线的参数方程、抛物线的标准方程等基础知识,考查运算求解能力.满分10分.直线l :3x y +=代入抛物线方程24yx=并整理得21090x x -+=∴交点(12)A ,,(96)B -,,故||82AB =D.【选修4-5:不等式选讲】(本小题满分10分) 已知x >0, y >0,证明:(1+x +y 2)( 1+x 2+y )≥9xy. 本小题主要考查算术一几何平均不等式.考查推理论证能力.满分10分.证明:因为x >0, y >0, 所以1+x +y 2≥2330xy >,1+x 2+y ≥233x y >,所以(1+x +y 2)( 1+x 2+y )≥223333xy x y=9xy.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,,中的最大数,求X 的概率分布和数学期望()E X .22.【必做题】本小题主要考查排列与组合、离散型随机变量的均值等基础知识,考查运算求解能力.满分10分.(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况∴取出的2个球颜色相同的概率1053618P == (2)X 的所有可能取值为432,,,则4449C1(4)C 126P X === 3131453639C C C C 13(3)C 63P X +===11(2)1(3)(4)14P X P X P X ==-=-==∴X 的概率分布列为X2 34P111413631126故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯= 23.(本小题满分10分)已知函数0sin ()(0)x f x x x=>,记()n f x 为1()n fx -的导数,n *∈N .(1)求()()122222f f πππ+的值; (2)证明:对任意的n *∈N ,等式()()12444n nnff -πππ+=成立.23.【必做题】本题主要考查简单的复合函数的导数,考查探究能力及运用数学归纳法的推理论证能力.满分10分.(1)解:由已知,得102sin cos sin ()(),x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭于是21223cos sin sin 2cos 2sin ()(),x x x x x f x f x x x x x x ''⎛⎫⎛⎫'==-=--+ ⎪ ⎪⎝⎭⎝⎭所以12234216(),(),22f f πππππ=-=-+ 故122()() 1.222f f πππ+=- (2)证明:由已知,得0()sin ,xf x x =等式两边分别对x求导,得0()()cos f x xf x x '+=,即01()()cos sin()2f x xf x x x π+==+,类似可得 122()()sin sin()f x xf x x x π+=-=+,2333()()cos sin()2f x xf x x x π+=-=+, 344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nfx xf x x π-+=+对所有的n ∈*N 都成立.(i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立, 即1()()sin()2k kk kf x xf x x π-+=+. 因为111[()()]()()()(1)()(),k k k k k k k kfx xf x kf x f x xf x k f x f x --+'''+=++=++(1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+,所以1(1)()()kk k f x fx +++(1)sin[]2k x π+=+.所以当n=k +1时,等式也成立.综合(i),(ii)可知等式1()()sin()2n nn nf x xf x x π-+=+对所有的n ∈*N 都成立.令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以12()()444n n nf f πππ-+=n ∈*N ).。
2014年普通高等学校招生全国统一考试(江苏卷)答案解析数 学Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1、已知集合}4,3,1,2{A --=,}3,2,1{B -=,则B A = ▲ . 【答案】}3,1{-【解析】根据集合的交集运算,两个集合的交集就是所有既属于集合A 又属于集合B 的元素组成的集合,从所给的两个集合的元素可知,公共的元素为-1和3,所以答案为}3,1{-【点评】本题重点考查的是集合的运算,容易出错的地方是审错题目,把交集运算看成并集运算。
属于基础题,难度系数较小。
2、已知复数2)25(i z -=(i 为虚数单位),则z 的实部为 ▲ . 【答案】21【解析】根据复数的乘法运算公式,i i i i z 2021)2(2525)25(222-=+⨯⨯-=-=,实部为21,虚部为-20。
【点评】本题重点考查的是复数的乘法运算公式,容易出错的地方是计算粗心,把12-=i 算为1。
属于基础题,难度系数较小。
3、右图是一个算法流程图,则输出的n 的值是 ▲ . 【答案】5【解析】根据流程图的判断依据,本题202>n 是否成立,若不成立,则n 从1开始每次判断完后循环时,n 赋值为1+n ;若成立,则输出n 的值。
本题经过4次循环,得到203222,55>===n n ,成立,则输出的n 的值为5【点评】本题重点考查的是流程图的运算,容易出错的地方是判断循环几次时出错。
属于基础题,难度系数较小。
4、从6,3,2,1这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是 ▲ . 【答案】31【解析】将随机选取2个数的所有情况“不重不漏”的列举出来:(1,2),(1,3)(1,6),(2,3),(2,6),(3,6),共6种情况,满足题目乘积为6的要求的是(1,6)和(2,3),则概率为31。
【点评】本题主要考查的知识是概率,题目很平稳,考生只需用列举法将所有情况列举出来,再将满足题目要求的情况选出来即可。
2014年普通高等学校招生全国统一考试(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲ . 2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ . 3. 右图是一个算法流程图,则输出的n 的值是 ▲ .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的 乘积为6的概率是 ▲ .5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象 有一个横坐标为3π的交点,则ϕ的值是 ▲ . 6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图 所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm. 7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ . 8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别 为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V的值是 ▲ .9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆 4)1()2(22=++-y x 截得的弦长为 ▲ .10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x , 都有0)(<x f 成立,则实数m 的取值范围是 ▲ . 11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 ▲ . 12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,PD CP 3=,2=⋅BP AP ,则AD AB ⋅的值是▲ .13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分) 已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值; (2)求)265cos(απ-的值.(第3题)100 80 90 110 120 130 底部周长/cm(第6题)(第12题)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a by a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河 岸AB 垂直;保护区的边界为圆心M 在线段OA 上 并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大? 19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.(第16题)P D CE F B A设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”. (1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明: }{n a 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(∈n N *)成立.参考答案15.(1)∵α∈(,π),=∴=∴=+=(2)=12=,=2==+=+()=16. (1)∵D,E,分别为PC,AC,的中点 ∴DE ∥PA 又∵DE⊂平面PAC ,PA ⊄平面PAC∴直线PA ∥平面DEF(2)∵E,F 分别为棱AC,AB 的中点,且 BC=8,由中位线知EF=4∵D,E,分别为PC,AC,的中点,且PA=6,由中位线知DE=3,又∵DF=5∴DF ²=EF ²+DE ²=25,∴DE ⊥EF ,又∵DE ∥PA ,∴PA ⊥EF ,又∵PA ⊥AC ,又∵AC ⋂ EF=E ,AC ⊂平面ABC ,EF ⊂平面ABC ,∴PA ⊥平面ABC ,∴DE ⊥平面ABC ,∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC17.(1)∵BF 2 =,将点C (,)代入椭圆22221(0)x y a b a b+=>>,∴221611(0)99a b a b +=>>,且c ²+b ²=a ²∴a= ,b=1, ∴椭圆方程为2212x y +=(2)直线BA 方程为y=x+b,与椭圆22221(0)x y a b a b+=>>联立得x ²x=0. ∴点A (,),∴点C (,),F 1()直线CF 1 斜率k= ,又∵F 1C ⊥AB ,∴·=∴=1,∴e=18. (1)过点B 作BE ⊥OC 于点E ,过点A 作AD ⊥BE 于点F 。
2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2014•江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3}.2.(5分)(2014•江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为21.3.(5分)(2014•江苏)如图是一个算法流程图,则输出的n的值是5.4.(5分)(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.P=故答案为:.5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.的交点,可得.根据的交点,.,∴,+=.故答案为:.6.(5分)(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有24株树木的底部周长小于100cm..7.(5分)(2014•江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是4.=8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.=,它们的侧面积相等,==故答案为:.9.(5分)(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.==2故答案为:10.(5分)(2014•江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).,,,解得﹣<,11.(5分)(2014•江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3.(,解方程可得答案.,(,,,,是解答的关键.12.(5分)(2014•江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是22.=3,可得=+,﹣,=3•=3,=+,=﹣,•(+)(﹣)=||•﹣|﹣•﹣•=+,=﹣,是解答的关键.13.(5分)(2014•江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f (x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,).|的图象如图:由图象可知)14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.(bcosC==≥=当且仅当≤.故答案为:.二、解答题(本大题共6小题,共计90分)15.(14分)(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.(((.∴﹣=+=sin cos﹣+.,=,﹣=cos sin2﹣)的值为:﹣16.(14分)(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB 的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.DE=EF=BC=417.(14分)(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.的坐标为(,,即,,)+y+(=0)()==(得.18.(16分)(2014•江苏)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?CE=OP=m m PC=PQ=m=﹣﹣19.(16分)(2014•江苏)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a﹣1与a e﹣1的大小,并证明你的结论.﹣,当且仅当m﹣﹣()﹣﹣()20.(16分)(2014•江苏)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.=,解得,,则,三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)(2014•江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修4-2:矩阵与变换】22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.A=B,可得方程组,即可求A=B==A=B,﹣【选修4-3:极坐标及参数方程】23.(2014•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.的参数方程为,化为普通方程为=8【选修4-4:不等式选讲】24.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.3,两式相乘可得结论.,(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).个球共有个球颜色相同共有P==,P=26.(10分)(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.代入式子求值;代入所给的式子求解验证.=代入上式得,(+))x+)对任意时,=)对任意代入上式得,(+)+cos=±)(|=。
2014年江苏高考数学试卷第19题的探究
江苏卷从2008年到2014年对用导数来处理函数、方程和不等式问题是必考的内容之一,且有一定的难度,在第19题或20题的位置出现. 试题考查丰富的数学思想,如函数与方程思想常用于解决函数与方程的相关问题,等价转化思想常用于不等式恒成立问题和不等式证明问题,分类讨论思想常用于判断含有参数的函数的单调性、最值等问题,同时要求考生有较强的运算求解能力和综合分析问题的能力. 纵观这7年函数的综合试题,2014年江苏卷第19题易中有难,凡中有变,对运用数学思想方法提
出了较高的要求. 深刻挖掘此题解法中蕴涵的数学思想方法,联系解法背景,揭示此类问题的解法规律,有助于提高学生解综合问题的能力.
题目:已知函数f(x)=ex+e-x,其中e是自然对数的底数.
(1)证明:f(x)是R上的偶函数;
(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围;
(3)已知正数a满足:存在x∈[1,+∞),使得f(x0)。