新高考数学选择性必修一常用公式(一)
- 格式:docx
- 大小:94.27 KB
- 文档页数:2
高考数学必背知识点及公式归纳总结大全高考数学必背知识点及公式归纳总结大全高中数学理科是10本书,其中的数学公式非常多,那么关于高考数学的公式及知识点有哪些呢?以下是小编准备的一些高考数学必背知识点及公式归纳总结,仅供参考。
高考数学必考知识点归纳必修一:1、集合与函数的概念(部分知识抽象,较难理解);2、基本的初等函数(指数函数、对数函数);3、函数的性质及应用(比较抽象,较难理解)。
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分。
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题。
3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空);2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右;2、数列:高考必考,17---22分;3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2。
选修1--1:重点:高考占30分。
1、逻辑用语:一般不考,若考也是和集合放一块考;2、圆锥曲线;3、导数、导数的应用(高考必考)。
选修1--2:1、统计;2、推理证明:一般不考,若考会是填空题;3、复数:(新课标比老课本难的多,高考必考内容)。
理科:选修2—1、2—2、2—3。
选修2--1:1、逻辑用语;2、圆锥曲线;3、空间向量:(利用空间向量可以把立体几何做题简便化)。
1.1空间向量及其运算1.1.1空间向量及其运算学习目标核心素养1.了解空间向量、向量的模、零向量、相反向量、相等向量、共面向量等概念.(重点)2.会用平行四边形法则、三角形法则作出向量的和与差,掌握数乘向量运算的意义及运算律.(重点、易混点)3.掌握两个向量数量积的概念、性质及运算律.(重点、易错点) 1.通过空间向量有关概念的学习,培养数学抽象素养.2.借助于空间向量的线性运算,提升数学运算素养.3.借助于空间向量的数量积,提升数学运算及逻辑推理的数学素养.国庆节期间,某游客从上海世博园(O)游览结束后乘车到外滩(A)观赏黄浦江,然后抵达东方明珠(B)游玩,如图1,游客的实际位移是什么?可以用什么数学概念来表示这个过程?如果游客还要登上东方明珠顶端(D)俯瞰上海美丽的夜景,如图2,那实际发生的位移是什么?又如何表示呢?图1图21.空间向量(1)定义:空间中既有大小又有方向的量称为空间向量. (2)模(或长度):向量的大小. (3)表示方法:①几何表示法:可以用有向线段来直观的表示向量,如始点为A 终点为B 的向量,记为AB →,模为|AB →|.②字母表示法:可以用字母a ,b ,c ,…表示,模为|a |,|b |,|c |,…. 2.几类特殊的向量(1)零向量:始点和终点相同的向量称为零向量,记作0. (2)单位向量:模等于1的向量称为单位向量.(3)相等向量:大小相等、方向相同的向量称为相等向量. (4)相反向量:方向相反,大小相等的向量称为相反向量.(5)平行向量:方向相同或者相反的两个非零向量互相平行,此时表示这两个非零向量的有向线段所在的直线平行或重合.通常规定零向量与任意向量平行.(6)共面向量:一般地,空间中的多个向量,如果表示它们的有向线段通过平移后,都能在同一平面内,则称这些向量共面.思考:空间中任意两个向量共面吗?空间中任意三个向量呢?[提示] 空间中任意两个向量都是共面的,但空间中任意三个向量不一定共面.3.空间向量的线性运算类似于平面向量,可以定义空间向量的加法、减法及数乘运算.图1 图2(1)如图1,OB →=OA →+AB →=a +b ,CA →=OA →-OC →=a -b . (2)如图2,DA →+DC →+DD 1→=DB 1→.即三个不共面向量的和,等于以这三个向量为邻边的平行六面体中,与这三个向量有共同始点的对角线所表示的向量.(3)给定一个实数λ与任意一个空间向量a,则实数λ与空间向量a相乘的运算称为数乘向量,记作λa.其中:①当λ≠0且a≠0时,λa的模为|λ||a|,而且λa的方向:(ⅰ)当λ>0时,与a的方向相同;(ⅱ)当λ<0时,与a的方向相反.②当λ=0或a=0时,λa=0.(4)空间向量的线性运算满足如下运算律:对于实数λ与μ,向量a与b,有①λa+μa=(λ+μ)a;②λ(a+b)=λa+λb.4.空间向量的数量积(1)空间向量的夹角如果〈a,b〉=π2,那么向量a,b互相垂直,记作a⊥b.(2)空间向量数量积的定义:已知两个非零向量a,b,则|a||b|cos〈a,b〉叫做a,b的数量积(或内积),记作a·b.(3)数量积的几何意义①向量的投影如图所示,过向量a的始点和终点分别向b所在的直线作垂线,即可得到向量a在向量b上的投影a′.②数量积的几何意义:a与b的数量积等于a在b上的投影a′的数量与b 的长度的乘积,特别地,a与单位向量e的数量积等于a在e上的投影a′的数量.规定零向量与任意向量的数量积为0.(4)空间向量数量积的性质:①a⊥b⇔a·b=0;②a·a=|a|2=a2;③|a·b|≤|a||b|;④(λa)·b=λ(a·b);⑤a·b=b·a(交换律);⑥(a+b)·c=a·c+b·c(分配律).1.思考辨析(正确的打“√”,错误的打“×”)(1)同平面向量一样,任意两个空间向量都不能比较大小.()(2)两个相反向量的和为零向量.()(3)只有零向量的模等于0.()(4)空间中任意两个单位向量必相等.()[答案](1)√(2)√(3)√(4)×[提示]大小相等,而且方向相同的向量才是相等向量;大小相等,方向相反的两个向量称为相反向量;任意两个单位向量的大小相等,但方向不一定相同,故不一定相等.2.下列命题中正确的是()A.(a·b)2=a2·b2B.|a·b|≤|a||b|C.(a·b)·c=a·(b·c)D.若a⊥(b-c),则a·b=a·c=0B[对于A项,左边=|a|2|b|2cos2〈a,b〉,右边=|a|2|b|2,∴左边≤右边,故A 错误.对于C 项,数量积不满足结合律,∴C 错误.在D 中,a·(b -c )=0,∴a·b -a·c =0,∴a·b =a·c ,但a·b 与a·c 不一定等于零,故D 错误.对于B 项,∵a·b =|a||b |cos 〈a ,b 〉,-1≤cos 〈a ,b 〉≤1, ∴|a·b |≤|a||b |,故B 正确.] 3.(教材P 11练习A ②改编)化简:(1)12(a +2b -3c )+5⎝ ⎛⎭⎪⎫23a -12b +23c =________;(2)(AB →-CD →)-(AC →-BD →)=________.(1)236a -32b +116c (2)0 [(1)原式=12a +b -32c +103a -52b +103c =236a -32b +116c .(2)原式=AB →-AC →-CD →+BD →=CB →+BD →-CD → =CD →-CD → =0.]4.如图所示,在正方体ABCD -A 1B 1C 1D 1中,则(1)〈AB →,A 1C 1→〉=________; (2)〈AB →,C 1A 1→〉=________; (3)〈AB →,A 1D 1→〉=________.(1)45° (2)135° (3)90°[(1)因为A 1C 1→=AC →,所以〈AB →,A 1C 1→〉=〈AB →,AC →〉. 又∠CAB =45°,所以〈AB →,A 1C 1→〉=45°.(2)〈AB →,C 1A 1→〉=180°-〈AB →,A 1C 1→〉=135°. (3)〈AB →,A 1D 1→〉=90°.]空间向量的概念及简单应用【例1】 (1)下列说法中正确的是 ( )A .若|a |=|b |,则a ,b 的长度相同,方向相同或相反B .若向量a 是向量b 的相反向量,则|a |=|b |C .空间向量的减法满足结合律D .在四边形ABCD 中,一定有AB →+AD →=AC →B [|a |=|b |,说明a 与b 模长相等,但方向不确定.对于a 的相反向量b =-a ,故|a |=|b |,从而B 正确.只定义加法具有结合律,减法不具有结合律;一般的四边形不具有AB →+AD →=AC →,只有平行四边形才能成立.故A 、C 、D 均不正确.](2)如图所示,以长方体ABCD -A 1B 1C 1D 1的八个顶点的两点为始点和终点的向量中:①试写出与AB →是相等向量的所有向量; ②试写出AA 1→的相反向量;③若AB =AD =2,AA 1=1,求向量AC 1→的模.[解] ①与向量AB →是相等向量的(除它自身之外)有A 1B 1→,DC →及D 1C 1→,共3个. ②向量AA 1→的相反向量为A 1A →,B 1B →,C 1C →,D 1D →. ③|AC 1→|=|AB →|2+|AD →|2+|AA 1→|2=22+22+12=9=3.1.两个向量的模相等,则它们的长度相等,但方向不确定,即两个向量(非零向量)的模相等是两个向量相等的必要不充分条件.2.熟练掌握空间向量的有关概念、向量的加减法的运算法则及向量加法的运算律是解决好这类问题的关键.[跟进训练] 1.给出以下结论:①两个空间向量相等,则它们的始点和终点分别相同; ②在正方体ABCD -A 1B 1C 1D 1中,必有AC →=A 1C 1→;③若空间向量m ,n ,p 满足m =n ,n =p ,则m =p .其中不正确的个数是( ) A .0 B .1 C .2D .3B [两个空间向量相等,它们的始点、终点不一定相同,故①不正确;在正方体ABCD -A 1B 1C 1D 1中,必有AC →=A 1C 1→成立,故②正确;③显然正确.故选B .]2.在平行六面体ABCD -A 1B 1C 1D 1中,下列四对向量:①AB →与C 1D 1→;②AC 1→与BD 1→;③AD 1→与C 1B →;④A 1D →与B 1C →.其中互为相反向量的有n 对,则n 等于( )A .1B .2C .3D .4B [对于①AB →与C 1D 1→,③AD 1→与C 1B →长度相等,方向相反,互为相反向量;对于②AC 1→与BD 1→长度相等,方向不相反;对于④A 1D →与B 1C →长度相等,方向相同.故互为相反向量的有2对.]空间向量的线性运算【例2】 (1)如图所示,在三棱柱ABC -A 1B 1C 1中,N 是A 1B 的中点,若CA→=a ,CB →=b ,CC 1→=c ,则CN →=( )A .12(a +b -c ) B .12(a +b +c )C .a +b +12c D .a +12(b +c )(2)如图,已知长方体ABCD -A ′B ′C ′D ′,化简下列向量表达式,并在图中标出化简结果的向量.①AA ′→-CB →; ②AA ′→+AB →+B ′C ′→.(1)B [若AB 中点为D ,CN →=CD →+DN →=12(a +b +c ),故选B .](2)[解] ①AA ′→-CB →=AA ′→-DA →=AA ′→+AD →=AD ′→. ②AA ′→+AB →+B ′C ′→=(AA ′→+AB →)+B ′C ′→=AB ′→+B ′C ′→=AC ′→. 向量AD ′→、AC ′→如图所示:1.首尾顺次相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →.2.首尾顺次相接的若干向量若构成一个封闭图形,则它们的和为0.如图,OB →+BC →+CD →+DE →+EF →+FG →+GH →+HO →=0.[跟进训练]3.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N →;(3)MP →+NC 1→. [解] (1)∵P 是C 1D 1的中点,∴AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)∵N 是BC 的中点,∴A 1N →=A 1A →+AB →+BN →=-a +b +12BC →=-a +b +12AD →=-a +b +12c . (3)∵M 是AA 1的中点, ∴MP →=MA →+AP →=12A 1A →+AP →=-12a +⎝ ⎛⎭⎪⎫a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,∴MP →+NC 1→=⎝ ⎛⎭⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎫a +12c=32a +12b +32c .数量积的运算及应用[探究问题]1.空间两个向量夹角定义的要点是什么?[提示] (1)任意两个空间向量都是共面的,故空间向量夹角的定义与平面向量夹角的定义一样.(2)作空间两个向量夹角时要把两个向量的起点放在一起. (3)两个空间向量的夹角是唯一的,且〈a ,b 〉=〈b ,a 〉.2.联想空间向量数量积的定义,如何求两个向量a ,b 的夹角?如何求|a +b |?[提示] 借助cos 〈a ,b 〉=a ·b |a |·|b |,求向量a ,b 的夹角.借助|a +b |=(a +b )2=a 2+2a ·b +b 2求模.【例3】 如图所示,已知正四面体OABC 的棱长为1,点E ,F 分别是OA ,OC 的中点.求下列向量的数量积:(1)OA →·OB →; (2)EF →·CB →;(3)(OA →+OB →)·(CA →+CB →).[思路探究] 根据数量积的定义进行计算,求出每组向量中每个向量的模以及两向量的夹角,注意充分结合正四面体的特征. [解] (1)正四面体的棱长为1,则|OA →|=|OB →|=1.△OAB 为等边三角形,∠AOB =60°,于是:OA →·OB →=|OA →||OB →|cos 〈OA →,OB →〉 =|OA →||OB →|cos ∠AOB =1×1×cos 60°=12.(2)由于E ,F 分别是OA ,OC 的中点,所以EF 12AC , 于是EF →·CB →=|EF →||CB →|cos 〈EF →,CB →〉=12|CA →|·|CB →|cos 〈AC →,CB →〉=12×1×1×cos 〈AC →,CB →〉=12×1×1×cos 120°=-14.(3)(OA →+OB →)·(CA →+CB →)=(OA →+OB →)·(OA →-OC →+OB →-OC →)=(OA →+OB →)·(OA →+OB →-2OC →)=OA →2+OA →·OB →-2OA →·OC →+OB →·OA →+OB →2-2OB →·OC →=1+12-2×12+12+1-2×12=1.1.(变条件,变结论)若H 为BC 的中点,其他条件不变,求EH 的长.[解] 由题意知OH →=12(OB →+OC →),OE →=12OA →,∴EH →=OH →-OE →= 12(OB →+OC →-OA →), ∴|EH →|2=14(OB 2→+OC →2+OA →2+2OB →·OC →-2OB →·OA →-2OC →·OA →),又|OB →|=|OC →|=|OA →|=1.且〈OB →,OC →〉=60°,〈OB →,OA →〉=60°,〈OC →,OA →〉=60°.∴OB →·OC →=12,OB →·OA →=12,OC →·OA →=12.∴|EH →|2=14⎝ ⎛⎭⎪⎫1+1+1+2×12-2×12-2×12=12, 即|EH →|=22,所以EH 的长为22.2.(变结论)求异面直线OH 与BE 所成角的余弦值.[解] 在△AOB 及△BOC 中,易知BE =OH =32,又BE →=12OA →-OB →,OH →=12(OB →+OC →),∴BE →·OH →=14OA →·OB →+14OA →·OC →-12OB →2-12OB →·OC →=14×12+14×12-12-12×12=-12.∴cos 〈BE →,OH →〉=BE →·OH →|BE →||OH →|=-23, 又异面直线所成角的范围为⎝ ⎛⎦⎥⎤0,π2,故异面直线OH 与BE 所成角的余弦值为23.1.在几何体中求空间向量的数量积的步骤(1)首先将各向量分解成已知模和夹角的向量的组合形式;(2)利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积;(3)根据向量的方向,正确求出向量的夹角及向量的模;(4)代入公式a ·b =|a |·|b |·cos 〈a ,b 〉求解.2.非零向量a 与b 共线的条件是a ·b =±|a |·|b |.提醒:在求两个向量夹角时,要注意向量的方向.如本例中〈EF →,CB →〉=〈AC →,CB →〉=120°,易错写成60°,为避免出错,应结合图形进行计算.一、知识必备1.空间向量的基本概念,特别注意单位向量和零向量.单位向量的长度为1,方向任意.零向量的方向是任意的,与任意向量平行,零向量与任意向量的数量积为0.2.向量的线性运算包括向量的加法、减法与数乘运算.加减法运算遵循平行四边形法则和三角形法则,向量的数量积运算要注意两个向量的夹角.二、方法必备1.数形结合法:求两向量夹角时,一定要结合图形确定角的位置.2.转化法:在求异面直线所成的角时要转化为两个向量的夹角,结合异面直线所成角的范围确定.1.在正方体ABCD -A 1B 1C 1D 1中,下列各对向量夹角为45°的是( )A .AB →与A 1C 1→ B .AB →与CA →C .AB →与A 1D 1→ D .AB →与B 1A 1→A [A 、B 、C 、D 四个选项中两个向量的夹角依次是45°,135°,90°,180°,故选A .]2.在棱长为2的正四面体ABCD 中,若E 、F 分别是BC 、AD 的中点,则AE →·AF→等于( ) A .0 B .12 C .-1 D .1D [AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14×(2+2)=1.]3.化简:2AB →+2BC →+3CD →+3DA →+AC →=________.0 [2AB →+2BC →+3CD →+3DA →+AC →=2(AB →+BC →+CD →+DA →)+CD →+DA →+AC →=0+CA →+AC →=0+0=0.]4.已知|a |=13,|b |=19,|a +b |=24,则|a -b |=________.22 [∵|a +b |2=a 2+2a ·b +b 2=132+2a·b +192=242,∴2a·b =46,|a -b |2=a 2-2a·b +b 2=530-46=484.∴|a -b |=22.]高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
高考数学必背公式
高考数学必背公式包括但不限于:
1. 圆的公式:
圆体积=4/3(pi)(r^3)
面积=(pi)(r^2)
周长=2(pi)r
圆的标准方程(x-a)2+(y-b)2=r2,其中(a,b)是圆心坐标
圆的一般方程x2+y2+dx+ey+f=0,其中d2+e2-4f>0
2. 椭圆公式:
椭圆周长公式:l=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差
椭圆面积公式:s=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
3. 两角和公式、倍角公式、半角公式、和差化积等三角函数公式。
4. 等差数列、等比数列等数列公式。
5. 抛物线等几何图形公式。
以上信息仅供参考,建议查阅高中数学教材或教辅资料,获取更准确全面的信息。
新教材高一数学必修第—册知识点第一章 集合与常用逻辑用语1元素:研究的对象统称为元素,用小写拉丁字母表示,元素三大性质:互异性,确定性,无 ,,,c b a 序性.2集合:一些元素组成的总体叫做集合,简称集,用大写拉丁字母表示. ,,,C B A 3集合相等:两个集合的元素一样,记作.B A ,B A =4元素与集合的关系:①属于:;②不属于:.A a ∈A a ∉5常用的数集及其记法:自然数集;正整数集;整数集;有理数集;实数集.N +N N 或*Z Q R 6集合的表示方法:①列举法:把集合中的全部元素一一列举出来,并用花括号括起来表示集合的方法;②描述法:把集合中全部具有共同特征的元素所组成的集合表示为的方法; )(x P x })(|{x P A x ∈③图示法(图):用平面上封闭曲线的内部代表集合的方法.Venn 7集合间的根本关系:子集:对于两个集合,如果集合中任意一个元素都是集合中的元素,就B A ,A B 称集合为集合的子集,记作,读作包含于;真子集:如果,但存在元素,且A A A B B A ⊆B x ∈A x ∉,就称集合是集合的真子集,记作,读作真包含于.A B A B A B 8空集:不含任何元素的集合,用表示,空集的性质,空集是任何集合的子集,是任何集合的真子∅集.9集合的根本运算:并集;交集; },|{B x A x x B A ∈∈=或 },|{B x A x x B A ∈∈=且 补集(为全集,全集是含有所研究问题中涉及的全部元素). },|{A x U x x A C U ∉∈=且U 运算性质:;;;;B A B B A ⊆⇔= B A A B A ⊆⇔= A A =∅ ∅=∅ A ,.∅==∅=U C U C A A C C U U U U ,,)()()()(),()()(B A C B C A C B A C B C A C U U U U U U ==10充分条件与必要条件:一般地,“假设p ,则q 〞为真命题,p 可以推出q ,记作,称p 是q 的q p ⇒充分条件,q 是p 的必要条件;p 是q 的条件的四种类型:假设,则p 是q 的充分不必要q q p ,⇒p 条件;假设,则p 是q 的必要充分不条件;假设,则p 是q 的充要条件;p p q ,⇒q q p ⇔假设,,则p 是q 的既不充分也不必要条件. pq q p 11全称量词及全称量词命题:短语“全部的〞,“任意一个〞在逻辑中叫做全称量词,并用符号表∀示,含有全称量词的命题成为全称量词命题.12存在量词及存在量词命题:短语“存在一个〞,“至少有一个〞在逻辑中叫做存在量词,并用符号∃表示,含有存在量词的命题成为存在量词命题.13全称量词命题与存在量词命题的否认:全称量词命题的否认是存在量词命题;存在量词命题的否认是全称量词命题.第二章一元二次函数、方程不等式1不等式的性质不等式的性质: ①对称性;②传递性;③可加性a b b a >⇔<,a b b c a c >>⇒>;④可乘性,;a b a c b c >⇒+>+,0a b c ac bc >>⇒>,0a b c ac bc ><⇒<⑤同向可加性;⑥同向可乘性; ,a b c d a c b d >>⇒+>+0,0a b c d ac bd >>>>⇒>⑦可乘方性;()0,1n n a b a b n n >>⇒>∈N >⑧可开方性.⑨可倒数性. )0,1a b n n >>⇒>∈N >ba b a 110<⇒>>2重要不等式:假设,则,当且仅当时等号成立.R b a ∈,ab b a 222≥+b a =3根本不等式:假设,,则,即,当且仅当时等号成立. 0a >0b >a b +≥2a b+≥b a =4不等式链:假设,,则,当且仅当时等号成立;一正0a >0b >ba ab b a b a 1122222+≥≥+≥+b a =二定三相等.5一元二次不等式:只含有一个未知数,并且未知数的最gao 次数是的不等式. 26第三章 函数的概念与性质1函数的概念:一般地,设是非空的实数集,如果对于集合中的任意一个数x ,按照某种确定的B A ,A 对应关系,在集合中都有唯—确定的数y 与它对应,那么就称为从集合到集合的一f B B A f →:A B 个函数,记作,其中,x 叫做自变量,x 的取值范围叫做函数的定义域,与x 的值相对A x x f y ∈=),(A 应的y 值叫做函数值,函数值的集合叫做函数的值域,值域是集合的子集. }|)({A x x f ∈B 2函数的三要素:定义域、对应关系、值域. 求函数定义域的原则:(1)假设为整式,则其定义域是;()f x R (2)假设为分式,则其定义域是使分母不为0的实数集合;()f x (3)假设是二次根式(偶次根式),则其定义域是使根号内的式子不小于0的实数集合; ()f x (4)假设,则其定义域是; ()0f x x =}{0x x ≠(5)假设,则其定义域是;()()0,1x f x a a a =>≠R (6)假设,则其定义域是; ()()log 0,1a f x x a a =>≠}{0x x >(7)假设,则其定义域是;x x f tan )(=},2|{Z k k x x ∈+≠ππ求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数. 6函数的单调性:(1)单调递增:设任意(,I 是的定义域),当时,有.特别的,当D x x ∈21,I D ⊆()f x 12x x <12()()f x f x <函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意(,I 是的定义域),当时,有.特别的,当D x x ∈21,I D ⊆()f x 12x x <12()()f x f x >函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间. 8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数的定义域为,如果存在实数满足:,都有)(x f y =I M I x ∈∀;使得,那么称是函数的最大(小)值. ))(()(M x f M x f ≥≤I x ∈∃0M x f =)(0M10函数的奇偶性:偶函数:一般地,设函数的定义域为,如果,都有,且,那么函)(x f y =I I x ∈∀I x ∈-)()(x f x f =-数叫做偶函数;偶函数的图象关于y 轴对称;偶函数满足;)(x f y =|)(|)()(x f x f x f ==-奇函数:一般地,设函数的定义域为,如果,都有,且,那么)(x f y =I I x ∈∀I x ∈-)()(x f x f -=-函数叫做奇函数;奇函数的图象关于原点对称;假设奇函数的定义域中有零,则其函数图象必过原点,即)(x f y =.(0)0f =11幂函数:一般地,函数叫做幂函数,其中是自变量,是常数. αx y =x α12幂函数的性质:()f x x α=①全部的幂函数在都有定义,并且图象都通过点;()0,+∞()1,1②如果,则幂函数的图象过原点,并且在区间上是增函数;0α>[)0,+∞③如果,则幂函数的图象在区间上是减函数,在第—象限内,当从右边趋向于原点时,0α<()0,+∞x 图象在轴右方无限地逼近轴,当趋向于时,图象在轴上方无限地逼近轴; y y x +∞x x ④在直线的右侧,幂函数图象“指大图高〞; 1=x ⑤幂函数图象不出现于第四象限. 第四章 指数函数与对数函数1n 次方根与分数指数幂、指数幂运算性质(1)假设,则;; n x a =))n x n=⎪⎩为奇数为偶数()()a n a n ⎧⎪=⎨⎪⎩为奇数为偶数(3);(4);na =*0,,,1)m na a m n N n =>∈>且(5);*0,,1)m naa m n N n -=>∈>,且(6)的正分数指数幂为,的负分数指数幂没有意义.000(7);()0,,r s r sa a a a r s R +⋅=>∈(8);()()0,,r s rsa a a r s R =>∈(9).()()0,0,,rrrab a b a b r s R =⋅>>∈2对数、对数运算性质(1);(2); ()log 0,1xa a N x N a a =⇔=>≠()log 100,1a a a =>≠(3);(4);;()log 10,1a a a a =>≠()log 0,1a Na N a a =>≠(5);()log 0,1m a a m a a =>≠(6);()log ()log log 0,1,0,0a a a MN M N a a =+>≠M >N >(7); ()log log log 0,1,0,0aa a MM N a a N=->≠M >N >(8);()log log 0,1,0n a a M n M a a =⋅>≠M >(9)换底公式; ()log log 0,1,0,0,1log c a c bb a a bc c a=>≠>>≠(10); ()log log 0,1,,*m na a nb b a a n m N m =>≠∈(11);()1log log 0,1,0,aa M a a M n R n=>≠>∈(12). ()log log log 10,1,0,1,0,1a b c b c a a a b b c c ⋅⋅=>≠>≠>≠3指数函数及其性质:)1,0(≠>=a a a y x 且①定义域为; ②值域为;③过定点;(),-∞+∞()0,+∞()0,1④单调性:当时,函数在上是增函数;当时,函数在上是减函数; 1a >()f x R 01a <<()f x R ⑤在y 轴右侧,指数函数的图象“底大图高〞. 4对数函数及其性质:)1,0(log ≠>=a a x y a 且①定义域为;②值域为;③过定点;()0,+∞(),-∞+∞()1,0④单调性:当时,函数在上是增函数;当时,函数在上是减函1a >()f x ()0,+∞01a <<()f x ()0,+∞数;⑤在直线的右侧,对数函数的图象“底大图低〞.1=x 5指数函数与对数函数互为反函数,它们的图象关于直线对称. x a y =)1,0(log ≠>=a a x y a 且x y =6不同函数增长的差异:线性函数模型的增长特点是直线上升,其增长速度不变;指数)0(>+=k b kx y 函数模型的增长特点是随着自变量的增大,函数值增大的速度越来越快,呈“指数爆炸〞状)1(>=a a y x 态;对数函数模型的增长特点是随着自变量的增大,函数值增大速度越来越慢,即增长)1(log >=a x y a 速度平缓;幂函数模型的增长速度介于指数函数和对数函数之间.)0(>=n x y n 7函数的零点:在函数的定义域内,使得的实数叫做函数的零点.)(x f y =0)(=x f x 8零点存在性定理:如果函数在区间上的图象是连续不断的一条曲线,且有,()f x [],a b ()()0f a f b ⋅<那么函数在区间内至少有一个零点,即存在,使得,这个也就是方程()y f x =(),a b (),c a b ∈()0f c =c 的根.()0f x =9二分法:对于区间上图象连续不断且的函数,通过不断把它的零点所在],[b a ()()0f a f b ⋅<)(x f y =区间一分为二,使得区间的两个端点逐渐逼近零点,进而得到零点近似值的方法.10给定准确度,用二分法求函数零点近似值的步骤: ε)(x f y =0x ⑴确定零点的初始区间,验证; 0x [],a b ()()0f a f b ⋅<⑵求区间的中点;[],a b c ⑶计算,并进一步确定零点所在的区间; )(c f ①假设,则就是函数的零点;0)(=c f c ②假设(此时),则令; 0)()(<c f a f ),(0c a x ∈c b =③假设(此时),则令;0)()(<b f c f ),(0b c x ∈c a =⑷推断是否到达准确度:假设,则得到零点的近似值(或);否则重复上面的⑵至⑷. εa b ε-<a b 第五章 三角函数1任意角的分类:按终边的旋转方向分: ⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2象限角:角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第αx α几象限角.第—象限角的集合为;{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为;{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为; {}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z角的终边不在任何一个象限,就称这个角不属于任何一个象限 α终边在轴非负半轴的角的集合; x },2|{Z k k ∈=παα终边在轴非正半轴的角的集合; x },2|{Z k k ∈+=ππαα终边在轴非负半轴的角的集合;y },22|{Z k k ∈+=ππαα终边在轴非正半轴的角的集合;y },22|{Z k k ∈+-=ππαα终边在轴的角的集合;x },|{Z k k ∈=παα终边在轴的角的集合;y },2|{Z k k ∈+=ππαα终边在坐标轴的角的集合; },2|{Z k k ∈=παα2终边相同的角:与角终边相同的角的集合为.α{}360,k k ββα=⋅+∈Z 3弧度制:长度等于半径长的弧所对的圆心角叫做弧度.14角度与弧度互化公式:,,.2360π=1180π=180157.3π⎛⎫=≈ ⎪⎝⎭5扇形公式:半径为的圆的圆心角所对弧的长为,则角的弧度数的绝对值是.假设扇形r αl αlrα=的圆心角为,半径为,弧长为,周长为,面积为,则,,()αα为弧度制r l C S l r α=2C r l =+.21122S lr r α==6三角函数的概念:设是一个任意大小的角,的终边上任意一点P 的坐标是,它与原点的距αα(),x y离是,则,,. ()0r r =>sin y r α=cos x r α=()tan 0yx xα=≠7三角函数的符号:一全正二正弦三正切四余弦. 8记忆特别角的三角函数值:α 15 30 45 60 75 90 120 135 150180 270 360 α 12π 6π 4π 3π 125π 2π 32π 43π 65π π 23ππ2 αsin 426- 21 22 23 426+ 1 23 22 210 1-0 αcos 426+ 23 22 21 426-0 21- 22- 23-1-01 αtan 32- 1 3 32+不存在 3- 1- 33-0 不存在9同角三角函数的根本关系:,;()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=- .()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫==⎪⎝⎭10诱导公式口诀:奇变偶不变,符号看象限.,,.()()1sin 2sin k παα+=()cos 2cos k παα+=()()tan 2tan k k παα+=∈Z ,,. ()()2sin sin παα+=-()cos cos παα+=-()tan tan παα+=,,.()()3sin sin αα-=-()cos cos αα-=()tan tan αα-=-,,. ()()4sin sin παα-=()cos cos παα-=-()tan tan παα-=-,.,. ()5sin cos 2παα⎛⎫-=⎪⎝⎭cos sin 2παα⎛⎫-= ⎪⎝⎭()6sin cos 2παα⎛⎫+= ⎪⎝⎭cos sin 2παα⎛⎫+=- ⎪⎝⎭11三角函数的图象与性质:sin y x = cos y x =tan y x =图象定义域RR,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R 函数性质12两角和差的正弦、余弦、正切公式:(1);(2); ()cos cos cos sin sin αβαβαβ-=+()cos cos cos sin sin αβαβαβ+=-(3);(4);()sin sin cos cos sin αβαβαβ-=-()sin sin cos cos sin αβαβαβ+=+(5);()tan tan tan 1tan tan αβαβαβ--=+()()tan tan tan 1tan tan αβαβαβ-=-+(6). ()tan tan tan 1tan tan αβαβαβ++=-()()tan tan tan 1tan tan αβαβαβ+=+-13二倍角公式:(1);(2);sin 22sin cos ααα=2222cos 2cos sin 2cos 112sin ααααα=-=-=-(,);(3);2cos 21cos 2αα+=21cos 2sin 2αα-=22tan tan 21tan ααα=-14半角公式:(1);(2);(3);(4)2cos 12sin αα-±=2cos 12cos αα+±=αααcos 1cos 12tan +-±=αααααcos 1sin sin cos 12tan +=-=15辅助角公式:.的终边上在角点其中ϕϕϕ),(,tan ),sin(cos sin 22b a abx b a x b x a =±+=±16函数的图象与性质:b x A y ++=)sin(ϕω图象变换:先平移后伸缩:函数的图象上全部点向左(右)平移个单位长度,得到函数sin y x =ϕ的图象;再将函数的图象上全部点的横坐标伸长(缩短)到原来的倍(纵坐()sin y x ϕ=+()sin y x ϕ=+1ω标不变),得到函数的图象;再将函数的图象上全部点的纵坐标伸长(缩()sin y x ωϕ=+()sin y x ωϕ=+短)到原来的倍(横坐标不变),得到函数的图象. A ()sin y x ωϕ=A +先伸缩后平移:函数的图象上全部点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函sin y x =1ω最值当时,22x k ππ=+()k ∈Z ;当max1y =22x k ππ=-时,.()k ∈Z min 1y =-当时,()2x k k π=∈Z ;当max 1y =2x k ππ=+时,.()k ∈Z min 1y =-既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数奇函数单调性在 2,222k k ππππ⎡⎤-+⎢⎥⎣⎦上是增函数;在()k ∈Z 32,222k k ππππ⎡⎤++⎢⎥⎣⎦上是减函数.()k ∈Z 在上是[]()2,2k k k πππ-∈Z 增函数;在[]2,2k k πππ+上是减函数.()k ∈Z 在,22k k ππππ⎛⎫-+ ⎪⎝⎭上是增函数.()k ∈Z 对称性对称中心()(),0k k π∈Z 对称轴()2x k k ππ=+∈Z 对称中心 (),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z 对称中心 (),02k k π⎛⎫∈Z⎪⎝⎭无对称轴数的图象;再将函数的图象上全部点向左(右)平移个单位长度,得到函数sin y x ω=sin y x ω=ϕω的图象;再将函数的图象上全部点的纵坐标伸长(缩短)到原来的倍(横()sin y x ωϕ=+()sin y x ωϕ=+A 坐标不变),得到函数的图象. ()sin y x ωϕ=A +五点法画图函数的性质:()()sin 0,0y x ωϕω=A +A >>①定义域为R ;②值域为;③单调性:依据函数的单调区间求函数的单调区间; ],[A A -x y sin =④奇偶性:当时,函数是奇函数;当时,函数Z k k ∈=,πϕ()sin y x ωϕ=A +Z k k ∈+=,2ππϕ是偶函数;⑤周期:;⑥对称性:依据函数的对称性研究函数的对称()sin y x ωϕ=A +ωπ2=T x y sin =性12π17函数的应用B x A y ++=)sin(ϕω①振幅:A ;②周期:;③频率:;④相位:;⑤初相:.2πωT =12f ωπ==T x ωϕ+ϕ⑥最值:函数,当时,取得最小值为 ;当时,取得最大值为B x A y ++=)sin(ϕω1x x =min y 2x x =maxy ,则,,.()max min 12y y A =-()max min 12y y B =+()21122x x x x T=-<。
第2章 直线和圆的方程§2.1直线的倾斜角与斜率1.倾斜角与斜率:倾斜角:当直线l 与x 轴相交时,以x 轴为基准,x 轴正向和直线l 向上的方向之间所成的角α叫直线的倾斜角,取值范围为0180α︒︒≤<.斜率:直线的倾斜角α的正切值叫做这条直线的斜率.斜率通常用k 来表示.斜率k 公式:如果直线经过两点()11122212(,),(,),P x y P x y x x ≠,则1212tan x x y y k --==α. 直线的方向向量:斜率为k 的直线的一个方向向量是()1,k ,若斜率为k 的直线的一个方向向量的坐标为(,)x y ,则y k x=. 2.两条直线平行和垂直的判定斜率分别为12k k ,的两条不重合的直线12,l l ,有1212//l l k k ⇔=.斜率分别为12k k ,的两条直线12,l l ,有12121l l k k ⊥⇔=-.§2.2 直线的方程1.直线方程:⑴点斜式:()00x x k y y -=-(不能表示斜率不存在的直线)⑵斜截式:b kx y +=(不能表示斜率不存在的直线,b 是直线与y 轴的交点纵坐标(即y 轴上的截距)) ⑶两点式:1112122121(,)y y x x x x y y y y x x --=≠≠-- ⑷截距式:1x y a b+=(,a b 是直线在,x y 轴上的截距,且0,0a b ≠≠) ⑸一般式:0=++C By Ax (,A B 不同时为0) 2.给定直线方程判断直线的位置关系:(一)对于直线222111:,:b x k y l b x k y l +=+=有:⑴⎩⎨⎧≠=⇔212121//b b k k l l ; ⑵1l 和2l 相交12k k ⇔≠;⑶1l 和2l 重合⎩⎨⎧==⇔2121b b k k ; ⑷12121-=⇔⊥k k l l .(二)对于直线:0l Ax By C ++=:(1)与直线:0l Ax By C ++=垂直的一个向量为(),A B ,平行的一个向量为(),B A -.(2)对于直线0:,0:22221111=++=++C y B x A l C y B x A l 有:⎩⎨⎧≠=⇔1221122121//C B C B B A B A l l ; 1l 和2l 相交1221B A B A ≠⇔;0212121=+⇔⊥B B A A l l .§2.3直线的交点坐标与距离公式(1)两点间距离公式:已知111222(,),(,)P x y P x y ,则()()21221221y y x x P P -+-=.(2)点到直线距离公式: 00(,)P x y 到直线:0l Ax By C ++=的距离d 为:2200B A CBy Ax d +++=.(3)两平行线间的距离公式: 1l :01=++C By Ax 与2l :02=++C By Ax 间的距离d 为:2221B A C C d +-=.§2.4 圆与方程1.圆的方程: ⑴标准方程:()()222r b y a x =-+-(其中圆心为(,)a b ,半径为r .) ⑵一般方程:022=++++F Ey Dx y x .(2240D E F +->).§2.5 直线与圆、圆与圆的位置关系1.直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系:(d 表示圆心到直线的距离) d r >⇔ 0⇔∆<相离;d r =⇔ 0⇔∆=相切;d r <⇔ 0⇔∆>相交.2.直线和圆相交弦长公式:222d r l -=(d 表示圆心到直线的距离)3.两圆位置关系:21O O d =(1)外离:r R d +>;(2)外切:r R d +=;(3)相交:r R d r R +<<-;(4)内切:d R r =-(R r >);(5)内含:r R d -<(R r >.。
可编辑修改精选全文完整版第一章空间向量1、非零向量a ,b 的数量积a ·b =|a ||b |cos 〈a ,b 〉.2.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示 坐标表示 数量积 a ·b a 1b 1+a 2b 2+a 3b 3 共线 a =λb (b ≠0) a 1=λb 1,a 2=λb 2,a 3=λb 3垂直 a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模 |a | a 21+a 22+a 23夹角 〈a ,b 〉(a ≠0,b ≠0) cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 233.在平面中A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.4.在空间中P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间中任意一点. 5.空间位置关系的向量表示位置关系 向量表示直线l 1,l 2的方向向量分别为n 1,n 2 l 1∥l 2n 1∥n 2⇒n 1=λn 2 l 1⊥l 2 n 1⊥n 2⇔n 2·n 2=0直线l 的方向向量为n ,平面α的法向量为m l ∥αn ⊥m ⇔m ·n =0 l ⊥α n ∥m ⇔n =λm平面α、β的法向量分别为n 、m α∥βn ∥m ⇔n =λm α⊥β n ⊥m ⇔n ·m =06.两条异面直线所成角的求法两条异面直线a ,b 的方向向量分别为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a ·b ||a ||b |(其中φ为异面直线a ,b 所成的角).7.直线和平面所成角的求法 如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|n ·e ||n ||e |.8.求二面角的大小θ如图②③,n 1,n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小满足|cos θ|=cos <n 1,n 2 >,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).9.利用空间向量求距离:线面距、面面距均可转化为点面距进行求解.如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为d =|AB →·n ||n |.10.直线的方向向量的确定:A ,B 是l 上任意两点,则AB →及与AB →平行的非零向量均为直线l 的方向向量.11.平面的法向量的确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.第二章 解析几何1.直线的斜率(1)定义:一条直线的倾斜角α的__正切值___叫做这条直线的斜率,斜率常用小写字母k 表示,即k =__tan α___,倾斜角是90°的直线斜率不存在.(2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2)的直线的斜率公式为k =__y 2-y 1x 2-x 1___.2.直线方程的五种形式3.平面内两条直线的位置关系包括__平行、相交、重合___三种情况. (1)两条直线平行对于直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 1∥l 2⇔k 1=k 2,且b 1≠b 2. 对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). (2)两条直线垂直对于直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 1⊥l 2⇔k 1·k 2=-1.对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1⊥l 2⇔__A 1A 2+B 1B 2=0___. 4.两条直线的交点直线l 1和l 2的交点坐标即为两直线方程组成的方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.5.三种距离公式(1)平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2. 特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2.(2)点P (x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2.6.7.d 为圆心(a ,b )到直线l Δ.8.291.当两圆相交(切)时,两圆方程(x 2,y 2项的系数相同)相减便可得公共弦(内公切线)所在的直线方程. 2.过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.3.过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.4.过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在的直线方程为x 0x +y 0y =r 2.5.直线与圆相交时,弦心距d ,半径r ,弦长的一半12l 满足关系式r 2=d 2+(12l )2.。
章末复习一、两直线的平行与垂直 1.判断两直线平行、垂直的方法(1)若不重合的直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1=k 2⇔l 1∥l 2. (2) 若直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1·k 2=-1⇔l 1⊥l 2. (讨论两直线平行、垂直不要遗漏直线斜率不存在的情况)2.讨论两直线的平行、垂直关系,可以提升学生的逻辑推理素养. 例1 (1)已知A ⎝⎛⎭⎪⎫1,-a +13,B ⎝ ⎛⎭⎪⎫0,-13,C (2-2a ,1),D (-a ,0)四点,若直线AB 与直线CD 平行,则a =________.答案 3解析 k AB =-13+a +130-1=-a3,当2-2a =-a ,即a =2时,k AB =-23,CD 的斜率不存在.∴AB 和CD 不平行;当a ≠2时,k CD =0-1-a -2+2a =12-a.由k AB =k CD ,得-a 3=12-a,即a 2-2a -3=0.∴a =3或a =-1.当a =3时,k AB =-1,k BD =0+13-3=-19≠k AB ,∴AB 与CD 平行.当a =-1时,k AB =13,k BC =1+134=13,k CD =1-04-1=13,∴AB 与CD 重合.∴当a =3时,直线AB 和直线CD 平行.(2)若点A (4,-1)在直线l 1:ax -y +1=0上,则l 1与l 2:2x -y -3=0的位置关系是________. 答案 垂直解析 将点A (4,-1)的坐标代入ax -y +1=0, 得a =-12,则12·l l k k =-12×2=-1,∴l 1⊥l 2. 反思感悟 一般式方程下两直线的平行与垂直:已知两直线的方程为l 1:A 1x +B 1y +C 1=0(A 1,B 1不同时为0),l 2:A 2x +B 2y +C 2=0(A 2,B 2不同时为0),则l 1∥l 2⇔A 1B 2-A 2B 1=0且C 1B 2-C 2B 1≠0,l 1⊥l 2⇔A 1A 2+B 1B 2=0.跟踪训练1 (1)已知直线l 1:ax -3y +1=0,l 2:2x +(a +1)y +1=0.若l 1⊥l 2,则实数a 的值为________. 答案 -3(2)已知两直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,若l 1∥l 2,则m =________. 答案 -1解析 因为直线x +my +6=0与(m -2)x +3y +2m =0平行,所以⎩⎪⎨⎪⎧1×3-m m -2=0,2m ≠6m -2,解得m =-1.二、两直线的交点与距离问题1.两条直线的位置关系的研究以两直线的交点为基础,通过交点与距离涵盖直线的所有问题. 2.两直线的交点与距离问题,培养学生的数学运算的核心素养.例2 (1)若点(1,a )到直线y =x +1的距离是322,则实数a 的值为( )A .-1B .5C .-1或5D .-3或3答案 C解析 ∵点(1,a )到直线y =x +1的距离是322,∴|1-a +1|2=322,即|a -2|=3,解得a =-1或a =5,∴实数a 的值为-1或5.(2)过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,求直线l 的方程.解 设l 1与l 的交点为A (a ,8-2a ),则由题意知,点A 关于点P 的对称点B (-a ,2a -6)在l 2上, 代入l 2的方程得-a -3(2a -6)+10=0, 解得a =4,即点A (4,0)在直线l 上, 所以直线l 的方程为x +4y -4=0. 反思感悟跟踪训练2 (1)设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是关于x 的方程x 2+x -2=0的两个实数根,则这两条直线之间的距离为( ) A .2 3 B. 2 C .2 2 D.322答案 D解析 根据a ,b 是关于x 的方程x 2+x -2=0的两个实数根,可得a +b =-1,ab =-2, ∴a =1,b =-2或a =-2,b =1,∴|a -b |=3, 故两条直线之间的距离d =|a -b |2=32=322.(2)已知直线l 过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且点P (0,4)到直线l 的距离为2,则这样的直线l 的条数为( ) A .0 B .1 C .2 D .3 答案 C解析 方法一 由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2,即直线l 过点(1,2).设点Q (1,2),因为|PQ |=1-02+2-42=5>2,所以满足条件的直线l 有2条.故选C.方法二 依题意,设经过直线l 1与l 2交点的直线l 的方程为2x +3y -8+λ(x -2y +3)=0(λ∈R ),即(2+λ)x +(3-2λ)y +3λ-8=0.由题意得|12-8λ+3λ-8|2+λ2+3-2λ2=2,化简得5λ2-8λ-36=0,解得λ=-2或185,代入得直线l 的方程为y =2或4x -3y +2=0,故选C.三、直线与圆的位置关系 1.直线与圆位置关系的判断方法(1)几何法:设圆心到直线的距离为d ,圆的半径长为r .若d <r ,则直线和圆相交;若d =r ,则直线和圆相切;若d >r ,则直线和圆相离.(2)代数法:联立直线方程与圆的方程组成方程组,消元后得到一个一元二次方程,其判别式为Δ.Δ=0⇔直线与圆相切;Δ>0⇔直线与圆相交;Δ<0⇔直线与圆相离. 2.研究直线与圆的位置关系,集中体现了直观想象和数学运算的核心素养. 例3 已知直线l :2mx -y -8m -3=0和圆C :x 2+y 2-6x +12y +20=0. (1)m ∈R 时,证明l 与C 总相交;(2)m 取何值时,l 被C 截得的弦长最短?求此弦长. (1)证明 直线的方程可化为y +3=2m (x -4), 由点斜式可知,直线恒过点P (4,-3).由于42+(-3)2-6×4+12×(-3)+20=-15<0, 所以点P 在圆内,故直线l 与圆C 总相交. (2)解 圆的方程可化为(x -3)2+(y +6)2=25.如图,当圆心C (3,-6)到直线l 的距离最大时,线段AB 的长度最短.此时PC ⊥l ,又k PC =-3--64-3=3,所以直线l 的斜率为-13,则2m =-13,所以m =-16.在Rt△APC 中,|PC |=10,|AC |=r =5. 所以|AB |=2|AC |2-|PC |2=215.故当m =-16时,l 被C 截得的弦长最短,最短弦长为215.反思感悟 直线与圆问题的类型(1)求切线方程:可以利用待定系数法结合图形或代数法求得.(2)弦长问题:常用几何法(垂径定理),也可用代数法结合弦长公式求解. 跟踪训练3 已知圆C 关于直线x +y +2=0对称,且过点P (-2, 2)和原点O . (1)求圆C 的方程;(2)相互垂直的两条直线l 1,l 2都过点A (-1, 0),若l 1,l 2被圆C 所截得的弦长相等,求此时直线l 1的方程.解 (1)由题意知,直线x +y +2=0过圆C 的圆心,设圆心C (a ,-a -2). 由题意,得(a +2)2+(-a -2-2)2=a 2+(-a -2)2, 解得a =-2.因为圆心C (-2,0),半径r =2, 所以圆C 的方程为(x +2)2+y 2=4.(2)由题意知,直线l 1,l 2的斜率存在且不为0, 设l 1的斜率为k ,则l 2的斜率为-1k,所以l 1:y =k (x +1),即kx -y +k =0,l 2:y =-1k(x +1),即x +ky +1=0.由题意,得圆心C 到直线l 1,l 2的距离相等, 所以|-2k +k |k 2+1=|-2+1|k 2+1,解得k =±1, 所以直线l 1的方程为x -y +1=0或x +y +1=0. 四、圆与圆的位置关系1.圆与圆的位置关系:一般利用圆心间距离与两半径和与差的大小关系判断两圆的位置关系. 2.圆与圆的位置关系的转化,体现直观想象、逻辑推理的数学核心素养. 例4 已知圆C 1:x 2+y 2+4x -4y -5=0与圆C 2:x 2+y 2-8x +4y +7=0. (1)证明圆C 1与圆C 2相切,并求过切点的两圆公切线的方程; (2)求过点(2, 3)且与两圆相切于(1)中切点的圆的方程.解 (1)把圆C 1与圆C 2都化为标准方程形式,得(x +2)2+(y -2)2=13,(x -4)2+(y +2)2=13.圆心与半径长分别为C 1(-2,2),r 1=13;C 2(4,-2),r 2=13.因为|C 1C 2|=-2-42+2+22=213=r 1+r 2,所以圆C 1与圆C 2相切.由⎩⎪⎨⎪⎧x 2+y 2+4x -4y -5=0,x 2+y 2-8x +4y +7=0,得12x -8y -12=0,即3x -2y -3=0,就是过切点的两圆公切线的方程. (2)由圆系方程,可设所求圆的方程为x 2+y 2+4x -4y -5+λ(3x -2y -3)=0.点(2, 3)在此圆上,将点坐标代入方程解得λ=43.所以所求圆的方程为x 2+y 2+4x -4y -5+43(3x -2y -3)=0,即x 2+y 2+8x -203y -9=0.反思感悟 两圆的公共弦问题(1)若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. (2)公共弦长的求法①代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长. ②几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.跟踪训练4 (1)已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A , B 两点,则线段AB 的中垂线方程为________. 答案 x +y -3=0解析 AB 的中垂线即为圆C 1、圆C 2的连心线C 1C 2. 又C 1(3,0),C 2(0,3), 所以C 1C 2所在直线的方程为x +y -3=0.(2)已知圆C 1:x 2+y 2-4x +2y =0与圆C 2:x 2+y 2-2y -4=0. ①求证:两圆相交;②求两圆公共弦所在直线的方程.①证明 圆C 1的方程可化为(x -2)2+(y +1)2=5,圆C 2的方程可化为x 2+(y -1)2=5, ∴C 1(2,-1),C 2(0,1),两圆的半径均为5, ∵|C 1C 2|=2-02+-1-12=22∈(0,25),∴两圆相交.②解 将两圆的方程相减即可得到两圆公共弦所在直线的方程, (x 2+y 2-4x +2y )-(x 2+y 2-2y -4)=0,即x -y -1=0.1.(2019·天津改编)设a ∈R ,直线ax -y +2=0和圆x 2+y 2-4x -2y +1=0相切,则a 的值为________. 答案 34解析 由已知条件可得圆的标准方程为(x -2)2+(y -1)2=4,其圆心为(2,1),半径为2,由直线和圆相切可得|2a -1+2|a 2+1=2,解得a =34. 2.(2017·北京改编)在平面直角坐标系中,点A 在圆C :x 2+y 2-2x -4y +4=0上,点P 的坐标为(1,0),则||AP 的最小值为________. 答案 1解析 x 2+y 2-2x -4y +4=0, 即(x -1)2+(y -2)2=1, 圆心坐标为C (1,2),半径长为1. ∵点P 的坐标为(1,0),∴点P 在圆C 外. 又∵点A 在圆C 上,∴|AP |min =|PC |-1=2-1=1.3.(2017·天津改编)已知点C 在直线l :x =-1上,点F (1,0),以C 为圆心的圆与y 轴的正半轴相切于点A . 若∠FAC =120°,则圆的方程为________________. 答案 (x +1)2+(y -3)2=1解析 由圆心C 在l 上,且圆C 与y 轴正半轴相切,可得点C 的横坐标为-1,圆的半径为1,∠CAO =90°.又因为∠FAC =120°, 所以∠OAF =30°,所以|OA |=3, 所以点C 的纵坐标为 3.所以圆的方程为(x +1)2+(y -3)2=1.4.(2019·江苏改编)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P ,Q ,并修建两段直线型道路PB ,QA .规划要求:线段PB ,QA 上的所有点到点O 的距离均不小于圆O 的半径.已知点A ,B 到直线l 的距离分别为AC 和BD (C ,D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由. 解 (1)如图,过O 作OH ⊥l ,垂足为H .以O 为坐标原点,直线OH 为y 轴,建立如图所示的平面直角坐标系. 因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,-3. 因为AB 为圆O 的直径,AB =10, 所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (-4,-3),直线AB 的斜率为34.因为PB ⊥AB ,所以直线PB 的斜率为-43,直线PB 的方程为y =-43x -253.所以P (-13,9),|PB |=-13+42+9+32=15.所以道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (-4,0),则EO =4<5, 所以P 选在D 处不满足规划要求.②若Q 在D 处,连接AD ,由(1)知D (-4,9),又A (4,3), 所以线段AD :y =-34x +6(-4≤x ≤4).在线段AD 上取点M ⎝⎛⎭⎪⎫3,154,因为|OM |=32+⎝ ⎛⎭⎪⎫1542<32+42=5,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处.。
2.2.4点到直线的距离学习目标核心素养1.掌握点到直线的距离公式并能灵活运用此公式解决距离问题.(重点) 2.会求两条平行直线之间的距离.(重点)3.点到直线的距离公式的推导.(难点) 1.通过点到直线的距离公式的推导,培养逻辑推理的数学核心素养.2.借助点到直线的距离公式与两平行线间的距离公式,提升数学运算的核心素养.在铁路的附近,有一大型仓库,现要修建一条公路与之连接起来,易知从仓库垂直于铁路方向所修的公路最短,将铁路看作一条直线l,仓库看作点P,怎样求得仓库到铁路的最短距离呢?1.点到直线的距离(1)平面内点到直线的距离,等于过这个点作直线的垂线所得垂线段的长度.(2)点P(x0,y0)到直线l:Ax+By+C=0的距离d=|Ax0+By0+C|A2+B2.思考:点P(x0,y0)到直线l1:x=x1的距离是多少?点P(x0,y0)到直线l2:y=y1的距离为多少?[提示]|x0-x1|;|y0-y1|.2.两条平行直线之间的距离(1)两条平行线之间的距离,等于其中一条直线上任意一点到另一条直线的距离.(2)两条平行直线间的距离转化为点到直线的距离.(3)两条平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0之间的距离d=|C1-C2|A2+B2.1.思考辨析(正确的打“√”,错误的打“×”) (1)当点在直线上时,点到直线的距离公式仍适用.( )(2)点P (x 0,y 0)到与x 轴平行的直线y =b (b ≠0)的距离d =y 0-b .( ) (3)两直线x +y =m 与x +y =2n 的距离为|m -2n |2. ( ) (4)两直线x +2y =m 与2x +4y =3n 的距离为|m -3n |5. ( )[答案] (1)√ (2)× (3)√ (4)× [提示] (1)正确. (2)应是d =|y 0-b |. (3)正确.(4)错误.将2x +4y =3n 化为x +2y =32n ,因此距离为⎪⎪⎪⎪⎪⎪m -32n 5.2.(教材P 95练习A ①改编)原点到直线x +2y -5=0的距离是( ) A .2 B .3 C .2 D . 5 D [由点到直线的距离公式得:d =|0+0-5|12+22=5.] 3.分别过点M (-1,5),N (2,3)的两直线均垂直于x 轴,则这两条直线间的距离是 .3 [d =|2-(-1)|=3.]4.两条平行线l 1:3x +4y -7=0和l 2:3x +4y -2=0间的距离为 . 1 [d =|-7-(-2)|32+42=1.] 5.求与直线l :3x -4y -11=0平行且与直线l 距离为2的直线方程. [解] ∵与l 平行的直线方程为3x -4y +c =0. 根据两平行直线间的距离公式得|c -(-11)|32+(-4)2=2,解得c =-1或c =-21. ∴所求方程为:3x -4y -1=0或3x -4y -21=0.点到直线的距离【例1】求过点M(-2,1)且与A(-1,2),B(3,0)两点距离相等的直线的方程.[解]当直线的斜率不存在时,直线为x=-2,它到A、B的距离不相等,故可设直线方程为y-1=k(x+2),即kx-y+2k+1=0.由|-k-2+2k+1|k2+1=|3k+2k+1|k2+1,解得k=0或k=-1 2.所求直线方程为y=1或x+2y=0.点到直线的距离的求解方法(1)求点到直线的距离时,只需把直线方程化为一般式方程,直接应用点到直线的距离公式求解即可.(2)对于与坐标轴平行(或重合)的直线x=a或y=b,求点到它们的距离时,既可以用点到直线的距离公式,也可以直接写成d=|x0-a|或d=|y0-b|.(3)若已知点到直线的距离求参数时,只需根据点到直线的距离公式列方程求解参数即可.[跟进训练]1.求在两坐标轴上截距相等,且到点A(3,1)的距离为2的直线的方程.[解]①当直线过原点时,设直线的方程为y=kx,即kx-y=0.由题意知|3k-1|k2+1=2,解得k=1或k=-17.∴所求直线的方程为x-y=0或x+7y=0.②当直线不经过原点时,设所求直线的方程为xa+ya=1,即x+y-a=0.由题意知|3+1-a|2=2,解得a=2或a=6.∴所求直线的方程为x+y-2=0或x+y-6=0.综上所述,所求直线的方程为x -y =0或x +7y =0或x +y -2=0或x +y -6=0.两条平行线间的距离【例2】 已知直线l 1:2x -7y -8=0,l 2:6x -21y -21=0,l 1与l 2是否平行?若平行,求l 1与l 2间的距离.[解] l 1的斜率为k 1=27,l 2的斜率k 2=621=27. 因为k 1=k 2,且l 1与l 2不重合,所以l 1∥l 2, l 2的方程可化为2x -7y -7=0, 所以l 1与l 2间的距离为d =||-8+722+72=153=5353.求两平行线间距离一般有两种方法(1)转化法:将两平行线间的距离转化为其中一条直线上任意一点到另一条直线的距离.由于这种求法与点的选择无关,因此,选点时,常选取一个特殊点,如直线与坐标轴的交点等,以便于运算.(2)公式法:直接用公式d =|C 1-C 2|A 2+B2,但要注意两直线方程中x ,y 的系数必须分别相同.[跟进训练]2.求与直线l :5x -12y +6=0平行且到l 的距离为2的直线的方程. [解] 法一:设所求直线的方程为5x -12y +m =0, ∵两直线的距离为2,∴|6-m |52+122=2,∴m =32或m =-20.∴所求直线为5x -12y +32=0或5x -12y -20=0. 法二:设所求直线的方程为5x -12y +c =0. 在直线5x -12y +6=0上取一点P 0⎝ ⎛⎭⎪⎫0,12,点P 0到直线5x -12y +c =0的距离为d=⎪⎪⎪⎪⎪⎪-12×12+c52+(-12)2=|c-6|13,由题意得|c-6|13=2,则c=32或c=-20.∴所求直线的方程为5x-12y+32=0或5x-12y-20=0.距离公式的综合应用[探究问题]1.两条互相平行的直线分别过点A(6,2)和B(-3,-1),并且各自绕着A,B旋转,如果两条平行直线间的距离为d.你能求出d的取值范围吗?[提示]如图,显然有0<d≤|AB|.而|AB|=(6+3)2+(2+1)2=310.故所求的d的变化范围为(0,310].2.上述问题中,当d取最大值时,请求出两条直线的方程.[提示]由上图可知,当d取最大值时,两直线与AB垂直.而k AB=2-(-1)6-(-3)=13,∴所求直线的斜率为-3.故所求的直线方程分别为y-2=-3(x-6)和y+1=-3(x+3),即3x+y-20=0和3x+y+10=0.【例3】在直线l:3x-y-1=0上求一点P,使得P到A(4,1)和B(0,4)的距离之差最大.[思路探究]点到直线的距离的最值问题可转化为对称问题、共线问题.[解] 如图所示,设点B 关于直线l 的对称点B ′的坐标为(a ,b ),则k BB ′·k l =-1,即3·b -4a =-1. 所以a +3b -12=0.①又由于线段BB ′的中点坐标为⎝ ⎛⎭⎪⎫a 2,b +42,且在直线l 上,所以3×a 2-b +42-1=0.即3a -b -6=0,②解①②得a =3,b =3,所以B ′(3,3).于是AB ′的方程为y -13-1=x -43-4,即2x +y -9=0.所以由⎩⎨⎧ 3x -y -1=0,2x +y -9=0,解得⎩⎨⎧x =2,y =5. 即直线l 与AB ′的交点坐标为(2,5). 所以点P (2,5)为所求.在本例中,求到A (4,1)和C (3,4)的距离之和最小的P 点的坐标?[解] 如图所示,设点C 关于直线l 的对称点为C ′,求出点C ′的坐标为⎝ ⎛⎭⎪⎫35,245.所以AC ′所在直线的方程为 19x +17y -93=0,AC ′和l 的交点坐标为⎝ ⎛⎭⎪⎫117,267.故P 点坐标为⎝ ⎛⎭⎪⎫117,267为所求.求最值问题的处理思路(1)利用对称转化为两点之间的距离问题.(2)利用所求式子的几何意义转化为点到直线的距离. (3)利用距离公式转化为一元二次函数的最值问题.1.点到直线的距离即是点与直线上点连线的距离的最小值,利用点到直线的距离公式,解题时要注意把直线方程化为一般式.当直线与坐标轴垂直时可直接求之.2.利用点到直线的距离公式可求直线的方程,有时需结合图形,数形结合,会使问题更加清晰.3.求两平行直线间的距离,即可利用公式d =|C 1-C 2|A 2+B2求解,也可在已知直线上取一点,转化为点到直线的距离.4.本节课的易错点是求两条平行线间距离时易用错公式.1.点(5,-3)到直线x +2=0的距离等于( ) A .7 B .5 C .3 D .2A [直线x +2=0,即x =-2为平行于y 轴的直线,所以点(5,-3)到x =-2的距离d =5-(-2)=7.]2.两条平行线l 1:3x +4y -2=0,l 2:9x +12y -10=0间的距离等于( ) A .75 B .715 C .415D .23C [l 1的方程可化为9x +12y -6=0,由平行线间的距离公式得d=|-6+10|92+122=415.]3.两平行直线3x+4y+5=0与6x+ay+30=0间的距离为d,则a+d =.10[由两直线平行知,a=8,d=|15-5|32+42=2,∴a+d=10.]4.已知两点A(3,2)和B(-1,4)到直线mx+y+3=0的距离相等,则m的值为.12或-6[由题意知直线mx+y+3=0与AB平行或过AB的中点,则有-m=4-2-1-3或m×3-12+2+42+3=0,∴m=12或m=-6.]5.已知直线l经过点P(-2,5)且斜率为-3 4.(1)求直线l的方程;(2)若直线m与l平行,且点P到直线m的距离为3,求直线m的方程.[解](1)由点斜式方程得,y-5=-34(x+2),∴3x+4y-14=0.(2)设m的方程为3x+4y+c=0,则由平行直线间的距离公式得|c+14|5=3,∴c=1或-29.∴直线m的方程为3x+4y+1=0或3x+4y-29=0.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
高考数学必背公式整理高考数学必背公式整理高考数学中,公式的掌握是非常重要的,因为它们不仅可以帮助我们快速解题,还可以帮助我们理解和应用数学知识。
下面是一份高考数学必背公式整理,包括代数、几何和概率三个方面的公式。
一、代数公式1. 二项式展开公式:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab + b^2(a+b)(a-b) = a^2 - b^22. 平方差公式:a^2 - b^2 = (a+b)(a-b)3. 一次二次因式分解:ax^2 + bx + c = a(x-x1)(x-x2),其中x1、x2为二次方程的根4. 关于指数和对数的常用公式:log(a*b) = loga + logblog(a/b) = loga - logblog(a^n) = nlogaa^x * a^y = a^(x+y)a^x / a^y = a^(x-y)a^-x = 1/a^xloga a^x = x二、几何公式1. 三角函数相关公式:sin^2θ + cos^2θ = 11 + tan^2θ = sec^2θ1 + cot^2θ = csc^2θ2. 三角函数和角度的关系:sin(-θ) = -sinθcos(-θ) = cosθtan(-θ) = -tanθsin(π/2-θ) = cosθcos(π/2-θ) = sinθtan(π/2-θ) = cotθ3. 直角三角形中的三角函数:sinθ = 对边/斜边cosθ = 邻边/斜边tanθ = 对边/邻边4. 圆相关公式:圆的周长:C = 2πr圆的面积:A = πr^2圆的弧长:L = 2πr * (θ/360°)扇形面积:A = 1/2 r^2 θ三、概率公式1. 基本概率公式:P(A) = n(A)/n(S),其中P(A)表示事件A发生的概率,n(A)表示事件A的样本空间,n(S)表示样本空间的元素个数2. 条件概率公式:P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B已经发生的情况下事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率3. 乘法公式:P(A∩B) = P(A) * P(B|A),其中P(A∩B)表示事件A和事件B同时发生的概率,P(A)表示事件A发生的概率,P(B|A)表示在事件A已经发生的情况下事件B发生的概率4. 加法公式:P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A和事件B至少有一个发生的概率,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率以上是一些高考数学必背公式的整理。
数学必修1-5常用公式及结论必修1: 一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性 (2)集合的分类;有限集,无限集(3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。
记作A B ⊆ 真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集, 记作A ≠⊂B 集合相等:若:,A B B A ⊆⊆,则A B =3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 A B U交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B I补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A 5.集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个; 6.常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性1、定义: 奇函数 <=>f (– x ) = – f ( x ),偶函数 <=>f (–x ) = f ( x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性1、定义:对于定义域为D 的函数f (x ),若任意的x 1, x 2∈D ,且x 1< x 2① f ( x 1) < f ( x 2) <=> f ( x 1) – f ( x 2) < 0<=>f (x )是增函数 ② f ( x 1) > f ( x 2) <=> f ( x 1) – f ( x 2) > 0<=>f (x )是减函数 2、复合函数的单调性:同增异减三、二次函数y =ax 2 +bx +c (0a ≠)的性质1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛−−a b ac a b 44,22, 对称轴:a bx 2−=,最大(小)值:a b ac 442−2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =−+≠; (3)两根式12()()()(0)f x a x x x x a =−−≠. 四、指数与指数函数 1、幂的运算法则:(1)a m • a n =a m + n ,(2)n m n m a a a −=÷,(3)(a m )n =a m n (4)(ab )n = a n • b n(5) n n nb a b a =⎪⎭⎫⎝⎛(6)a 0 = 1 ( a ≠0)(7)n n a a 1=− (8)m n m n a a =(9)m n m naa 1=−2、根式的性质(2)当na =; 当n ,0||,0a a a a a ≥⎧==⎨−<⎩.4、指数函数y = a x (a > 0且a ≠1)的性质:(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)5.指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>. 五、对数与对数函数 1对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N = N(6)log a (MN) = log a M + log a N (7)log a (N M) = log a M -- log a N(8)log a N b = b log a N (9)换底公式:log a N =aNb b log log (10)推论 log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). (11)log a N =aN log 1(12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A (其中 e = 2.71828…) 2、对数函数y = log a x (a > 0且a ≠1)的性质:(1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)六、幂函数y = x a 的图象:(1) 根据 a例如:y = x 221x x y == 11−==x xy七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位, 得到函数b a x f y +−=)(的图象; 规律:左加右减,上加下减 八. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+. 九、函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。
空间直角坐标系学习目标 1.了解空间直角坐标系.2.能在空间直角坐标系中写出所给定点、向量的坐标.知识点一 空间直角坐标系 1.空间直角坐标系及相关概念(1)空间直角坐标系:在空间选定一点O 和一个单位正交基底{}i ,j ,k ,以O 为原点,分别以i ,j ,k 的方向为正方向,以它们的长为单位长度建立三条数轴:x 轴、y 轴、z 轴,它们都叫做坐标轴,这时我们就建立了一个空间直角坐标系Oxyz .(2)相关概念:O 叫做原点,i ,j ,k 都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy 平面、Oyz 平面、Ozx 平面,它们把空间分成八个部分. 2.右手直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系. 思考 空间直角坐标系有什么作用?答案 可以通过空间直角坐标系将空间点、直线、平面数量化,将空间位置关系解析化. 知识点二 空间一点的坐标在空间直角坐标系Oxyz 中,i ,j ,k 为坐标向量,对空间任意一点A ,对应一个向量OA →,且点A 的位置由向量OA →唯一确定,由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使OA →=x i +y j +z k .在单位正交基底 {i ,j ,k }下与向量 OA →对应的有序实数组(x ,y ,z )叫做点A 在此空间直角坐标系中的坐标,记作A (x ,y ,z ),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标.思考 空间直角坐标系中,坐标轴上的点的坐标有何特征? 答案 x 轴上的点的纵坐标、竖坐标都为0,即(x ,0,0).y 轴上的点的横坐标、竖坐标都为0,即(0,y ,0). z 轴上的点的横坐标、纵坐标都为0,即(0,0,z ).知识点三 空间向量的坐标在空间直角坐标系Oxyz 中,给定向量a ,作OA →=a .由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使a =x i +y j +z k .有序实数组(x ,y ,z )叫做a 在空间直角坐标系Oxyz 中的坐标,上式可简记作a =(x ,y ,z ). 思考 空间向量的坐标和点的坐标有什么关系?答案 点A 在空间直角坐标系中的坐标为(x ,y ,z ),那么向量 OA →的坐标也为(x ,y ,z ).1.空间直角坐标系中,在x 轴上的点的坐标一定是(0,b ,c )的形式.( × ) 2.空间直角坐标系中,在xOz 平面内的点的坐标一定是(a ,0,c )的形式.( √ ) 3.关于坐标平面yOz 对称的点其纵坐标、竖坐标保持不变,横坐标相反.( √ )一、求空间点的坐标例1 (1)画一个正方体ABCD -A 1B 1C 1D 1,若以A 为坐标原点,以棱AB ,AD ,AA 1所在的直线分别为x 轴、y 轴、z 轴,取正方体的棱长为单位长度,建立空间直角坐标系,则 ①顶点A ,C 的坐标分别为________________; ②棱C 1C 中点的坐标为________;③正方形AA 1B 1B 对角线的交点的坐标为________. 答案 ①(0,0,0),(1,1,0) ②⎝ ⎛⎭⎪⎫1,1,12 ③⎝ ⎛⎭⎪⎫12,0,12(2)已知正四棱锥P -ABCD 的底面边长为4,侧棱长为10,试建立适当的空间直角坐标系,写出各顶点的坐标.解 ∵正四棱锥P -ABCD 的底面边长为4,侧棱长为10, ∴正四棱锥的高为223.以正四棱锥的底面中心为原点,平行于BC ,AB 所在的直线分别为x 轴、y 轴,垂直于平面ABCD 的直线为z 轴,建立如图所示的空间直角坐标系,则正四棱锥各顶点的坐标分别为A (2,-2,0),B (2,2,0),C (-2,2,0),D (-2,-2,0),P (0,0,223).答案不唯一.反思感悟 (1)建立空间直角坐标系的原则 ①让尽可能多的点落在坐标轴上或坐标平面. ②充分利用几何图形的对称性. (2)求某点M 的坐标的方法作MM ′垂直平面xOy ,垂足M ′,求M ′的横坐标x ,纵坐标y ,即点M 的横坐标x ,纵坐标y ,再求M 点在z 轴上射影的竖坐标z ,即为M 点的竖坐标z ,于是得到M 点的坐标(x ,y ,z ). 跟踪训练1 在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是D 1D ,BD 的中点,G 在棱CD 上,且CG =14CD ,H 为C 1G 的中点,试建立适当的坐标系,写出E ,F ,G ,H 的坐标.解 建立如图所示的空间直角坐标系.点E 在z 轴上,它的横坐标、纵坐标均为0, 而E 为DD 1的中点, 故其坐标为⎝⎛⎭⎪⎫0,0,12. 由F 作FM ⊥AD ,FN ⊥CD ,垂足分别为M ,N , 由平面几何知识知FM =12,FN =12,故F 点坐标为⎝ ⎛⎭⎪⎫12,12,0.因为CG =14CD ,G ,C 均在y 轴上,故G 点坐标为⎝ ⎛⎭⎪⎫0,34,0. 由H 作HK ⊥CG ,可得DK =78,HK =12,故H 点坐标为⎝ ⎛⎭⎪⎫0,78,12.(答案不唯一) 二、空间点的对称问题例2 在空间直角坐标系中,已知点P (-2,1,4). (1)求点P 关于x 轴对称的点的坐标; (2)求点P 关于xOy 平面对称的点的坐标;(3)求点P 关于点M (2,-1,-4)对称的点的坐标.解 (1)由于点P 关于x 轴对称后,它在x 轴的分量不变,在y 轴,z 轴的分量变为原来的相反数,所以对称点坐标为P 1(-2,-1,-4).(2)由点P 关于xOy 平面对称后,它在x 轴,y 轴的分量不变,在z 轴的分量变为原来的相反数,所以对称点坐标为P 2(-2,1,-4).(3)设对称点为P 3(x ,y ,z ),则点M 为线段PP 3的中点, 由中点坐标公式,可得x =2×2-(-2)=6,y =2×(-1)-1=-3,z =2×(-4)-4=-12,所以P 3的坐标为(6,-3,-12). 反思感悟 空间点对称问题的解题策略(1)空间点的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.(2)对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论. 跟踪训练2 已知点P (2,3,-1)关于坐标平面xOy 的对称点为P 1,点P 1关于坐标平面yOz 的对称点为P 2,点P 2关于z 轴的对称点为P 3,则点P 3的坐标为________. 答案 (2,-3,1)解析 点P (2,3,-1)关于坐标平面xOy 的对称点P 1的坐标为(2,3,1),点P 1关于坐标平面yOz 的对称点P 2的坐标为(-2,3,1),点P 2关于z 轴的对称点P 3的坐标是(2,-3,1).三、空间向量的坐标例3 已知直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=4,M 为BC 1的中点,N 为A 1B 1的中点,建立适当的空间直角坐标系,求向量AB →,AC 1—→,BC 1—→的坐标.解 建立如图所示的空间直角坐标系,设14AB →=i ,14AC →=j ,14AA 1→=k ,AB →=4i +0j +0k =(4,0,0),AC 1—→=AA 1—→+AC →=0i +4j +4k =(0,4,4), ∴BC 1—→=BC →+CC 1—→ =BA →+AC →+CC 1—→ =-4i +4j +4k =(-4,4,4).反思感悟 向量坐标的求法(1)点A 的坐标和向量 OA →的坐标形式完全相同; (2)起点不是原点的向量的坐标可以通过向量的运算求得.跟踪训练3 已知A (3,5,-7),B (-2,4,3),设点A ,B 在yOz 平面上的射影分别为A 1,B 1 ,则向量A 1B 1—→的坐标为__________. 答案 (0,-1,10)解析 点A (3,5,-7),B (-2,4,3)在yOz 平面上的射影分别为 A 1 (0,5,-7), B 1 (0,4,3), ∴向量A 1B 1—→的坐标为(0,-1,10).1.点P (2,0,3)在空间直角坐标系中的位置是在( ) A .y 轴上 B .xOy 面上 C .xOz 面上 D .yOz 面上答案 C2.在空间直角坐标系中,点P (1,3,-5)关于平面xOy 对称的点的坐标是( ) A .(-1,3,-5) B .(1,3,5) C .(1,-3,5) D .(-1,-3,5) 答案 B3.在空间直角坐标系中,点P (-1,-2,-3)到平面yOz 的距离是( ) A .1 B .2 C .3 D.14 答案 A4.点P (1,1,1)关于xOy 平面的对称点P 1的坐标为______;点P 关于z 轴的对称点P 2的坐标为________.答案 (1,1,-1) (-1,-1,1)解析 点P (1,1,1)关于xOy 平面的对称点P 1的坐标为(1,1,-1),点P 关于z 轴的对称点P 2的坐标为(-1,-1,1).5.在长方体ABCD -A 1B 1C 1D 1中,若D (0,0,0),A (4,0,0),B (4,2,0),A 1(4,0,3),则向量AC 1—→的坐标为________. 答案 (-4,2,3)解析 AC 1—→=AD →+DC 1—→=AD →+DC →+CC 1—→=-4i +2j +3k =(-4,2,3).1.知识清单:(1)空间直角坐标系的概念. (2)点的坐标. (3)向量的坐标.2.方法归纳:数形结合、类比联想.3.常见误区:混淆空间点的坐标和向量坐标的概念,只有起点在原点的向量的坐标才和终点的坐标相同.1.如图所示,正方体ABCD-A1B1C1D1的棱长为1,则点B1的坐标是( )A.(1,0,0)B.(1,0,1)C.(1,1,1)D.(1,1,0)答案 C解析点B1到三个坐标平面的距离都为1,易知其坐标为(1,1,1),故选C.2.点A(0,-2,3)在空间直角坐标系中的位置是( )A.在x轴上B.在xOy平面内C.在yOz平面内D.在xOz平面内答案 C解析∵点A的横坐标为0,∴点A(0,-2,3)在yOz平面内.3.在空间直角坐标系中,P(2,3,4),Q(-2,-3,-4)两点的位置关系是( )A.关于x轴对称B.关于yOz平面对称C.关于坐标原点对称D.以上都不对答案 C解析当三个坐标均相反时,两点关于原点对称.4.在空间直角坐标系中,已知点P(1,2,3),过点P作平面yOz的垂线PQ,则垂足Q 的坐标为( )A.(0,2,0) B.(0,2,3)C.(1,0,3) D.(1,2,0)答案 B解析 由于垂足在平面yOz 上,所以纵坐标,竖坐标不变,横坐标为0.5.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A.⎝ ⎛⎭⎪⎫0,14,-1 B.⎝ ⎛⎭⎪⎫-14,0,1C.⎝ ⎛⎭⎪⎫0,-14,1D.⎝ ⎛⎭⎪⎫14,0,-1 答案 C解析 BE →=BB 1—→+B 1E —→=k -14j =⎝⎛⎭⎪⎫0,-14,1.6.点P (1,2,-1)在xOz 平面内的射影为B (x ,y ,z ),则x +y +z =________. 答案 0解析 点P (1,2,-1)在xOz 平面内的射影为B (1,0,-1),∴x =1,y =0,z =-1, ∴x +y +z =1+0-1=0.7.已知A (3,2,-4),B (5,-2,2),则线段AB 中点的坐标为________. 答案 (4,0,-1)解析 设中点坐标为(x 0,y 0,z 0),则x 0=3+52=4,y 0=2-22=0,z 0=-4+22=-1,∴中点坐标为(4,0,-1).8.已知空间直角坐标系中三点A ,B ,M ,点A 与点B 关于点M 对称,且已知A 点的坐标为(3,2,1),M 点的坐标为(4,3,1),则B 点的坐标为________.答案 (5,4,1)解析 设B 点的坐标为(x ,y ,z ),则有x +32=4,y +22=3,z +12=1,解得x =5,y =4,z=1,故B 点的坐标为(5,4,1).9.建立空间直角坐标系如图所示,正方体DABC -D ′A ′B ′C ′的棱长为a ,E ,F ,G ,H ,I ,J 分别是棱C ′D ′,D ′A ′,A ′A ,AB ,BC ,CC ′的中点,写出正六边形EFGHIJ 各顶点的坐标.解 正方体DABC -D ′A ′B ′C ′的棱长为a ,且E ,F ,G ,H ,I ,J 分别是棱C ′D ′,D ′A ′,A ′A ,AB ,BC ,CC ′的中点,∴正六边形EFGHIJ 各顶点的坐标为E ⎝⎛⎭⎪⎫0,a 2,a ,F ⎝ ⎛⎭⎪⎫a 2,0,a ,G ⎝ ⎛⎭⎪⎫a ,0,a 2,H ⎝⎛⎭⎪⎫a ,a 2,0,I ⎝ ⎛⎭⎪⎫a 2,a ,0,J ⎝ ⎛⎭⎪⎫0,a ,a 2.10.如图所示,过正方形ABCD 的中心O 作OP ⊥平面ABCD ,已知正方形的边长为2,OP =2,连接AP ,BP ,CP ,DP ,M ,N 分别是AB ,BC 的中点,以O 为原点,⎩⎨⎧⎭⎬⎫OM →,ON →,12OP →为单位正交基底建立空间直角坐标系.若E ,F 分别为PA ,PB 的中点,求点A ,B ,C ,D ,E ,F 的坐标.解 由题意知,点B 的坐标为(1,1,0). 由点A 与点B 关于x 轴对称,得A (1,-1,0), 由点C 与点B 关于y 轴对称,得C (-1,1,0), 由点D 与点C 关于x 轴对称,得D (-1,-1,0). 又P (0,0,2),E 为AP 的中点,F 为PB 的中点, 所以由中点坐标公式可得E ⎝ ⎛⎭⎪⎫12,-12,1,F ⎝ ⎛⎭⎪⎫12,12,1.11.已知空间中点A (1,3,5),点A 与点B 关于x 轴对称,则向量点B 的坐标为________. 答案 (1,-3,-5)12.在空间直角坐标系中,点M (-2,4,-3)在xOz 平面上的射影为点M 1,则点M 1关于原点对称的点的坐标是________. 答案 (2,0,3)解析 由题意,知点M 1的坐标为(-2,0, -3), 所以点M 1关于原点对称的点的坐标是(2,0,3).13.如图,正方体ABCD -A ′B ′C ′D ′的棱长为2,则图中的点M 关于y 轴的对称点的坐标为________.答案 (-1,-2,-1)解析 因为D (2,-2,0),C ′(0,-2,2),所以线段DC ′的中点M 的坐标为(1,-2,1), 所以点M 关于y 轴的对称点的坐标为(-1,-2,-1).14.如图是一个正方体截下的一角P -ABC ,其中PA =a ,PB =b ,PC =c .建立如图所示的空间直角坐标系,则△ABC 的重心G 的坐标是________.答案 ⎝ ⎛⎭⎪⎫a 3,b 3,c3 解析 由题意知A (a ,0,0),B (0,b ,0),C (0,0,c ).由重心坐标公式得点G 的坐标为⎝ ⎛⎭⎪⎫a 3,b 3,c3.15.已知向量p 在基底{a ,b ,c }下的坐标为(2,1,-1),则p 在基底{2a ,b ,-c }下的坐标为________;在基底{a +b ,a -b ,c }下的坐标为________.答案 (1,1,1) ⎝ ⎛⎭⎪⎫32,12,-1 解析 由题意知p =2a +b -c ,则向量p 在基底{2a ,b ,-c }下的坐标为(1,1,1). 设向量p 在基底{a +b ,a -b ,c }下的坐标为(x ,y ,z ),则p =x (a +b )+y (a -b )+z c =(x +y )a +(x -y )b +z c ,又∵p =2a +b -c ,∴⎩⎪⎨⎪⎧x +y =2,x -y =1,z =-1,解得x =32,y =12,z =-1,∴p 在基底{a +b ,a -b ,c }下的坐标为⎝ ⎛⎭⎪⎫32,12,-1. 16.如图,在空间直角坐标系中,BC =2,原点O 是BC 的中点,点D 在平面yOz 内,且∠BDC =90°,∠DCB =30°,求点D 的坐标.解 过点D 作DE ⊥BC ,垂足为E .在Rt△BDC 中,∠BDC =90°,∠DCB =30°,BC =2,得|BD →|=1,|CD →|=3, ∴|DE →|=|CD →|sin 30°=32,|OE →|=|OB →|-|BE →|=|OB →|-|BD →|cos 60°=1-12=12,∴点D 的坐标为⎝⎛⎭⎪⎫0,-12,32.。
高考数学选择性必修一-二三知识点汇编选择性必修一第一章 空间向量与立体几何一、共线向量、共面向量定理1.共线向量定理:对任意两个空间向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb.2.共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =xa +yb. 二、空间向量基本定理如果三个向量a ,b ,c 不共面,那么对任意一个空间向量p ,存在唯一的有序实数组(x ,y ,z ),使得p =xa +yb +zc.三、空间向量运算的坐标表示1.空间向量运算的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). 运算 坐标表示加法 a +b =(a 1+b 1,a 2+b 2,a 3+b 3) 减法 a -b =(a 1-b 1,a 2-b 2,a 3-b 3) 数乘 λa =(λa 1,λa 2,λa 3),λ∈R数量积a ·b =a 1b 1+a 2b 2+a 3b 32.空间向量常用结论的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). 结论 坐标表示共线 a ∥b (b ≠0)⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R) 垂直a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0向量长度 |a |=√a ·a =√a 12+a 22+a 32向量夹 角公式cos<a ,b >=a ·b|a||b|=112233√a 1+a 2+a 3·√b 1+b 2+b 33.空间两点间的距离公式设P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)是空间中任意两点,则P 1P 2=|P 1P 2⃗⃗⃗⃗⃗⃗⃗⃗ |=√(x 2-x 1)2+(y 2-y 1)2+(z 2-z 1)2.四、空间向量1.设直线l ,m 的方向向量分别为μ,v ,平面α,β的法向量分别为n 1,n 2,则线线平行 l ∥m ⇔μ∥v ⇔μ=λv ,λ∈R 线面平行 l ∥α⇔μ⊥n 1⇔μ·n 1=0 面面平行 α∥β⇔n 1∥n 2⇔n 1=λn 2,λ∈R线线垂直 l ⊥m ⇔μ⊥v ⇔μ·v =0 线面垂直 l ⊥α⇔μ∥n 1⇔μ=λn 1,λ∈R 面面垂直 α⊥β⇔n 1⊥n 2⇔n 1·n 2=0 线线夹角 l ,m 的夹角θ∈[0,π2],cos θ=|μ·ν||μ||ν| 线面夹角 l ,α的夹角为θ∈[0,π2],sin θ=|μ·n 1||μ||n 1|面面夹角α,β的夹角为θ∈[0,π2],cos θ=|n 1·n 2||n 1||n 2|2.点到直线的距离设AP ⃗⃗⃗⃗⃗ =a ,则向量AP ⃗⃗⃗⃗⃗ 在直线l 上的投影向量AQ ⃗⃗⃗⃗⃗ =(a ·u )u ,点P 到直线l 的距离PQ =√|AP⃗⃗⃗⃗⃗ |2-|AQ ⃗⃗⃗⃗⃗ |2=√a 2-(a ·u)2. 3.点到平面的距离已知平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点,过点P 作平面α的垂线l ,交平面α于点Q ,则n 是直线l 的方向向量,且点P 到平面α的距离PQ =|AP ⃗⃗⃗⃗⃗ ·n |n||=|AP ⃗⃗⃗⃗⃗·n |n||=|AP ⃗⃗⃗⃗⃗·n||n|.第二章 直线和圆的方程一、直线的倾斜角与斜率1.直线的倾斜角定义当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角规定 当直线l 与x 轴平行或重合时,规定它的倾斜角为0°范围[0,π)2.直线的斜率定义当直线l 的倾斜角α≠π2时,其倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan α斜率公式 经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y1x 2-x 13.直线的方向向量直线的方向向量 设A ,B 为直线上的两点,则AB⃗⃗⃗⃗⃗ 就是这条直线的方向向量 方向向量的坐标 设A (x 1,y 1),B (x 2,y 2)(其中x 1≠x 2),则直线AB 的一个方向向量为AB ⃗⃗⃗⃗⃗ =(x 2-x 1,y 2-y 1) 方向向量与斜率 若直线l 的斜率为k ,则直线l 的一个方向向量为(1,k )4.两条直线平行和垂直的判定对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2. 位置关系 判定特例平行 l 1∥l 2⇔k 1=k 2 直线l 1,l 2的斜率都不存在时,l 1与l 2平行垂直l 1⊥l 2⇔k 1k 2=-1一直线斜率为零,另一直线斜率不存在时,两条直线垂直二、直线的方程直线方程的五种形式及适用范围:名称几何条件方程适用条件斜截式 纵截距、斜率 y =kx +b与x 轴不垂直的直线点斜式 过一点、斜率 y -y 0=k (x -x 0)两点式 过两点y−y 1y 2-y 1=x−x 1x 2-x 1与两坐标轴均不垂直的直线截距式 横、纵截距x a +yb=1 不过原点且与两坐标轴均不垂直的直线一般式Ax +By +C =0(A 2+B 2≠0)所有直线三、直线的交点坐标与距离公式1.两条直线的交点坐标直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标就是方程组{A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.位置关系 方程组的解的个数相交 方程组有唯一解,交点坐标就是方程组的解 平行 方程组无解 重合方程组有无数个解2.距离公式距离类型 已知几何元素距离公式两点间的距离两点P 1(x 1,y 1),P 2(x 2,y 2)|P 1P 2|=√(x 2-x 1)2+(y 2-y 1)2点到直线的距离点P 0(x 0,y 0),直线l :Ax +By +C =0 d =00√A 2+B 2两条平行直线间的距离两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0d =12√A 2+B 2四、圆的方程圆的定义 圆是平面上到定点的距离等于定长的点的集合 圆 的方 程 标准式 (x -a )2+(y -b )2=r 2(r >0)圆心坐标:(a ,b )半径为r 一般式x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0) 圆心坐标:(-D2,-E2) 半径r =12√D 2+E 2-4F五、直线与圆、圆与圆的位置关系1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系判断; (2)代数法:将直线方程代入圆的方程得到一元二次方程,利用判别式Δ判断. 位置关系 几何法代数法相交 d <r Δ>0 相切 d =r Δ=0 相离d >rΔ<02.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 12(r 1>0),圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).方法位置关系几何法:根据圆心距d =|O 1O 2|与r 1+r 2或|r 1-r 2|的大小关系进行判断代数法:根据两圆方程组成的方程组解的个数进行判断外离 d >r 1+r 2 无解 外切 d =r 1+r 2一组实数解 相交 |r 1-r 2|<d <r 1+r 2两组不同的实数解 内切 d =|r 1-r 2|(r 1≠r 2)一组实数解 内含0≤d <|r 1-r 2|(r 1≠r 2)无解第三章 圆锥曲线的方程一、椭圆1.椭圆的定义定义平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距符号语言集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数 轨迹类型a >c点M 的轨迹为椭圆 a =c点M 的轨迹为线段 a <c点M 不存在2.椭圆的标准方程及其几何性质标准方程x 2a 2+y 2b 2=1(a >b >0)y 2a 2+x 2b 2=1(a >b >0)图形性范围-a ≤x ≤a ,-b ≤y ≤b-a ≤y ≤a ,-b ≤x ≤b质 对称性 对称轴:坐标轴;对称中心:原点顶点坐标A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a ),B 1(-b ,0),B 2(b ,0)轴 长轴A 1A 2的长为2a ,a 为长半轴长;短轴B 1B 2的长为2b ,b 为短半轴长焦距 |F 1F 2|=2c离心率e =ca ,e ∈(0,1),其中c =√a 2-b 2a ,b ,c 的关系a 2=b 2+c 2二、双曲线1.双曲线的定义定义平面内与两个定点F 1,F 2的距离的差的绝对值等于非零常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距符号语言集合P ={M |||MF 1|-|MF 2||=2a ,0<2a <|F 1F 2|},|F 1F 2|=2c ,其中a ,c 为常数,且a >0,c >0 轨迹类型a <c点M 的轨迹为双曲线(不含绝对值时为双曲线的一支) a =c点M 的轨迹为两条射线(不含绝对值时为一条射线) a >c点M 不存在2.双曲线的标准方程及其几何性质标准方程x 2a2-y 2b2=1(a >0,b >0)y 2a 2-x 2b 2=1(a >0,b >0)图形性 质范围 x ≤-a 或x ≥a ,y ∈R x ∈R,y ≤-a 或y ≥a对称性 对称轴:坐标轴 对称中心:原点顶点 A 1(-a ,0),A 2(a ,0)A 1(0,-a ),A 2(0,a )渐近线y =±ba xy =±ab x离心率 e =ca ,e ∈(1,+∞),其中c =√a 2+b 2轴实轴A 1A 2的长为2a ,a 为实半轴长; 虚轴B 1B 2的长为2b ,b 为虚半轴长a ,b ,c 的关c 2=a 2+b 2系 三、抛物线1.抛物线的定义定义平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线符号语言 集合P ={M ||MF |=d }(d 为点M 到准线l 的距离) 特例当F ∈l 时,动点M 的轨迹是过F 点垂直于l 的直线2.抛物线的标准方程及其几何性质图形标准方程 y 2= 2px (p >0) y 2= -2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离性质 顶点 O (0,0)对称轴 y =0 x =0焦点 F (p2,0)F (-p2,0)F (0,p2)F (0,−p2)离心率 e =1准线方程x =-p 2 x =p2y =-p2 y =p2 范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈Ry ≤0,x ∈R开口方向 向右向左向上向下选择性必修二一、等差数列1.概念:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,即a n +1-a n =d (n ∈N *,d 为常数).2.等差中项:由三个数a ,A ,b 组成的等差数列可以看成是最简单的等差数列.这时,A 叫做a 与b 的等差中项,且2A =a +b.3.通项公式:等差数列{a n }的首项为a 1,公差为d ,则其通项公式为a n =a 1+(n -1)d.4.前n 项和公式:S n =n(a 1+a n )2=na 1+n(n -1)2d (n ∈N *).5.性质:(1)通项公式的推广:a n =a m +(n -m )d (m ,n ∈N *).(2)若m +n =p +q (m ,n ,p ,q ∈N *),则有a m +a n =a p +a q .(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(4)数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). (5)在等差数列{a n }中,若a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 二、等比数列1.概念:如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列.2.等比中项:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.此时,G 2=ab.3.通项公式:等比数列{a n }的首项为a 1,公比为q ,则其通项公式为a n =a 1q n -1. 4.前n 项和公式:S n ={na 1,q =1,a 1(1-q n )1−q =a 1-a n q 1−q,q ≠1.5.性质:(1)通项公式的推广:a n =a m q n -m(m ,n ∈N *).(2)若k +l =m +n (k ,l ,m ,n ∈N *),则有a k ·a l =a m ·a n .(3)当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n. 三、求一元函数的导数1.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数) f'(x )=0f (x )=x α(α∈Q,且α≠0)f'(x )=αx α-1 f (x )=sin x f'(x )=cos x f (x )=cos x f'(x )=-sin x f (x )=a x (a >0,且a ≠1)f'(x )=a x ln a f (x )=e xf'(x )=e x f (x )=log a x (a >0,且a ≠1)f'(x )=1xlna f (x )=ln xf'(x )=1x2.导数的四则运算法则已知两个函数f (x ),g (x )的导数分别为f'(x ),g'(x ).若f'(x ),g'(x )存在,则有: (1)[f (x )±g (x )]'=f'(x )±g'(x ); (2)[f (x )g (x )]'=f'(x )g (x )+f (x )g'(x ); (3)[f(x)g(x)]'=f'(x)g(x)-f(x)g'(x)[g(x)]2(g (x )≠0).3.简单复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y'x =y'u ·u'x . 四、导数在研究函数中的应用1.函数的单调性与导数一般地,函数f (x )的单调性与导函数f'(x )的正负之间具有如下的关系: 在某个区间(a ,b )上,如果f'(x )>0,那么函数y =f (x )在区间(a ,b )上单调递增; 在某个区间(a ,b )上,如果f'(x )<0,那么函数y =f (x )在区间(a ,b )上单调递减. 2.函数的极值与导数条件f'(x 0)=0x 0附近的左侧f'(x )>0,右侧f'(x )<0 x 0附近的左侧f'(x )<0,右侧f'(x )>0图象极值f(x0)为极大值f(x0)为极小值极值点x0为极大值点x0为极小值点3.函数的最大(小)值与导数(1)如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值, f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值, f(b)为函数的最小值.(3)求函数y=f(x)在区间[a,b]上的最大值与最小值的步骤如下:①求函数y=f(x)在区间(a,b)上的极值;②将函数y=f(x)的各极值与端点处的函数值f(a), f(b)比较,其中最大的一个是最大值,最小的一个是最小值.选择性必修三一、计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.3.排列与排列数(1)排列一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A n m表示.4.组合与组合数(1)组合一般地,从n个不同元素中取出m(m≤n)个元素作为一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C n m 表示.5.二项式定理(1)二项式定理:(a +b )n =C n 0a n +C n 1a n -1b 1+…+C n k a n -k b k +…+C n n b n ,n ∈N * .(2)二项展开式的通项:T k +1=C n k a n -k b k ,通项为展开式的第k +1项.6.各二项式系数的和(1)(a +b )n 的展开式的各二项式系数的和等于2n ,即C n 0+C n 1+C n 2+…+C n n =2n .(2)在(a +b )n 的展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C n 1+C n 3+C n 5+…=C n 0+C n 2+C n 4+…=2n -1.二、随机变量及其分布1.条件概率一般地,设A ,B 为两个随机事件,且P (A )>0,则称P (B |A )=P(AB)P(A)为在事件A 发生的条件下,事件B 发生的条件概率,简称条件概率.对任意两个事件A 与B ,若P (A )>0,则P (AB )=P (A )P (B |A ),称此公式为概率的乘法公式.2.全概率公式一般地,设A 1,A 2,…,A n 是一组两两互斥的事件,A 1∪A 2∪…∪A n =Ω,且P (A i )>0,i =1,2,…,n ,则对任意的事件B ⊆Ω,有P (B )=∑i=1n P (A i )P (B |A i ),称此公式为全概率公式.3.离散型随机变量的分布列、期望与方差名称 表现形式(或公式)性质分布列 X x 1 x 2 … x n P p 1 p 2 … p np i ≥0,i =1,2,3,…,n ; p 1+p 2+…+p n =1 期望 E (X )=x 1p 1+x 2p 2+…+x n p n =∑i=1n x i p i E (aX +b )=aE (X )+b 方差 D (X )=(x 1-E (X ))2p 1+(x 2-E(X ))2p 2+…+(x n -E (X ))2p n =∑i=1n (x i -E (X ))2p i(1)D (aX +b )= a 2D (X ); (2)D (X )=E (X 2)-[E (X )]2 4.几种常见的概率分布名称 概念(或公式)数字特征 二项分布 P (X =k )=C n k p k (1-p )n -k ,k =0,1,2,…,n.记作X~B (n ,p ) E (X )=np ; D (X )=np (1-p )超几何分布 P (X =k )=C M k C N−M n−k C N n ,k =m ,m +1,m +2,…,r.其中n ,N ,M∈N *,M ≤N ,n ≤N ,m =max{0,n -N +M },r =min{n ,M }E (X )=nM N 正态分布 随机变量X 服从正态分布记为X~N (μ,σ2),特别地,当μ=0,σ=1时,称随机变量X 服从标准正态分布 若X~N (μ,σ2),则E (X )=μ,D (X )=σ2; P (X ≤μ)=P (X ≥μ)=0.5三、成对数据的统计分析1.样本相关系数r =∑i=1n(x i -x)(y i -y)√∑i=1(x i -x)2√∑i=1(y i -y)2. 2.经验回归方程方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程,其中a ^,b ^是待定参数,其最小二乘估计分别为b ^=∑i=1n(x i -x)(y i -y)∑i=1n (x i -x)2,a ^=y-b ^x. 3.2×2列联表Y =0 Y =1 合计 X =0a b a +b X =1c d c +d 合计a +cb +d a +b +c +d 4.独立性检验:χ2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d),其中n =a +b +c +d.。
第一章空间向量
1、非零向量a ,b 的数量积a ·b =|a ||b |cos 〈a ,b 〉.
2.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).
向量表示 坐标表示
数量积 a ·b a 1b 1+a 2b 2+a 3b 3
共线 a =λb (b ≠0) a 1=λb 1,a 2=λb 2,a 3=λb 3
垂直 a ·b =0 (a ≠0,b ≠0)
a 1
b 1+a 2b 2+a 3b 3=0 模 |a | a 21+a 22+a 23
夹角 〈a ,b 〉 (a ≠0,b ≠0) cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23
3.在平面中A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.
4.在空间中P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间中任意一点.
5.空间位置关系的向量表示
位置关系 向量表示
直线l 1,l 2的方向向量分别为n 1,n 2 l 1∥l 2
n 1∥n 2⇒n 1=λn 2 l 1⊥l 2 n 1⊥n 2⇔n 2·n 2=0
直线l 的方向向量为n ,平面α的法向量为m l ∥α
n ⊥m ⇔m ·n =0 l ⊥α n ∥m ⇔n =λm
平面α、β的法向量分别为n 、m α∥β
n ∥m ⇔n =λm α⊥β n ⊥m ⇔n ·m =0
6.两条异面直线所成角的求法
两条异面直线a ,b 的方向向量分别为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a ·b ||a ||b |
(其中φ为异面直线a ,b 所成的角). 7.直线和平面所成角的求法
如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,向量e 与n 的夹角为θ,
则有sin φ=|cos θ|=|n ·e ||n ||e |
.
8.求二面角的大小θ
如图②③,n 1,n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小满足|cos θ|=cos <n 1,n 2 >,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).
9.利用空间向量求距离:线面距、面面距均可转化为点面距进行求解.
如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为d =|AB →·n ||n |
. 10.直线的方向向量的确定:A ,B 是l 上任意两点,则AB →及与AB →平行的非零向量均为直线l 的方向向量.
11.平面的法向量的确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧
n ·a =0,n ·b =0. 第二章 解析几何
1.直线的斜率
(1)定义:一条直线的倾斜角α的__正切值___叫做这条直线的斜率,斜率常用小写字母k 表示,即k =__tan α___,倾斜角是90°的直线斜率不存在.
(2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2)的直线的斜率公式为k =__y 2-y 1x 2-x 1
___. 2.名称 方程 适用范围
点斜式 __y -y 0=k (x -x 0)___ 不含直线x =x 0
斜截式 __y =kx +b 不含垂直于x 轴的直线
3.平面内两条直线的位置关系包括__平行、相交、重合___三种情况.
(1)两条直线平行
对于直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 1∥l 2⇔k 1=k 2,且b 1≠b 2.
对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,
l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0).
(2)两条直线垂直
对于直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 1⊥l 2⇔k 1·k 2=-1.
对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1⊥l 2⇔__A 1A 2+B 1B 2=0___.
4.两条直线的交点
直线l 1和l 2的交点坐标即为两直线方程组成的方程组⎩
⎪⎨⎪⎧ A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 5.三种距离公式
(1)平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2.
特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2.
(2)点P (x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2
. (3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B
2. 6.
7.d 为圆心(a ,b )到直线l Δ.
8.
291.当两圆相交(切)时,两圆方程(x 2,y 2项的系数相同)相减便可得公共弦(内公切线)所在的直线方程.
2.过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.
3.过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.
4.过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在的直线方程为x 0x +y 0y =r 2.
5.直线与圆相交时,弦心距d ,半径r ,弦长的一半12l 满足关系式r 2=d 2+(12l )2.。