高中数学必修1常用公式
- 格式:doc
- 大小:232.00 KB
- 文档页数:3
可编辑修改精选全文完整版高中数学必修一公式整理一、几何公式1、直线:(1) 直线的方程是y=kx+b,其中k为斜率,b为y轴截距;(2) 直线的斜率的计算公式:斜率K=(点1的纵坐标减去点2的纵坐标)除以(点1的横坐标减去点2的横坐标)。
2、平面图形(1) 三角形三边关系:任意一边长加上另外两边长,总长度要大于第三边。
(2) 三角形面积公式:面积 = (底边×高)÷2(3) 矩形的面积公式:面积 = 长×宽(4) 圆的面积公式:面积= π × 半径×半径二、代数公式1、平方差(1) 一元二次方程的解法:ax²+bx+c=0,解法为:x={-b±√(b²-4ac) }/2a(2) 二元二次方程的解法:ax²+bxy+cy²+dx+ey+f=0,解法为:x=(-be+√(b²-4ac)(-de+√(d²-4af))/(2a);y=(2a(-be+√(b²-4ac))/(-de+√(d²-4af))。
2、二次函数(1) 二次函数公式:y=ax²+bx+c,其中a不等于0(2) 二次函数的对称轴:x轴的方程为: x= -b/2a(3) 二次函数的极值的计算:极值的 x 值为: -b/2a , 极值的 y 值为:y=a(-b/2a)²+b(-b/2a)+c三、数列公式1、等差数列公式(1) 求和公式:Sn=n(a1+an)/2,其中n为项数,a1为首项,an为末项;(2) 首项公式:a1=Sn/n-(n-1)d,其中n为项数,Sn为该数列的前n项和,d为公差;(3) 末项公式:an=a1+(n-1)d,其中a1为首项,n为项数,d为公差;(4) 公差公式:d=(an-a1)/(n-1),其中an为末项,a1首项,n为项数;2、等比数列的公式(1) 求和公式:Sn=a1(1-qn)/(1-q),其中a1为首项,q为公比,n为项数;(2) 首项公式:a1=Sn(1-q)/(1-qn),其中Sn为该数列的前n项和,q为公比,n为项数;(3) 末项公式:an=a1q(n-1),其中a1为首项,q为公比,n为项数;(4) 公比公式:q=(an/a1)^(1/(n-1)),其中an为末项,a1首项,n 为项数;。
高一数学必修一知识点1、集合{a1,a2...an}子集个数公式:,真子集个数公式:2、重要不等式:3、基本不等式:4、一元二次函数、方程、不等式f(x)=ax²+bx+c。
对称轴:图像顶点坐标:与x轴有交点时x1= x2=x1+x2= x1x2=若a>0 ,x1>x2,f(x)>0的解集:5、函数单调性。
若x1>x2,当单调递增;当单调递减。
6、函数奇偶性。
当是奇函数;当是偶函数。
7、指数运算(a>0,b>0)a r a s= (a r)s= (ab)r=8、对数运算(a>0,a≠1,M>0,N>0)=log a MN= log a MNlog a M n =对数换底公式:log a b=9、方程f(x)=0有实数解⇔函数y=f(x)有⇔函数y=f(x)的图像与x轴有函数零点存在定理:y=f(x)在[a,b]上连续,f(a)f(b)<0,那么y=f(x)在区间(a,b)内至少有一个零点,即存在c ϵ(a,b),使得f(c)=0,这个c也是方程f(x)=0的解。
10、诱导公式(奇变偶不变,符号看象限)sin (π+α)= sin (-α)=cos (π+α)= cos (-α)=tan (π+α)= tan (-α)=sin (π-α)= sin (2π-α)=cos (π-α)= cos (2π-α)=tan (π-α)= tan (2π-α)=sin (2π+α)= sin (2π-α)=cos (2π+α)= cos (2π-α)=2、三角恒等变换sin (α+β) = sin (α-β)=cos (α-β) = cos (α+β)= Sin2α =cos2α= = = tan (α-β)= tan (α+β)=tan2α =sin ²= cos ²=tan ²= 2α 3、同角平方和公式:4、y=asin α+bcos α辅助角公式:5、A (x1,y1),B (x2,y2)两点间距离公式:6、勾股定理: 2α2α2α。
高一数学必修一所有公式归纳高一数学必修一所有公式归纳是如下:1、锐角三角函数公式:sinα=∠α的对边/斜边。
2、三倍角公式:sin3α=4sinα·sin(π/3+α)sin(π/3-α)。
3、辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)。
4、降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2。
5、推导公式:tanα+cotα=2/sin2α。
数学必修一数学公式如下:1、2sinAcosB=sin(A+B)+sin(A-B)。
2、tan(A+B)=(tanA+tanB)/(1-tanAtanB)。
3、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
4、tan(A-B)=(tanA-tanB)/(1+tanAtanB)。
5、-ctgA+ctgBsin(A+B)/sinAsinB。
数学必修一公式归纳:一、指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时。
2、分数指数幂。
正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3、实数指数幂的运算性质。
高中必修一数学公式总结1. 数学基本公式在高中数学的学习中,我们会接触到一些基本的数学公式,这些公式是我们解决问题的基础。
下面是一些常见的数学基本公式的总结:1.1 二次根式公式1.一元二次方程的求根公式:对于一元二次方程ax2+bx+c=0,其中a eq0,它的根可以通过以下公式求解:$$x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$$2.二次根式的乘法公式:(a+b)(a−b)=a2−b21.2 三角函数公式三角函数是高中数学中的重要概念,它们的公式是我们解决三角函数相关问题的基础。
1.正弦定理:在任意三角形ABC中,我们有:$$\\frac{a}{\\sin A}=\\frac{b}{\\sin B}=\\frac{c}{\\sin C}$$2.余弦定理:在任意三角形ABC中,我们有:$$c^2=a^2+b^2-2ab\\cos C$$3.正切值的定义:对于任意角$\\theta$,我们有:$$\\tan\\theta=\\frac{\\sin\\theta}{\\cos\\theta}$$1.3 数列与数列求和公式数列是数学中的重要概念,它在高中数学中经常出现,并且有一些求和公式可以帮助我们快速计算数列的和。
1.等差数列前n项和公式:对于公差为d的等差数列$a_1,a_2,\\dots,a_n$,我们有:$$S_n=\\frac{n(a_1+a_n)}{2}$$2.等比数列前n项和公式:对于公比为r的等比数列$a_1,a_2,\\dots,a_n$,我们有:$$S_n=\\frac{a_1(1-r^n)}{1-r}$$当|r|<1时,该公式成立。
1.4 概率公式概率是高中数学中的另一个重要概念,它关注事件发生的可能性。
1.事件的概率:对于一个随机试验,事件A的概率可以通过以下公式计算:$$P(A)=\\frac{{\\text{事件A发生的次数}}}{{\\text{总的试验次数}}}$$2.互斥事件的概率:对于两个互斥事件A和B,它们的概率满足以下公式:$$P(A\\text{或}B)=P(A)+P(B)$$其中,$A\\text{或}B$表示事件A和事件B中至少一个事件发生的概率。
高中必修1公式及知识要点大全(完整版) 高中数学《必修1》常用公式及结论一、集合1、含义与表示:集合中的元素具有确定性、互异性和无序性。
集合可以分为有限集、无限集和空集(记作φ)。
集合可以用列举法、描述法和图示法表示。
2、集合间的关系:如果对于任意的x∈A,都有x∈B,则称A是B的子集,记作A⊆B;如果A是B的子集,且在B中至少存在一个元素不属于A,则A是B的真子集,记作A⊂B或A⊊B;如果XXX且B⊆A,则称A和B相等,记作A=B。
3.元素与集合的关系:元素属于集合用符号∈表示,不属于用符号∉表示。
4、集合的运算:1)交集:由集合A和集合B中的公共元素组成的集合叫做交集,记为A∩B。
2)并集:由属于集合A或属于集合B的元素组成的集合叫做并集,记为A∪B。
3)补集:在全集U中,由所有不属于集合A的元素组成的集合叫做补集,记为A的补集为C。
5、集合A={a1,a2,…,an}中有n个元素:A的子集个数共有2n个;真子集有2n-1个;非空子集有2n-1个;非空真子集有2n-2个。
6、常用数集:自然数集N、正整数集N*、整数集Z、有理数集Q、实数集R、复数集C。
7、集合的运算性质:1)包含关系:A∩B⊆A,A⊆A∪B;A∩B⊆B,B⊆A∪B。
A∪B=A⇔B⊆A。
2)吸收率:A∩B=A⇔A⊆B。
3)空集:A∪φ=A。
4)反身性:A∩A=A,A∩φ=φ,A∩U=A,A∪U=U(U是全集)。
A∪A=A,C(=AU)。
5)交换律:A∩B=B∩A。
6)结合律:(A∩B)∩C=A∩(B∩C);(A∪B)∪C=A∪(B∪C)。
A∪B)∩C=(A∪B)∩(A∪C)。
7)分配率:(A∩B)∪C=(A∪C)∩(B∪C)。
8)德摩根律:C∪(A∪B)=C∪A∩C∪B;C∩(A∩B)=C∩A∪C∩B。
8、常用结论:1)空集是任意集合的子集,非空集合的真子集。
2)空集与{0}不相等,{0}不属于空集,但空集属于{A,φ}。
3){A}是只有一个元素的集合,与A不同。
高一数学公式梳理归纳推荐文章高一数学的基本知识点热度:高一数学重要知识点热度:高一数学知识点必修一热度:高一数学三大学习策略热度:高一数学的答题策略热度:课堂上,老师讲这些数学公式的时候,我们需要认真听讲这样才可以理解这些公式的内容。
今天小编在这给大家整理了高一数学公式,接下来随着小编一起来看看吧!高一数学公式大全2. 平面向量3. 函数、基本初等函数的图像与性质4. 函数与方程、函数模型及其应用5.导数及其应用6.三角函数的图形与性质7.三角恒等变化与解三角形8.空间几何体9.空间点、直线、平面位置关系10.空间向量与立体几何11.直线与圆的方程高中数学怎么学?一、数学的学习时间应该占全部总学科的50%左右;数学是一个费时费力的学科,无论文理。
对于文科和理科来说,数学的高考成绩都是重中之重。
比如文科,鲜有听到一个班文综成绩能差60分以上的,但数学别说60,80都能差出来。
对于理科,物理,化学都需要大量的运算,数学的学习又是提供一种工具与思维。
因此,对于之前的文理科,抑或是现在取消文理以后的偏文,偏理科来说,数学都是非常重要的。
数学在课下学习的时间,大约应该占到整体学习的50%左右。
比如每天晚上学习3个小时,至少有1个半小时要学习数学。
为啥需要这么长时间?主要就是因为,很多数学题需要相对长时间的思考与总结。
不过,相信我,当你数学成绩显著提高以后,其他学科成绩会非常容易提升。
同时,你可以做个小小的调查,但凡是数学学习成绩非常好,并且成绩很稳定的同学,他的数学相关学习时间也基本符合50%这个比例。
二、每一道数学题都值得做三遍;对于每一道数学题(特别特别简单的除外),都要做三遍。
第1遍就是正常做,然后对照参考答案与解题思路,更正答案。
第2遍做一般是隔天效果最好,重新再快速地把之前所有的题目全部都重新做一遍,这个“做”不是和第1遍一样1字不差,从头到尾地演算。
而是要针对关键步骤,关键思路进行整理。
比如之前看到某一个题目的时候,我们的想法是A,结果正确的解题思路是B,A和B相比差异非常大。
高一数学公式总结(必修一)高中数学背的话就是那些公式,但主要还是要理解吧,高中数学比较灵活,不是说你背了一定可以考好,关键还是要理解会用,今天小编在这给大家整理了高一数学公式总结,接下来随着小编一起来看看吧!高一数学公式总结1高一数学必修一公式【和差化积】2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 【某些数列前n项和】1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41x2+2x3+3x4+4x5+5x6+6x7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角弧长公式 l=axr a是圆心角的弧度数r >0 扇形面积公式 s=1/2xlxr 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1xX2=c/a 注:韦达定理【判别式】b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根【两角和公式】sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)【倍角公式】tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a【半角公式】sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))【降幂公式】(sin^2)x=1-cos2x/2(cos^2)x=i=cos2x/2【万能公式】令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)高中数学公式顺口溜一、《集合与函数》内容子交并补集,还有幂指对函数。
数学必修一公式汇总数学必修一是高中数学的重要课程之一,其中涉及的公式数量十分繁多。
以下是数学必修一中常用的一些公式汇总:一、初中所学公式1. 勾股定理:a^2 + b^2 = c^22. 同底数幂的乘除规则:a^m * a^n = a^(m+n),a^m / a^n = a^(m-n)3. 对数的乘除法则:log(ab) = loga + logb, log(a/b) = loga - logb4. 四边形对角线公式:d^2 = (ac + bd)^2 + (ad - bc)^2二、直线与曲线的交点公式1. 一次函数:y = kx + b,其与x轴、y轴的交点分别为(-b/k, 0)和(0, b)2. 二次函数:y = ax^2 + bx + c,其与x轴的交点为(x1, 0)和(x2, 0),其中x1和x2由公式 x1,2 = (-b ± √(b^2 - 4ac)) / (2a) 得出3. 圆的标准方程:(x - a)^2 + (y - b)^2 = r^2,其中(a, b)为圆心坐标,r 为半径三、三角形的面积公式1. 海伦公式:S = √[p(p - a)(p - b)(p - c)],其中p = (a + b + c) / 22. 正弦定理:a/sinA = b/sinB = c/sinC,其中A、B、C分别为角A、B、C的度数3. 余弦定理:c^2 = a^2 + b^2 - 2ab cosC四、立体几何中的公式1. 立方体体积公式:V = a^3,其中a为边长2. 正方体表面积公式:S = 6a^2,其中a为边长3. 圆锥体积公式:V = (1/3)πr^2h,其中r为底面半径,h为高以上是数学必修一中常用的一些公式汇总,这些公式的熟练掌握对于学习高中数学及以后的学习都有很大的帮助。
高一数学所有知识点及其公式大全数学作为一门理科学科,对于高中学生来说是必修的科目之一。
在高一数学学习中,掌握并熟练运用各种知识点和公式是至关重要的。
下面将为大家详细介绍高一数学的所有知识点及其相应的公式。
一、函数与方程1. 函数:函数是一种特殊的关系,它将一个自变量的值映射到一个因变量的值。
函数通常用f(x)或y表示,其中x为自变量,y为因变量。
2. 相关系数:相关系数用于衡量两个变量之间的线性关系强弱,其取值范围为-1至1。
相关系数趋近于1时表示正相关,趋近于-1时表示负相关,趋近于0时表示无相关。
3. 一次函数:一次函数是最简单的线性函数,表达式为y = kx + b,其中k为斜率,b为截距。
4. 二次函数:二次函数是一种特殊的非线性函数,表达式为y = ax²+ bx + c,其中a、b、c为常数。
5. 幂函数:幂函数是形如y = x^a的函数,其中a为常数。
6. 对数函数:对数函数是幂函数的反函数,表达式为y = logₐx,其中a为底数。
7. 幂函数与对数函数的关系:幂函数与对数函数是互为反函数的关系,即y = a^x与y = logₐx 是一对反函数。
8. 指数函数:指数函数是以底数为常数的指数形式表示的函数,表达式常为y = a^x,其中a为底数。
9. 三角函数:三角函数包括正弦函数、余弦函数和正切函数等,它们是数学中常用的特殊函数。
10. 方程与不等式:方程和不等式是数学中常见的表示关系的符号体系,可用于求解各种实际问题。
二、数列与数列的运算1. 等差数列:等差数列是一种具有公差的数列,其中相邻两个项之间的差值是恒定的。
2. 等差数列的通项公式:等差数列的通项公式为an = a₁ + (n-1)d,其中a₁为首项,d为公差,n为项数。
3. 等比数列:等比数列是一种具有公比的数列,其中相邻两个项之间的比值是恒定的。
4. 等比数列的通项公式:等比数列的通项公式为an = a₁ * r^(n-1),其中a₁为首项,r为公比,n为项数。
数学必修1常用公式及结论
必修1: 一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性
(2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法
2、集合间的关系:子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。
记作A B ⊆ 真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集, 记作A ≠
⊂B 集合相等:若:,A B B A ⊆⊆,则A B =
3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ
4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 A B
交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B
补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,
记为U C A 5.集合12{,,
,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;
6.常用数集:自然数集:N 正整数集:*
N 整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性
1、定义: 奇函数 <=> f (– x ) = – f ( x ) ,偶函数 <=> f (–x ) = f ( x )(注意定义域)
2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;
(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性
1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D ,且x 1 < x 2
① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) < 0 <=> f ( x )是增函数 ② f ( x 1 ) > f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) > 0 <=> f ( x )是减函数 2、复合函数的单调性: 同增异减
三、二次函数y = ax 2 +bx + c (0a ≠)的性质
1、顶点坐标公式:⎪⎪⎭
⎫ ⎝⎛--a b ac a b 44,22, 对称轴:a b
x 2-=,最大(小)值:a b ac 442-
2.二次函数的解析式的三种形式
(1)一般式2
()(0)f x ax bx c a =++≠; (2)顶点式2
()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠. 四、指数与指数函数
1、幂的运算法则:
(1)a m • a n = a m + n ,(2)n
m n
m
a
a a -=÷,(3)( a m ) n = a m n (4)( a
b ) n = a n • b n
(5) n n n
b a b a =⎪⎭⎫ ⎝⎛(6)a 0
= 1 ( a ≠0)(7)n n a a 1=- (8)m n m n
a a =(9)m n m n
a
a 1=-
2、根式的性质
(1
)n
a =.
(2)当n
a =; 当n
,0
||,0
a a a a a ≥⎧==⎨
-<⎩.
4、指数函数y = a x (a > 0且a ≠1)的性质:
(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)
5.指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>.
五、对数与对数函数
1对数的运算法则:
(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N
= N (6)log a (MN) = log a M + log a N (7)log a (
N
M
) = log a M -- log a N (8)log a N b = b log a N (9)换底公式:log a N =
a
N
b b log log
(10)推论 log log m n
a a n
b b m
=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). (11)log a N =
a
N log 1
(12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A
(其中 e = 2.71828…) 2、对数函数y = log a x (a > 0且a ≠1)的性质:
(1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)
六、幂函数y = x a 的图象:(1) 根据 a
例如:
y = x 2
2
1x x y ==
11
-==
x x
y 七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位, 得到函数b a x f y +-=)(的图象; 规律:左加右减,上加下减 八. 平均增长率的问题
如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x
y N p =+. 九、函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。
即 ()y f x =的图象与X 轴相交时交点的横坐标。
2.函数零点存在性定理:如果函数()y f x =在区间[],a b 上的图象是连续不断的一条 曲线,并有()()0f a f b ⋅<,那么()y f x =在区间(),a b 内有零点,即存在(),c a b ∈, 使得()0f c =,这个C 就是零点。
3.二分法求函数零点的步骤:(给定精确度ε)
(1)确定区间[],a b ,验证()()0f a f b ⋅<;(2)求(),a b 的中点12
a b
x +=
(3)计算1()f x ①若1()0f x =,则1x 就是零点;②若1()()0f a f x ⋅<,则零点
()01,x a x ∈ ③若1()()0f x f b ⋅<,则零点()01,x x b ∈;
(4)判断是否达到精确度ε,若a b ε-<,则零点为a 或b 或(),a b 内任一值。
否 则重复(2)到(4)。