人教版数学必修一期末考试题(含答案).docx
- 格式:docx
- 大小:99.31 KB
- 文档页数:16
高一数学必修一第一学期期末测试卷(人教版浙江)(含答案和解析)第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·全国高一课时练习)已知集合{}1013M =-,,,,{}13N =-,,则集合M N ⋂中元素的个数是( ) A .0B .1C .2D .32.(2020·湖南长沙市·长郡中学高一月考)下列函数中,既是偶函数又在(0,)+∞单调递增的是( ) A .2x y =B .3y x =C .cos y x =D .||y ln x =3.(2020·渝中区·重庆巴蜀中学高三月考)已知函数,0()1,0x e x f x x x ⎧≤=⎨->⎩,则()()1f f =( )A .0B .1C .eD .1e -4.(2020·广东揭阳市·高一期末)已知lg lg 0a b +=,则函数()x f x a =与函数1()log bg x x =的图象可能是( )A .B .C .D .5.(2020·浙江高一期中)已知函数()1xf x e =-,()22g x x x =-+,若存在a R ∈,使得()()f a g b =,则实数b 的取值范围是( )A .()0,2B .[]0,2C .(1+D .1⎡⎣6.(2020·淮安市阳光学校高一月考)某养鸭户需要在河边用围栏围起一个面积为2200m 的矩形鸭子活动场地,面向河的一边敞开不需要围栏,则围栏总长最小需要多少米?( ) A .20B .40C .60D .807.(2020·浙江高一期中)已知函数()||f x x x =,当[,2]x t t ∈+时,恒有不等式(2)4()f x t f x +>成立,则实数t 的取值范围是( ) A .(2,)+∞B .[2,)+∞C .(,2)-∞D .(,2]-∞8.(2020·江苏南通市·高二期中)“a >1,b >1”是“log a b +log b a ≥2”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要9.(2020·全国高一课时练习)定义集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭,已知集合{2,4,6}S =,|1,2k T x x k S ⎧⎫==-∈⎨⎬⎩⎭,则集合S T T ⋃中的元素个数为( )A .5B .6C .7D .810.(2020·长春市·吉林省实验高一期末(理))已知()sin (0)3f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=- ⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是( ) A .50,12π⎛⎤⎥⎝⎦B .50,6π⎛⎤⎥⎝⎦C .511,1212ππ⎛⎤⎥⎝⎦D .511,612ππ⎛⎤⎥⎝⎦第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2018·江苏苏州市·高一期末)函数lg(2)y x =-的定义域是______.12.(2018·江苏苏州市·高一期末)已知函数232,1,(),1,x x f x x x -≤⎧=⎨>⎩ 则函数()()2g x f x =-的零点个数为______.13.(2019·福建漳州市·龙海二中高三月考(文))已知tan()24πα-=,则sin(2)4πα-的值等于__________.14.(2020·浙江高一课时练习)里氏震级M 的计算公式为:M=lgA ﹣lgA 0,其中A 是测震仪记录的地震曲线的最大振幅,是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A 0为0.001,则此次地震的震级为 级;9级地震的最大的振幅是5级地震最大振幅的 倍.15.(2020·浙江杭州市·高三期中)已知34a =,2log 3b =,则ab =________;4b =________. 16.(2020·全国高一课时练习)设函数()sin f x A B x =+,当0B <时,()f x 的最大值是32,最小值是12-,则A =_____,B =_____. 17.(2020·浙江高一单元测试)已知4sin 5α,,2παπ⎛⎫∈ ⎪⎝⎭,则cos α=________,tan 2α=________.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·安徽省蚌埠第三中学高一月考)计算下列各式的值: (1)()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭;(2)941451log log 3log 5log 272⋅--+. 19.(2020·全国高一单元测试)已知函数()()()log 1log 1a a f x x x =+--,其中0a >且1a ≠.()1判断()f x 的奇偶性并予以证明; ()2若1a >,解关于x 的不等式()0f x >.20.(2020·湖北荆州市·荆州中学高一期末)(1)已知角α的终边经过点(,6)P x ,且5cos 13α=-,求sin α和tan α的值. (2)已知1cos 7α=,13cos()14αβ-=,且02πβα<<<,求角β. 21.(2020·北京密云区·高一期末)已知函数2()cos cos f x x x x =-. (1)求函数()f x 的最小正周期和单调区间; (2)求函数()f x 的零点.22.(2020·浙江高一期中)已知函数2()21x xaf x a -=⋅+为奇函数,其中a 为实数. (1)求实数a 的值;(2)若0a >时,不等式()(())20xf f x f t +⋅<在[1,1]x ∈-上恒成立,求实数t 的取值范围.高一数学必修一第一学期期末测试卷(人教版浙江)(含答案和解析)第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·全国高一课时练习)已知集合{}1013M =-,,,,{}13N =-,,则集合M N ⋂中元素的个数是( ) A .0 B .1C .2D .3【答案】B 【解析】{}1013M =-,,,,{}13N =-,{}1M N ∴⋂=故选:B2.(2020·湖南长沙市·长郡中学高一月考)下列函数中,既是偶函数又在(0,)+∞单调递增的是( ) A .2x y = B .3y x =C .cos y x =D .||y ln x =【答案】D 【解析】根据题意,依次分析选项:对于A ,2x y =,为指数函数,其定义域为R ,不是偶函数,不符合题意; 对于B ,3y x =,为幂函数,是奇函数,不符合题意;对于C ,cos y x =,为偶函数,在(0,)+∞不是增函数,不符合题意; 对于D ,,0(),0lnx x y ln x ln x x ⎧==⎨-<⎩,为偶函数,且当0x >时,y lnx =,为增函数,符合题意;故选:D .3.(2020·渝中区·重庆巴蜀中学高三月考)已知函数,0()1,0x e x f x x x ⎧≤=⎨->⎩,则()()1f f =( )A .0B .1C .eD .1e -【答案】B 【解析】0((1))(0)1f f f e ===,故选:B4.(2020·广东揭阳市·高一期末)已知lg lg 0a b +=,则函数()x f x a =与函数1()log bg x x =的图象可能是( )A .B .C .D .【答案】B 【解析】lg lg 0,lg 0a b ab +=∴=,即1ab =.∵函数()f x 为指数函数且()f x 的定义域为R ,函数()g x 为对数函数且()g x 的定义域为()0,∞+,A 中,没有函数的定义域为()0,∞+,∴A 错误;B 中,由图象知指数函数()f x 单调递增,即1a >,()g x 单调递增,即01b <<,ab 可能为1,∴B 正确;C 中,由图象知指数函数()f x 单调递减,即01a <<,()g x 单调递增,即01b <<,ab 不可能为1,∴C 错误;D 中,由图象知指数函数()f x 单调递增,即1a >,()g x 单调递减,即1b >,ab 不可能为1,∴D 错误. 故选:B.5.(2020·浙江高一期中)已知函数()1xf x e =-,()22g x x x =-+,若存在a R ∈,使得()()f a g b =,则实数b 的取值范围是( ) A .()0,2B .[]0,2C .(12,12+D .12,12⎡⎤⎣⎦【答案】C 【解析】()11x f x e =->-,所以,()221g b b b =-+>-,整理得2210b b --<,解得1212b <故选:C.6.(2020·淮安市阳光学校高一月考)某养鸭户需要在河边用围栏围起一个面积为2200m 的矩形鸭子活动场地,面向河的一边敞开不需要围栏,则围栏总长最小需要多少米?( ) A .20B .40C .60D .80【答案】B 【解析】设此矩形面向河的一边的边长为x ,相邻的一边设为y , 由题意得200xy =, 设围栏总长为l 米,则240l x y =+≥=, 当且仅当2x y =时取等号, 此时20,10x y ==; 则围栏总长最小需要40米; 故选:B.7.(2020·浙江高一期中)已知函数()||f x x x =,当[,2]x t t ∈+时,恒有不等式(2)4()f x t f x +>成立,则实数t 的取值范围是( ) A .(2,)+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞【答案】A 【解析】||y x =为偶函数,y x =为奇函数 ()||f x x x ∴=奇函数当0x 时,2()f x x =为增函数,由奇函数在对称区间上单调性相同可得函数()f x 在R 上增函数 又不等式(2)4()f x t f x +>可化为(2)|2|4||2|2|(2)x t x t x x x x f x ++>==故当[,2]x t t ∈+时,不等式(2)4()f x t f x +>恒成立, 即当[,2]x t t ∈+时,不等式22x t x +>恒成立 即2x t <恒成立 即22t t +< 解得2t >故实数t 的取值范围是(2,)+∞ 故选:A8.(2020·江苏南通市·高二期中)“a >1,b >1”是“log a b +log b a ≥2”的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要【答案】A 【解析】∵1log log log log a b a a b a b b+=+,又1,1a b >>,∴log 0a b >,即1log 2log a a b b +≥=当且仅当a b =时等号成立, 而11,28a b ==时有110log log log 2log 3a b a a b a b b +=+=>,显然1,1a b >>不一定成立; 综上,所以有1,1a b >>是log log 2a b b a +≥充分不必要条件. 故选:A9.(2020·全国高一课时练习)定义集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭,已知集合{2,4,6}S =,|1,2k T x x k S ⎧⎫==-∈⎨⎬⎩⎭,则集合S T T ⋃中的元素个数为( )A .5B .6C .7D .8【答案】B 【解析】∵集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭, 集合{2,4,6}S =,|1,{0,1,2}2k T x x k S ⎧⎫==-∈=⎨⎬⎩⎭, ∴{}1,2,3,4,6ST =, ∴{}0,1,2,3,4,6ST T=. ∴集合STT ⋃元素的个数为6个.故选:B.10.(2020·长春市·吉林省实验高一期末(理))已知()sin (0)3f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=- ⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是( ) A .50,12π⎛⎤⎥⎝⎦B .50,6π⎛⎤⎥⎝⎦C .511,1212ππ⎛⎤⎥⎝⎦D .511,612ππ⎛⎤⎥⎝⎦【答案】D 【解析】 由t π=,可得2=2ππωω=⇒因为3y f x π⎛⎫=-⎪⎝⎭是奇函数 所以sin 23x πϕ⎛⎫+- ⎪⎝⎭是奇函数,即,3k k z πϕπ-=∈又因为()06f f π⎛⎫<⎪⎝⎭,即()2sin sin 3k k ππππ⎛⎫+<+⎪⎝⎭所以k 是奇数,取k=1,此时43πϕ= 所以函数()5sin 2sin 233f x x x ππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭因为()f x 在[)0,t 上没有最小值,此时2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭所以此时432,332t πππ⎛⎤-∈ ⎥⎝⎦解得511,612t ππ⎛⎤∈ ⎥⎝⎦. 故选D.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2018·江苏苏州市·高一期末)函数lg(2)y x =-的定义域是______.【答案】(,2)-∞ 【解析】由题设有20x ->,解得2x <,故函数的定义域为(),2-∞,填(),2-∞. 12.(2018·江苏苏州市·高一期末)已知函数232,1,(),1,x x f x x x -≤⎧=⎨>⎩ 则函数()()2g x f x =-的零点个数为______. 【答案】2 【解析】()g x 的零点即为()0g x =的解.当1x ≤时,令322x -=,解得12x =,符合;当1x >,令22x =,解得x =()g x 的零点个数为2.13.(2019·福建漳州市·龙海二中高三月考(文))已知tan()24πα-=,则sin(2)4πα-的值等于__________.【答案】10【解析】 由tan 1tan()241tan πααα--==+,解得tan 3α=-,因为22sin(2)2cos 2)(2sin cos cos sin )422πααααααα-=-=-+2222222sin cos cos sin 2tan 1tan 2cos sin 21tan ααααααααα-+-+=⨯=++222(3)1(3)21(3)10⨯--+-==+-. 14.(2020·浙江高一课时练习)里氏震级M 的计算公式为:M=lgA ﹣lgA 0,其中A 是测震仪记录的地震曲线的最大振幅,是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A 0为0.001,则此次地震的震级为 级;9级地震的最大的振幅是5级地震最大振幅的 倍.【答案】6,10000 【解析】根据题意,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则M=lgA ﹣lgA 0=lg1000﹣lg0.001=3﹣(﹣3)=6. 设9级地震的最大的振幅是x ,5级地震最大振幅是y , 9=lgx+3,5=lgy+3,解得x=106,y=102,∴62101000010x y ==. 故答案耿:6,10000.15.(2020·浙江杭州市·高三期中)已知34a =,2log 3b =,则ab =________;4b =________. 【答案】2 9 【解析】因为34a =,所以3log 4a =,又2log 3b =, 因此32lg 4lg3log 4log 32lg3lg 2ab =⋅=⋅=;222log 32log 3log 944229b ====. 故答案为:2;9.16.(2020·全国高一课时练习)设函数()sin f x A B x =+,当0B <时,()f x 的最大值是32,最小值是12-,则A =_____,B =_____. 【答案】121- 【解析】根据题意,得3212A B A B ⎧-=⎪⎪⎨⎪+=-⎪⎩,解得1,12A B ==-.故答案为:1,12- 17.(2020·浙江高一单元测试)已知4sin 5α,,2παπ⎛⎫∈ ⎪⎝⎭,则cos α=________,tan 2α=________.【答案】35247【解析】由已知得3cos 5α==-,所以445tan 335α==--,242243tan 27413α⎛⎫⨯- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭. 故答案为:35;247. 三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·安徽省蚌埠第三中学高一月考)计算下列各式的值: (1)()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭; (2)941451log log 3log 5log 272⋅--+. 【答案】(1)3;(2)174. 【解析】(1)根据指数幂的运算法则,可得()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭222333333(24441399)1[()]22--⎛⎫=--+ -⎪⎝-+⎭==.(2)根据对数的运算法则,可得941451log log 3log 5log 272⋅--+ 325211111log 2log log 5log 2414224341722=-⨯+-+=-+-+=.19.(2020·全国高一单元测试)已知函数()()()log 1log 1a a f x x x =+--,其中0a >且1a ≠.()1判断()f x 的奇偶性并予以证明; ()2若1a >,解关于x 的不等式()0f x >.【答案】(1)奇函数,证明见解析;(2)()0,1. 【解析】()1要使函数有意义,则{1010x x +>->,即{11x x >-<,即11x -<<, 即函数的定义域为()1,1-,则()()()()()()log 1log 1log 1log 1a a a a f x x x x x f x ⎡⎤-=-+-+=-+--=-⎣⎦, 则函数()f x 是奇函数.()2若1a >,则由()0.f x >得()()log 1log 10a a x x +-->,即()()log 1log 1a a x x +>-, 即11x x +>-,则0x >, 定义域为()1,1-,01x ∴<<,即不等式的解集为()0,1.20.(2020·湖北荆州市·荆州中学高一期末)(1)已知角α的终边经过点(,6)P x ,且5cos 13α=-,求sin α和tan α的值.(2)已知1cos 7α=,13cos()14αβ-=,且02πβα<<<,求角β. 【答案】(1)12sin 13α=,12tan 5α=-(2)3πβ=【解析】 (1)55cos 132x α==-⇒=-, ∴5,62P ⎛⎫- ⎪⎝⎭∴12sin 13α==,612tan 552α==--;(2)由1cos 7α=,02πα<<,得sin 7α=, 由13cos()14αβ-=,02πβα<<<,得02παβ<-<,得sin()αβ-=所以cos cos[()]cos cos()sin sin()βααβααβααβ=--=-+-11317142=⨯=, 又02πβ<<,∴3πβ=.21.(2020·北京密云区·高一期末)已知函数2()cos cos f x x x x =-. (1)求函数()f x 的最小正周期和单调区间; (2)求函数()f x 的零点.【答案】(1)T π=;单调递增区间为[,]63k k ππππ-+,k Z ∈;单调递减区间为5[,]36k k ππππ++ ,k Z ∈; (2)6x k ππ=+或2x k π=+π,k Z ∈.【解析】(1)2()cos cos f x x x x -cos 21222x x +=-1sin 262x π⎛⎫=-- ⎪⎝⎭,即()1sin 262f x x π⎛⎫=-- ⎪⎝⎭, 所以()f x 的最小正周期22T ππ==. 因为sin y x =的单调增区间为2,222k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,令222262k x k πππππ-≤-≤+,解得63k xk ππππ,k Z ∈.因为sin y x =的单调减区间为32,222k k ππππ⎡⎤+⎢⎥⎣⎦+,k Z ∈,令3222262k x k πππππ-++≤≤, 解得536k x k ππππ++≤≤,k Z ∈. 所以()f x 的单调递增区间为,63k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)函数1()sin 262f x x π⎛⎫=-- ⎪⎝⎭的零点, 令1sin(2)062x π--=,即1sin(2)62x π-=.2266x k πππ-=+或52266x k πππ-=+,k Z ∈ 解得6x k ππ=+或2x k π=+π,k Z ∈所以()f x 的零点为6x k ππ=+或2x k π=+π,k Z ∈22.(2020·浙江高一期中)已知函数2()21x xaf x a -=⋅+为奇函数,其中a 为实数. (1)求实数a 的值;(2)若0a >时,不等式()(())20xf f x f t +⋅<在[1,1]x ∈-上恒成立,求实数t 的取值范围.【答案】(1)±1;(2)1,5⎛⎫-∞- ⎪⎝⎭. 【解析】(1)由函数2()21x xaf x a -=⋅+为奇函数,可得()()f x f x -=-, 代入可得:222121x x x xa aa a ----=⋅+⋅++, 整理可得:2222(2)1(2)x a a x -=-,所以21a =, 解得:1a =±;(2)若0a >,由(1)知1a =,所以212()12121x x xf x -==-++, 由2x 为增函数,21x u =+为增函数且210x u =+>, 又因为2u 为减函数,所以2u-为增函数, 所以()f x 为增函数, 又因为()f x 为奇函数,由()(())20xf f x f t +⋅<可得:()20x f x t +⋅<,即21+2021x x x t -⋅<+在[1,1]x ∈-上恒成立, 若0t ≥,1x =时不成立,故0t <, 令2x s =,则1(,2)2s ∈, 整理可得:2(1)10t s t s ⋅++-<, 令2()(1)1g s t s t s =⋅++-,若1122t t +-≤或122t t +-≥ 需131()0242g t =-<,(2)610g t =+<,可得1156t -≤<-或12t ≤-,若11222t t +<-<,需1()02t g t+-<, 解得1125t -<<-,综上可得:实数t 的取值范围为1,5⎛⎫-∞- ⎪⎝⎭.。
人教版高一数学必修1必修4期末测试卷附答案人教版高一数学必修1必修4期末测试卷姓名:__________ 班级:___________ 学号:____________ 分数:______________一、选择题(每题5分,共40分)1.集合A={x∈N*|-1<x<3}的子集的个数是(。
)。
A。
4.B。
8.C。
16.D。
322.函数f(x)=1/(1-x)+lg(1+x)的定义域是(。
)。
A。
(-∞,-1)。
B。
(1,+∞)。
C。
(-1,1)U(1,+∞)。
D。
(-∞,+∞)3.设a=log2,c=5-1/3,b=ln22,则(。
)。
A。
a<b<c。
B。
b<c<a。
C。
c<a<b。
D。
c<b<a4.函数y=-x^2+4x+5的单调增区间是(。
)。
A。
(-∞,2]。
B。
[-1,2]。
C。
[2,+∞)。
D。
[2,5]5.已知函数f(x)=x^2-2ax+3在区间(-2,2)上为增函数,则a的取值范围是(。
)。
A。
a≤2.B。
-2≤a≤2.C。
a≤-2.D。
a≥26.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是(。
)。
A。
y=x-2.B。
y=x-1.C。
y=x^2.D。
y=x^37.若函数f(x)=x/(2x+1)(x-a)为奇函数,则a=(。
)。
A。
1/2.B。
2/3.C。
3/4.D。
1/88.已知α是第四象限角,XXX(π-α)=5/12,则sinα=(。
)。
A。
1/5.B。
-1/5.C。
5.D。
-59.若tanα=3,则sinαcosα=(。
)。
A。
3.B。
3/2.C。
3/4.D。
9/410.sin600°的值为(。
)。
A。
3/2.B。
-3/2.C。
-1/2.D。
1/211.已知cosα=3/5,π/4<α<π,则XXX(α+π/4)=(。
)。
A。
1.B。
-1.C。
5/8.D。
-5/812.在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(。
一、选择题1.已知在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意R x ∈,()()220f x f x +--=;③当[]0,2x ∈时,()f x x =;④函数()()()12n n f x f x -=⋅,*n N ∈,若过点()1,0-的直线l 与函数()()4f x 的图象在[]0,2x ∈上恰有8个交点,在直线l 斜率k 的取值范围是( )A .80,11⎛⎫⎪⎝⎭B .110,8⎛⎫⎪⎝⎭C .80,19⎛⎫⎪⎝⎭D .190,8⎛⎫⎪⎝⎭2.已知函数1,0(),0x x m f x e x -⎧=⎪=⎨⎪≠⎩,关于x 的方程23()(23)()20mf x m f x -++=有以下结论:①存在实数m ,使方程有2个解;②当方程有3个解时,这3个解的和为0;③不存在实数m ,使方程有4个解;④当方程有5个解时,实数m 的取值范围是331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭.其中正确结论的个数为( ) A .1B .2C .3D .43.如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米,若行车道总宽度AB 为7米,请计算通过隧道的车辆限制高度为( )A .4.25米B .4.5米C .3.9米D .4.05米4.集合{}1002,xx x x R =∈的真子集的个数为( )A .2B .4C .6D .75.已知函数222,0()2,0x x x f x x x x ⎧+≥=⎨-<⎩,212(log )(log )2(1)f a f f a ≤+,则实数a 的取值范围是( )A .1,22⎡⎤⎢⎥⎣⎦B .102⎛⎤ ⎥⎝⎦,C .[]1,2D .(]0,26.已知函数()22xa xf x -=+的图象关于直线1x =对称,若()log ,04,6,46a x x g x x x ⎧<≤=⎨-<≤⎩且123x x x <<,()()()123g x g x g x ==,则123x x x 的取值范围为( ) A .()0,2B .()0,4C .()4,6D .(]4,67.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭8.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .1y x=B.y =C .2x y = D .||y x x =-9.若函数22,2()13,22x ax x f x a x x⎧-≤⎪=⎨->⎪⎩是R 上的单调减函数,则实数a 的取值范围为( )A .115,24⎡⎤⎢⎥⎣⎦B .4,215⎡⎤⎢⎥⎣⎦ C .41,152⎡⎤⎢⎥⎣⎦D .152,4⎡⎤⎢⎥⎣⎦10.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉ B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉11.若x A ∈,则1A x ∈,就称A 是和美集合,集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的所有非空子集中是和美集合的个数为( ) A .4 B .5C .6D .712.已知集合{0,1,2,3,4},{|21,}A B x x n n A ===+∈,则AB 等于( )A .{}1,3,5B .{}3C .{}5,7,9D .{}1,3二、填空题13.2019年1月1日起新的个人所得税法开始实施,依据《中华人民共和国个人所得税法》可知纳税人实际取得工资、薪金(扣除专项、专项附加及依法确定的其他)所得不超过5000元(俗称“起征点”)的部分不征税,超出5000元部分为全月纳税所得额.新的税率表如表:2019年1月1日后个人所得税税率表 全月应纳税所得额 税率(%) 不超过3000元的部分 3 超过3000元至12000元的部分 10 超过12000元至25000元的部分 20 超过25000元至35000元的部分25个人所得税专项附加扣除是指个人所得税法规定的子女教育、继续教育、大病医疗、住房贷款利息、住房租金和赡养老人等六项专项附加扣除.其中赡养老人一项指纳税人赡养60岁(含)以上父母及其他法定赡养人的赡养支出,可按照以下标准扣除:纳税人为独生子女的,按照每月2000元的标准定额扣除;纳税人为非独生子女的,由其与兄弟姐妹分摊每月2000元的扣除额度,每人分摊的额度不能超过每月1000元.某纳税人只有一个姐姐,且两人仅符合规定中的赡养老人的条件,如果他在2020年5月份应缴纳个人所得税款为180元,那么他当月的工资、薪金税后所得是_____元.14.函数()[]f x x =的函数值表示不超过x 的最大整数,如[1.6]=1,[2]=2,()[]g x x x =-.若方程1()log ()0(02a g x x a --=>,且1)a ≠有一个实根,则a 的取值范围为________.15.已知函数()f x 满足()()1f x f x =-+,当()0,1x ∈时,函数()3xf x =,则13log 19f ⎛⎫= ⎪⎝⎭______. 16.已知函数f (x )=[log a (x +2)]+3的图象恒过定点(m ,n ),且函数g (x )=mx 2﹣2bx +n 在[1,+∞)上单调递减,则实数b 的取值范围是________.17.设奇函数()f x 的定义域为[]5,5-,若当[]0,5x ∈时,()f x 的图象如图,则不等式()0xf x <的解集是___________.18.已知函数()1f x x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭.若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥,则实数m 的取值范围是______.19.对非空有限数集12{,,,}n A a a a =定义运算“min”:min A 表示集合A 中的最小元素.现给定两个非空有限数集A ,B ,定义集合{|,,}M x x a b a A b B ==-∈∈,我们称min M 为集合A ,B 之间的“距离”,记为AB d .现有如下四个命题:①若min min A B =,则0AB d =;②若min min A B >,则0AB d >;③若0AB d =,则A B ⋂≠∅;④对任意有限集合A ,B ,C ,均有AB BC AC d d d +. 其中所有真命题的序号为__________.20.若集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,则正实数a 的取值范围是________三、解答题21.有一种候鸟每年都按一定的路线迁徙,飞往繁殖地产卵,科学家经过测量发现候鸟的飞行速所度可以表示为函数301log lg 2100x v x =-,单位是km /min ,其中x 表示候鸟每分钟耗氧量的单位数,常数0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据lg 20.3,= 1.2 1.43 3.74,3 4.66==)(1)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(2)若雄鸟的飞行速度为1.5km /min ,雌鸟的飞行速度为1km/min ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的多少倍?22.已知函数()f x 为偶函数,当0x ≥时,()11x x e f x e -=+.(1)求当0x <时,函数()f x 的解析式; (2)判断函数()f x 在(),0-∞上的单调性并证明;(3)设函数()()()2g x f ax f x a =--+,使函数()g x 有唯一零点的所有a 构成的集合记为M ,求集合M .23.计算:(1)011327(0.064)0.258-⎛⎫--+ ⎪⎝⎭; (2)22lg25lg8lg5lg20(lg2)3++⋅+. 24.已知函数()21log 1x f x x +=-,(1)求函数()y f x =的定义域; (2)证明:()y f x =是奇函数; (3)设()()()14h x f x f x =+,求函数()y h x =在[]3,7内的值域; 25.已知函数()()210f x x x a=-+>.(1)判断()f x 在()0,∞+上的增减性,并用单调性定义证明. (2)若()20f x x +≥在()0,∞+上恒成立,求a 的取值范围.26.已知集合{}|13A x x =-<<,集合(){}2|25250B x x k x k =+--<,k ∈R .(1)若1k =时,求B R,A B ;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先由条件①②,得到函数()f x 是周期为4的周期函数;根据③求出函数()f x 在一个周期[]22-,上的表达式为(),02,20x x f x x x ≤≤⎧=⎨--≤<⎩,根据④得到()()4f x 的周期为12,其图象可由()f x 的图象压缩为原来的18得到,作出()()4f x 的图象,结合图象,即可求出结果. 【详解】因为函数()f x 是偶函数,由()()220f x f x +--=得()()()222f x f x f x +=-=-,即()()4f x f x +=,所以函数()f x 是周期为4的周期函数;若[]2,0x ∈-,则[]0,2x ∈;因为当[]0,2x ∈时,()f x x =, 所以[]0,2x -∈时,()f x x -=-,因为函数()f x 是偶函数,所以()()f x x f x -=-=, 即()f x x =-,[]2,0x ∈-,则函数()f x 在一个周期[]22-,上的表达式为(),02,20x x f x x x ≤≤⎧=⎨--≤<⎩, 因为()()()12n n f x f x -=⋅,*n N ∈,所以函数()()()48f x f x =,*n N ∈,故()()4f x 的周期为12,其图象可由()f x 的图象压缩为原来的18得到,作出()()4f x 的图象如图:易知过()1,0M -的直线l 斜率存在,设过点()1,0-的直线l 的方程为()1y k x =+, 则要使直线l 与()()4f x 的图象在[]0,2x ∈上恰有8个交点,则0MA k k <<,因为7,24A ⎛⎫⎪⎝⎭,所以20871114MA k -==+,故8011k <<. 故选:A.【点睛】 关键点点睛:求解本题的关键在于,根据条件,由函数基本性质,得到()()4f x 的图象,再由函数交点个数,利用数形结合的方法,即可求解.2.C解析:C 【分析】将方程的解的个数转化为函数()y f x =的图象与直线23y =和1y m=的交点总数,数形结合即可得解. 【详解】由题意,23()(23)()20[3()2][()1]0mf x m f x f x mf x -++=⇒--=, 解得2()3f x =或1()f x m=, 则方程解的个数即为函数()y f x =的图象与直线23y =和1y m=的交点总数, 作出函数()f x 的图象,如图,由()f x 的图象可知,2()3f x =有两个非零解, 由1(0)f m =得1()f x m=至少有一个解0,故①错; 当方程有3个解时,10m <或11m ≥或123m =,由函数的对称性可得这3个解的和为0, 故②对;不存在实数m ,使方程有4个解,故③对; 当方程有5个解时,则函数()y f x =的图象与直线23y =和1y m=共有五个交点, 所以直线1y m=与函数()y f x =的图象有三个交点, 数形结合可得101123mm ⎧<<⎪⎪⎨⎪≠⎪⎩,解得331,,22m ⎛⎫⎛⎫∈+∞ ⎪ ⎪⎝⎭⎝⎭,故④对.故正确结论有3个. 故选:C . 【点睛】方法点睛:解决函数零点(方程的根)的问题常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.3.D解析:D 【分析】可设抛物线的方程为2(0)x ny n =<,将(5,5)-代入可得n ,可得抛物线的方程,再令3.5x =,求得y ,计算70.5y --,可得所求值.【详解】解:如右图,设抛物线的方程为2(0)x ny n =<,将点(5,5)-代入抛物线的方程可得,255n =-,解得5n =-, 即抛物线的方程为25x y =-,令 3.5x =,可得23.55y =-,解得 2.45y =-,则通过隧道的车辆限制高度为7 2.450.5 4.05--=(米). 故选:D .【点睛】利用坐标法思想,建立适当的直角坐标系,得到抛物线的方程,从而解决问题.4.D解析:D 【分析】分析指数函数2xy =与幂函数100y x=的图像增长趋势,当0x <时,有1个交点;当0x >时,有2个交点;即集合{}1002,x x x x R =∈有3个元素,所以真子集个数为3217-=【详解】分析指数函数2xy =与幂函数100y x =的图像增长趋势,当0x <时,显然有一个交点;当0x >时,当1x =时,110021>;当2x =时,210022<;故()1,2x ∈时,有一个交点;分析数据发现,当x 较小时,100y x=比2x y =增长的快;当x 较大时,2xy =比100y x =增长的快,即2x y =是爆炸式增长,所以还有一个交点.即2xy =与100y x=的图像有三个交点,即集合{}1002,x x xx R =∈有3个元素,所以真子集个数为3217-= 故选:D. 【点睛】结论点睛:本题考查集合的子集个数,集合A 中含有n 个元素,则集合A 的子集有2n 个,真子集有()21n-个,非空真子集有()22n-个.5.A解析:A 【分析】根据条件判断()f x 的奇偶性和单调性,把不等式212(log )(log )2(1)f a f f a ≤+转化为2log 1a ≤进行求解即可.【详解】当0x <时,0x ->,则2()2()f x x x f x -=-=, 当0x >时,0x -<,则2()2()-=+=f x x x f x , ∴函数()f x 为偶函数,∴222122(log )(log )(log )(log )2(log )f a f a f a f a f a +=+-=.又当0x ≥时,函数()f x 单调递增,∴22(log )2(1)f a f ≤可转化为2((log 1))f a f ≤,则2log 1a ≤, ∴21log 1a -≤≤,解得122a ≤≤. 故选:A. 【点睛】本题考查了分段函数的性质,考查函数的单调性与奇偶性,考查学生的推理能力与计算求解能力,属于中档题.6.C解析:C 【分析】根据函数()22xa xf x -=+的图象关于直线1x =对称,求得a ,进而求得 ()g x ,利用数形结合法求解. 【详解】 因为()()()2222a a x a xa x x f a x f x -----=+=+=,所以函数关于直线2ax =对称, 因为函数()22xn xf x -=+的图象关于直线1x =对称,所以12a=, 解得2a =,所以()2log,04,6,46,x x g x x x ⎧<≤=⎨-<≤⎩,其图象如下图所示:因为123x x x <<,()()()123g x g x g x ==, 所以2122log log x x =,2122log log x x -=, 22211log log x x =, 所以121=x x ,所以()12334,6x x x x =∈. 故选:C . 【点睛】本题主要考查函数的对称性和对数函数的图象和性质还考查了数形结合的思想和运算求解的能力,属于中档题.7.D解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭,若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭.故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.8.D解析:D 【分析】利用奇函数的定义和常见基本初等函数的性质,对选项逐一判断即可. 【详解】 选项A 中,函数1y x =,由幂函数性质知1y x=是奇函数,且其在()(),0,0,-∞+∞两个区间上递减,不能说在定义域内是减函数,故错误;选项B 中,函数y =[)0,+∞,不对称,故不具有奇偶性,,且在定义域内是增函数,故错误;选项C 中,指数函数2xy =,22x x -≠,且22x x -≠-,故不是奇函数,故错误;选项D 中,函数22,0,0x x y x x x x ⎧-≥=-=⎨<⎩,记()y f x =,当0x >时,0x -<,故22(),()f x x f x x =--=,故()()f x f x -=-,当0x =时,(0)0f =,故()()f x f x -=-,当0x <时,0x ->,故22(),()f x x f x x =-=-,故()()f x f x -=-,综上,()y f x =是奇函数,又0x ≥时,2()f x x =-是开口向下的抛物线的一部分,是减函数,由奇函数性质知()y f x =在定义域R 上是减函数,故正确. 故选:D. 【点睛】本题解题关键是熟练掌握常见的基本初等函数的性质,易错点是分段函数奇偶性的判断,分段函数必须判断定义域内的每一段均满足()()f x f x -=-(或()()f x f x -=)才能判定其是奇函数(或偶函数).9.D解析:D 【分析】若函数()f x 在R 上递减,则必须满足当(],2x ∈-∞时,函数22y x ax =-递减,且()2,x ∈+∞时132y a x=-也递减,且端点处的函数值必须满足条件. 【详解】 易知函数132y a x=-在(2,)+∞上单调递减,要使函数()f x 在R 上单调递减,则函数22y x ax =-在(,2]-∞上单调递减,所以2a ≥, 当2x =时,2244x ax a -=-,113324a a x -=-,要使()f x 在R 上单调递减, 还必须14434a a -≥-,即154a ≤,所以1524a ≤≤.故选:D . 【点睛】解答本题时,首先要保证原函数在每一段上都递减,另外,解答时容易忽略掉端点的函数值的大小关系.10.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xyz x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.11.D解析:D 【分析】写出集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的非空子集,根据和美集合的定义验证即可. 【详解】先考虑含一个元素的子集,并且其倒数是其本身,有{}{}1,1,- 再考虑 含有两个元素的和美集合,有{}11,1,,33⎧⎫-⎨⎬⎩⎭,含有三个元素的子集且为和美集合的是111,,3,1,,3,33⎧⎫⎧⎫-⎨⎬⎨⎬⎩⎭⎩⎭含有四个元素的子集且为和美集合的是11,1,,33⎧⎫-⎨⎬⎩⎭. 【点睛】本题主要考查了集合的子集,考查了创设新情景下解决问题的能力,属于中档题.12.D解析:D 【分析】首先求得集合B ,然后进行交集运算即可. 【详解】由题意可得:{}1,3,5,7,9B =,则{}1,3A B =.故选D . 【点睛】本题主要考查集合的表示方法,交集的定义与运算等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.9720【分析】按题意从最低纳税额开始计算最高纳税同时考虑到专项附加扣除后可得【详解】设他的工资是元工资是8000元时纳税为由于他有专项附加扣1000元因此他工资是9000元时纳税90元纳税后收入为解析:9720 【分析】按题意从最低纳税额开始计算最高纳税,同时考虑到专项附加扣除后可得. 【详解】设他的工资是x 元,工资是8000元时纳税为30003%90⨯=,由于他有专项附加扣1000元,因此他工资是9000元时,纳税90元,(9000)10%18090x -⨯=-,9900x =,纳税后收入为9900-180=9720(元). 故答案为:9720. 【点睛】本题考查函数的应用,解题时根据分段函数的意义分段计算纳税额即可得.解题关键是正确理解题意,弄懂工资收入与纳税额之间的关系.14.1)∪(1)∪(【分析】方程且有一个实根等价于函数的图象有一个交点画出函数的图象根据函数的性质分类讨论进行求解即可【详解】方程且有一个实根等价于函数的图象有一个交点画出函数的图象如下图所示:函数的定解析:[12,1) ∪(1,32)∪ (52,72] 【分析】方程1()log ()0(02a g x x a --=>,且1)a ≠有一个实根等价于函数1(),log ()2a y g x y x ==-的图象有一个交点,画出函数()y g x =的图象,根据函数1log ()2a y x =-的性质分类讨论进行求解即可.【详解】方程1()log ()0(02a g x x a --=>,且1)a ≠有一个实根等价于函数1(),()log ()2a y g x y h x x ===-的图象有一个交点,画出函数()y g x =的图象,如下图所示:函数1()log ()2a y h x x ==-的定义域为1(,)2+∞,且恒过定点3(,0)2.当01a <<时,当(1)1h ≥时,函数1(),()log ()2a y g x y h x x ===-的图象有一个交点,解得12a ≥,所以有112a ≤<;当1a >时,要想函数1(),()log ()2a y g x y h x x ===-的图象有一个交点,只需满足:(2)1h ≥或(3)1(4)1h h <⎧⎨≥⎩,解得(1,32)或 (52,72],综上所述:a 的取值范围为[12,1) ∪(1,32)∪ (52,72]. 故答案为:[12,1) ∪(1,32)∪ (52,72] 【点睛】本题考查了已知方程根的情况求参数取值范围问题,考查了数形结合思想和转化思想,考查了数学运算能力.15.【分析】由满足得到函数是以2为周期的周期函数结合对数的运算性质即可求解【详解】由题意函数满足化简可得所以函数是以2为周期的周期函数又由时函数且则故答案为:【点睛】函数的周期性有关问题的求解策略:求解 解析:2719-【分析】由()f x 满足()()1f x f x =-+,得到函数()f x 是以2为周期的周期函数,结合对数的运算性质,即可求解. 【详解】由题意,函数()f x 满足()()1f x f x =-+,化简可得()()2f x f x =+, 所以函数()f x 是以2为周期的周期函数,又由()0,1x ∈时,函数()3xf x =,且()()1f x f x =-+,则133339(log 19)(log 19)(log 192)(log )19f f f f =-=-+= 327log 193392727(log 1)(log )3191919f f =-+=-=-=-.故答案为:2719- 【点睛】函数的周期性有关问题的求解策略:求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期; 解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.16.【分析】先求出m=-1n=3再利用二次函数的图像和性质分析得解【详解】因为函数f (x )=loga (x+2)+3的图象恒过定点所以m=-1n=3所以g (x )=-x2﹣2bx+3因为g (x )=-x2﹣2 解析:[)1,-+∞【分析】先求出m =-1,n =3.再利用二次函数的图像和性质分析得解. 【详解】因为函数f (x )=[log a (x +2)]+3的图象恒过定点(1,3)-, 所以m =-1,n =3,所以g (x )=-x 2﹣2bx +3,因为g (x )=-x 2﹣2bx +3在[1,+∞)上单调递减, 所以对称轴1x b =-≤, 解得1b ≥-, 故答案为:[)1,-+∞ 【点睛】关键点点睛:本题考查了对数型函数过定点,可求出,m n 的值,利用了二次函数的单调性与对称轴的关系求出b 的范围.17.【分析】由奇函数的图象关于原点对称便可得出f (x )在-50上的图象这样根据f (x )在上的图象便可得出xf (x )<0的解集【详解】奇函数图象关于原点对称作出在的图象如下:由得或由图可知或的解集为【点睛 解析:[)(]5,22,5--【分析】由奇函数的图象关于原点对称便可得出f (x )在[-5,0]上的图象,这样根据f (x )在[]5,5-上的图象便可得出xf (x )<0的解集.【详解】奇函数图象关于原点对称,作出()f x 在[]5,5-的图象如下:由()0xf x <得()00x f x <⎧⎨>⎩或()00x f x >⎧⎨<⎩,由图可知52x -≤<-或25x <≤,()0xf x ∴<的解集为[)(]5,22,5--.【点睛】本题考查函数奇偶性、函数图象的综合,解题关键是根据函数奇偶性作出函数图象,利用数形结合思想求解,属于中等题.18.【分析】转化为可求得结果【详解】因为在上单调递增所以当时因为在上单调递减所以当时若使只要使即可即解得所以实数的取值范围为故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:解析:3,2⎡⎫-+∞⎪⎢⎣⎭【分析】转化为()()12min min f x g x ≥可求得结果. 【详解】因为()f x 在[1,2]上单调递增, 所以当[]11,2x ∈时,()1522f x ≤≤,因为()12xg x m ⎛⎫=- ⎪⎝⎭在[1,1]-上单调递减, 所以当[]21,1x ∈-时,()2122m g x m -≤≤-. 若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥, 只要使()()12min min f x g x ≥即可. 即122m -≤,解得32m ≥-,所以实数m 的取值范围为3,2⎡⎫-+∞⎪⎢⎣⎭. 故答案为:3,2⎡⎫-+∞⎪⎢⎣⎭. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .19.①③【分析】根据题意可得①③正确通过举反例可得②④错误【详解】对于结论①若则中最小的元素相同故①正确;对于结论②取集合满足但故②错误;对于结论③若则中存在相同的元素则交集非空故③正确;对于结论④取集解析:①③ 【分析】根据题意可得①③正确,通过举反例可得②④错误. 【详解】对于结论①,若min min A B =,则A ,B 中最小的元素相同,故①正确;对于结论②,取集合{}1,2A =,{}0,2B =,满足min min A B >,但0AB d =,故②错误;对于结论③,若0AB d =,则,A B 中存在相同的元素,则交集非空,故③正确; 对于结论④,取集合{}1,2A =,{}2,3B =,{}3,4C =,可知0AB d =,0BC d =,1AC d =,则AB BC AC d d d +≥不成立,故④错误. 故答案为:①③.20.【分析】由f (x )=x2﹣(a+2)x+2﹣a <0可得x2﹣2x+1<a (x+1)﹣1即直线在二次函数图像的上方的点只有一个整数1则满足题意结合图象即可求出【详解】f (x )=x2﹣(a+2)x+2﹣解析:12(,]23【分析】由f (x )=x 2﹣(a +2)x +2﹣a <0可得x 2﹣2x +1<a (x +1)﹣1,即直线在二次函数图像的上方的点只有一个整数1,则满足题意,结合图象即可求出. 【详解】f (x )=x 2﹣(a +2)x +2﹣a <0, 即x 2﹣2x +1<a (x +1)﹣1, 分别令y =x 2﹣2x +1,y =a (x +1)﹣1,易知过定点(﹣1,﹣1), 分别画出函数的图象,如图所示:∵集合A ={x ∈Z|f (x )<0}中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得∴10{120 311a a a -≤--≤<,解得12<a 23≤ 故答案为(12,23]【点睛】本题考查了二次函数的性质以及参数的取值范围,考查了转化思想和数形结合的思想,属于中档题三、解答题21.(1)466;(2)3倍. 【分析】(1)将05x =,0v =代入函数解析式,计算得到答案.(2)根据题意得到方程组13023011.5log lg 210011log lg 2100x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,两式相减化简即可求出答案.【详解】(1)将05x =,0v =代入函数301log lg 2100x v x =-,得:31log lg502100x-=, 即()3log 2lg521lg 2 1.40100x==-=, 所以1.403 4.66100x==, 所以466x =.故候鸟停下休息时,它每分钟的耗氧量为466个单位.(2)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟耗氧量为2x ,由题意可得:13023011.5log lg 210011log lg 2100x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩, 两式相减可得:13211log 22x x =, 所以132log 1x x =,即123x x =, 故此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的3倍. 【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.22.(1)()11xxe f x e-=+;(2)函数()f x 在(),0-∞上单调递减,证明见详解;(3){}1,0,1,2M =-.【分析】(1)当0x <时,0x ->,()1111x xx xe ef x e e-----==++,利用函数的奇偶性求解即可;(2)函数()f x 在(),0-∞上单调递减,利用定义证明函数的单调性即可;(3)把函数()g x 有唯一零点的问题转化为方程()()20f ax f x a --+=有唯一的解的问题,利用函数的奇偶性和单调性得到2ax x a =-+,两边平方,利用方程有唯一的解即可得出结果. 【详解】(1)当0x <时,0x ->, 又函数()f x 为偶函数,则()()1111x xx xe ef x f x e e -----===++,所以函数()f x 的解析式为()11xxe f x e -=+;(2)函数()f x 在(),0-∞上单调递减, 设任意120x x <<,则()()()()()12212112212111111x x x x x x x x e e e e f x f x e e e e ----=-=++++, 因为xy e =在R 上单调递增, 所以12x x e e <,即120x x e e -<, 所以()()21f x f x <,所以函数()f x 在(),0-∞上单调递减; (3)因为函数()f x 为偶函数, 所以函数()f x 在()0,∞+上单调递减,函数()()()2g x f ax f x a =--+的零点就是方程()()20f ax f x a --+=的解, 因为函数()g x 有唯一零点,所以方程()()20f ax f x a --+=有唯一的解, 因为函数()f x 为偶函数, 所以方程变形为:()()2fax f x a =-+,因为函数()f x 在()0,∞+上单调递减, 所以2ax x a =-+, 平方得:()()()22212220a xa x a -+-+-=,当210a -=时,即1a =±,经检验方程有唯一解;当210a -≠时,()()()222424120a aa ∆=----=, 得()22200a a a -=⇒=或2a =,综上可得:集合{}1,0,1,2M =-.【点睛】 关键点睛:把函数()g x 有唯一零点的问题转化为方程()()20f ax f x a --+=有唯一的解的问题是解决本题的关键.23.(1)10;(2)3.【分析】(1)根据根式定义化根式为分数指数幂,再由幂的运算法则计算;(2)由对数运算法则计算.【详解】(1)解:原式()()1323120.410.5-=-+ 1321511218105222-⎛⎫=-++=-++= ⎪⎝⎭. (2)解:原式2322lg5lg2lg5(2lg2lg5)(lg2)3=++++ 222lg52lg 22lg5lg 2(lg5)(lg 2)=++++22(lg5lg 2)(lg5lg 2)213=+++=+=.【点睛】本题考查根式与分数指数幂的互化,考查幂和对数的运算法则,掌握幂与对数运算法则是解题关键.24.(1)见解析;(2)见解析;(3)[]4,5【分析】(1)由不等式101x x +>-即可求出()f x 的定义域; (2)证明()()f x f x -=-可得()f x 为奇函数; (3)先求出()f x 在[]3,7上的值域,令()t f x =,求()14h t t t =+的值域.【详解】(1)由101x x +>-得:1x >或1x <-, ()f x ∴的定义域为()(),11,-∞-+∞; (2)()()222111log log log 111x x x f x f x x x x -+-+-===-=---+-,()f x ∴为奇函数;(3)()22log 11f x x ⎛⎫=+ ⎪-⎝⎭在[]3,7上单调递减,令()t f x =,则24log ,13t ⎡⎤∈⎢⎥⎣⎦, 而()14h t t t =+在10,2⎛⎤ ⎥⎝⎦单调递减,在1,12⎡⎤⎢⎥⎣⎦上单调递增, 又()2411log 15,4342h h h h ⎛⎫⎛⎫⎛⎫<=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴函数()h x 在[]3,7内的值域为[]4,5.【点睛】本题主要考查了对数型函数的定义域,奇偶性,考查了复合函数的单调性,值域求解,属于中档题.25.(1)答案见详解;(2)0a <.【分析】(1)根据定义法证明函数单调性即可;(2)先分离参数,即转化为212x x a≤+在()0,∞+上恒成立,只需求二次函数值域,即得结果.【详解】解:(1)任取120x x <<,则12120,0x x x x +>-<, ()1f x ()()()222212*********=1x x x x x x x x f a x a ⎛⎫⎛⎫-+--+=-=+-< ⎪ ⎭-⎪⎝⎝⎭故()()12f x f x <,故()f x 在()0,∞+上单调递增;(2)()20f x x +≥,即2120x x a -++≥,即212x x a ≤+在()0,∞+上恒成立, 而二次函数()()22211,0y x x x x =+=+->的值域为()0+∞,,故10a≤,故0a <. 所以a 的取值范围为0a <.【点睛】对于函数恒成立或者有解求参的问题,常用方法有:(1)分离参数法:参变分离,转化为函数最值问题; (2)构造函数法:直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.(3)数形结合法:画出函数图像,结合图象,根据关键点处的大小关系得到结果.26.(1)[)5,1,2⎛⎤-∞-⋃+∞ ⎥⎝⎦,5,32⎛⎫- ⎪⎝⎭;(2)[)3,+∞. 【分析】(1)若1k =,化简集合B ,利用补集和并集的定义进行计算可得答案;(2)“x A ∈”是“x B ∈”的充分不必要条件,则集合A 是集合B 的真子集,分52k <-,52k =-和52k >-分别求出集合B ,列出不等式可得实数k 的取值范围. 【详解】(1)若1k =,{}25|2350|12B x x x x x ⎧⎫=+-<=-<<⎨⎬⎩⎭ 则R B =[)5,1,2⎛⎤-∞-⋃+∞ ⎥⎝⎦,A B =5,32⎛⎫- ⎪⎝⎭; (2)“x A ∈”是“x B ∈”的充分不必要条件,则集合A 是集合B 的真子集,(){}()(){}2|25250|250B x x k x k x x k x =+--<=-+< 当52k <-时,5,2B k ⎛⎫=- ⎪⎝⎭,不合题意; 当52k =-时,B φ=,不合题意; 当52k >-时,5,2B k ⎛⎫=- ⎪⎝⎭,只需3k ≥; 综上可得:实数k 的取值范围是[)3,+∞.【点睛】结论点睛:本题考查集合的交并补运算,考查充分不必要条件的应用,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.。
高一数学必修一期末测试题及答案一、选择题(每小题3分,共30分)1. 已知集合A={x|x>2},B={x|x≤3},则A∩B={x|x()A. >3B. ≤2C. >2D. ≤3答案:D. ≤32. 已知函数f(x)=x2-2x+1,则f(-1)=()A. 0B. 1C. -1D. 2答案:B. 13. 已知函数f(x)=x2-2x+1,则f(x)的最小值为()A. 0B. 1C. -1D. 2答案:A. 04. 已知函数f(x)=x2-2x+1,则f(x)的极值点为()A. x=1B. x=2C. x=-1D. x=-2答案:A. x=15. 已知函数f(x)=x2-2x+1,则f(x)的导数为()A. 2x-2B. 2x+2C. x2-2D. x2+2答案:A. 2x-2二、填空题(每小题3分,共30分)6. 已知函数f(x)=x2-2x+1,则f(x)的定义域为()答案:R7. 已知函数f(x)=x2-2x+1,则f(x)的值域为()答案:[0,+∞)8. 已知函数f(x)=x2-2x+1,则f(x)的极大值为()答案:19. 已知函数f(x)=x2-2x+1,则f(x)的极小值为()答案:110. 已知函数f(x)=x2-2x+1,则f(x)的极值点为()答案:x=1三、解答题(共40分)11. 已知函数f(x)=x2-2x+1,求f(x)的单调递增区间。
解:f(x)的导数为f'(x)=2x-2,当2x-2>0时,f(x)单调递增,即x>1时,f(x)单调递增,故f(x)的单调递增区间为(1,+∞)。
12. 已知函数f(x)=x2-2x+1,求f(x)的极值点及极值。
解:f(x)的导数为f'(x)=2x-2,当2x-2=0时,即x=1时,f(x)取得极值,故f(x)的极值点为x=1,极值为f(1)=1。
一、选择题1.已知关于x 的方程2(3)10ax a x +-+=在区间1(,)2+∞上存在两个实数根,则实数a 的取值范围是( ) A .2332a << B .213a < C .9aD .293a < 2.若关于x 的一元二次方程(2)(3)x x m --=有实数根1x ,2x ,且12x x <,则下列结论中错误的是( )A .当0m =时,12x =,23x =B .14m ≥-C .当0m >时,1223x x <<<D .二次函数()()12y x x x x m =--+的图象与x 轴交点的坐标为()2,0和()3,0 3.已知定义在R 上的奇函数()f x 满足()()f x f x π+=- ,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x =,则函数()()()1g x x f x π=-- 在区间3-,32ππ⎡⎤⎢⎥⎣⎦上所有零点之和为( ) A .πB .2πC .3πD .4π4.定义:若函数()y f x =的图像上有不同的两点,A B ,且,A B 两点关于原点对称,则称点对(),A B 是函数()y f x =的一对“镜像”,点对(),A B 与(),B A 看作同一对“镜像点对”,已知函数()23,02,0xx f x x x x ⎧-<⎪=⎨-≥⎪⎩,则该函数的“镜像点对”有( )对.A .1B .2C .3D .45.已知1311531log ,log ,363a b c π-===,则,,a b c 的大小关系是( )A .b a c <<B .a c b <<C .c b a <<D .b c a << 6.计算log 916·log 881的值为( ) A .18B .118C .83D .387.已知函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数,如果()31f =-,则不等式()110f x -+≥的解集为( ) A .](2-∞,B .[)2,+∞C .[]24-,D .[]14,8.已知函数22|1|,7,()ln ,.x x e f x x e x e --⎧+-≤<=⎨≤≤⎩若存在实数m ,使得2()24f m a a =-成立,则实数a 的取值范围是( ) A .[-1,+∞) B .(-∞,-1]∪[3,+∞) C .[-1,3] D .(-∞,3]9.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( )A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 10.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1C .-3或2D .-1或211.若集合3| 01x A x x -=≥+⎧⎫⎨⎬⎩⎭,{|10}B x ax =+≤,若B A ⊆,则实数a 的取值范围是( ) A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎛-⎤⎥⎝⎦C .(,1)[0,)-∞-+∞ D .1[,0)(0,1)3-⋃12.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①1A .4B .3C .2D .1二、填空题13.已知f (x )=23,123,1x x x x x +≤⎧⎨-++>⎩,则函数g (x )=f (x )-e x 的零点个数为________. 14.(文)已知函数2cos ,1()21,1xx f x x x π⎧≤⎪=⎨⎪->⎩,则关于x 的方程2()3()20f x f x -+=的实根的个数是________个.15.函数()()()212log 24f x ax x a R =-+∈,若()f x 的值域为(],1-∞,则a 的值为______.16.若函数()()20.2log 1f x kx kx =-+的定义域是R ,则实数k 的取值范围是______.17.定义在R 上的减函数()f x 满足(0)4f =,且对任意实数x 都有()(2)4f x f x +-=,则不等式|()2|2f x -<的解集为____________.18.若函数()y f x = 的定义域为[-1,3],则函数()()211f xg x x +=-的定义域 ___________19.已知集合{}1,2,5,7,13,15,16,19A =,设,i j x x A ∈,若方程(0)i j x x k k -=>至少有三组不同的解,则实数k 的所有可能取值是________20.若集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,则正实数a 的取值范围是________三、解答题21.中国“一带一路”倡议提出后,某科技企业为抓住“一带一路”带来的机遇,决定开发生产一款大型电子设备,生产这种设备的年固定成本为500万元,每生产x 台需要另投入成本()C x (万元).当年产量不足80台时,21()402C x x x =+(万元),当年产量不小于80台时,8100()1012180C x x x=+-(万元),若每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y (万元)关于年产量x (台)的函数关系式.(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?并求出这个最大利润.22.函数()f x 是定义在R 上的奇函数,当0x >时,()241f x x x =-+.(1)求函数()f x 的解析式:(2)根据解析式在图画出()f x 图象. (3)讨论函数()()g x f x m =-零点的个数.23.已知函数()log (0,1)a f x x a a =>≠,且(4)(2)1f f -=. (1)求函数()f x 的表达式;(2)判断函数()(2)(2)g x f x f x =++-的奇偶性,并说明理由.24.(1)求满足不等式221139x x --⎛⎫> ⎪⎝⎭的x 的取值集合;(2)求函数235()log (45)f x x x =--的单调递减区间.25.定义:满足()f x x =的实数x 为函数()f x 的“不动点”,已知二次函数()()20f x ax bx a =+≠,()1f x +为偶函数,且()f x 有且仅有一个“不动点”.(1)求()f x 的解析式;(2)若函数()()2g x f x kx =+在()0,4上单调递增,求实数k 的取值范围;(3)是否存在区间[](),m n m n <,使得()f x 在区间[],m n 上的值域为[]3,3m n ?若存在,请求出m ,n 的值;若不存在,请说明理由.26.已知集合{()(1)0}M xx t x =-+≤∣,{|21}N x x =|-|<. (1)当2t =时,求M N ⋃; (2)若N M ⊆,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】可设2()(3)1f x ax a x =+-+,0a ≠,讨论0a >,0a <,结合对称轴与区间的关系和1()2f 的符号、判别式的符号,解不等式可得所求范围. 【详解】解:方程有两个实数根,显然0a ≠,可设2()(3)1f x ax a x =+-+,对称轴是32ax a-=, 当0a >时,要使二次方程在区间1(,)2+∞上有两个实数根,如图所示,则需3122a a ->,且113()10242a f a -=++>,且2(3)40a a ∆=--, 即为302a <<且23a >,且9a 或1a ,则213a <;当0a <时,要使二次方程在区间1(,)2+∞上有两个实数根,如图所示,则需3122a a ->,且113()10242a f a -=++<,且2(3)40a a ∆=--, 即为302a <<且23<a ,且9a 或1a ,则a ∈∅.综上可得,a 的取值范围是213a <.故选:B . 【点睛】本题解题关键是结合二次函数的图象特征研究二次方程根的分布,分类讨论借助图象准确列出不等关系,突破难点.2.C解析:C 【分析】画出函数()()23y x x =--的图像,然后对四个选项逐一分析,由此得出错误结论的选项. 【详解】画出二次函数()()23y x x =--的图像如下图所示,当0m =时,122,3x x ==成立,故A 选项结论正确. 根据二次函数图像的对称性可知, 当 2.5x =时,y 取得最小值为14-, 要使()()23y x x m =--=有两个不相等的实数根, 则需14m >-,故B 选项结论正确. 当0m >时,根据图像可知122,3x x <>,故C 选项结论错误.由()()23x x m --=展开得2560x x m -+-=, 根据韦达定理得12125,6x x x x m +=⋅=-. 所以()()()2121212y x x x x m x x x x x x m =--+=-+++()()25623x x x x =-+=--,故()()12y x x x x m =--+与x 轴的交点坐标为()()2,0,3,0. 故选:C. 【点睛】思路点睛:一元二次方程根的分布,根据其有两个不等的实根,结合根与系数的关系、函数图象,判断各选项的正误.3.D解析:D 【解析】函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上的零点就是函数()y f x =与函数1()h x x π=-的交点的横坐标. ∵()()f x f x π+=-∴()()2f x f x π+=,即函数()f x 的周期为2π,且函数()f x 的图象关于直线2x π=对称.又可得()()2f x f x π+=--,从而函数()f x 的图象关于点(π,0)对称.函数1()h x x π=-的图象关于点(π,0)对称. 画出函数f(x),h(x)的图象(如下所示),根据图象可得函数f(x),h(x)的图象共有4个交点,它们关于点(π,0)对称. 所以函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上所有零点之和为2π+2π=4π. 选D .点睛:解答本题的关键是将函数()()()1g x x f x π=--零点问题转化为两个函数图象交点的横坐标问题,借助函数图象的直观性使得问题得到解答,这是数形结合在解答数学题中的应用,解题中要求正确画出函数的图象.同时本题中还用到了函数的周期性、对称性、奇偶性之间的互相转化,对于这些知识要做到熟练运用.4.C解析:C 【分析】由新定义可知探究y 轴左侧部分图像关于原点中心对称的图像与y 轴右侧部分图像的交点个数即得结果. 【详解】由题意可知,函数()y f x =的图像上有不同的两点,A B ,且,A B 两点关于原点对称,则称点对(),A B 是函数()y f x =的一对“镜像”,因为()23,02,0x x f x x x x ⎧-<⎪=⎨-≥⎪⎩,由y 轴左侧部分()3,0xy x =-<图像关于原点中心对称的图像3x y --=-,即3xy -=,()0x >,作函数3xy -=,()0x >和()22,0y x x x =-≥的图象如下:由图像可知两图象有三个公共点,即该函数有3对“镜像点对”. 故选:C. 【点睛】本题解题关键是理解新定义,寻找对称点对,探究y 轴左侧部分图像关于原点中心对称的图像与y 轴右侧部分图像的交点个数,通过数形结合,即突破难点.5.D解析:D 【分析】根据指数函数和对数函数性质,借助0和1进行比较. 【详解】由对数函数性质知151log 16>,13log 03π<,由指数函数性质知13031-<<,∴b c a <<. 故选:D . 【点睛】方法点睛:本题考查指数式、对数式的大小比较,比较指数式大小时,常常化为同底数的幂,利用指数函数性质比较,或化为同指数的幂,利用幂函数性质比较,比较对数式大小,常常化为同底数的对数,利用对数函数性质比较,如果不能化为同底数或同指数,或不同类型的数常常借助中间值如0或1比较大小.6.C解析:C 【分析】根据对数的运算性质,换底公式以及其推论即可求出. 【详解】原式=23443232448log 2log 3log 2log 3233⋅=⋅=. 故选:C . 【点睛】本题主要考查对数的运算性质,换底公式以及其推论的应用,属于基础题.7.C解析:C 【分析】根据题意可得()f x 在[0,)+∞上为减函数,结合奇偶性以及()31f =-可得(|1|)f x f ⇒-|1|3x -,解出x 的取值范围,即可得答案.【详解】函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数, 所以()f x 在(,0)-∞上是增函数,由f (3)1=-,则不等式(1)10(1)1(1)f x f x f x f -+⇒--⇒-(3)(|1|)f x f ⇒-(3)|1|3x ⇒-, 解之可得24x -, 故不等式的解集为[2-,4]. 故选:C . 【点睛】将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.8.C解析:C 【分析】根据函数()f x 的图象,得出值域为[2-,6],利用存在实数m ,使2()24f m a a =-成立,可得22246a a --,求解得答案. 【详解】作出函数22|1|,7()ln ,x x e f x x e x e --⎧+-<=⎨⎩的图象如图: (7)6f -=,2()2f e -=-,∴值域为[2-,6],若存在实数m ,使得2()24f m a a =-成立,22246a a ∴--,解得13a -,∴实数a 的取值范围是[1-,3].故选:C【点睛】本题考查分段函数的性质,考查函数值域的求解方法,同时考查了数形结合思想的应用,属于中档题.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.9.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 1243a ---=,x 223a-+=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴123a-<2,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;10.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.11.A解析:A 【分析】先根据分式不等式求解出集合A ,然后对集合B 中参数a 与0的关系作分类讨论,根据子集关系确定出a 的范围. 【详解】因为301x x -≥+,所以()()10310x x x +≠⎧⎨-+≥⎩,所以1x <-或3x ≥,所以{|1A x x =<-或}3x ≥,当0a =时,10≤不成立,所以B =∅,所以B A ⊆满足, 当0a >时,因为10ax +≤,所以1x a≤-,又因为B A ⊆,所以11-<-a,所以01a <<, 当0a <时,因为10ax +≤,所以1x a ≥-, 又因为B A ⊆,所以13a -≥,所以103a -≤<, 综上可知:1,13a ⎡⎫∈-⎪⎢⎣⎭.故选:A.【点睛】本题考查分式不等式的求解以及根据集合间的包含关系求解参数范围,难度一般.解分式不等式的方法:将分式不等式先转化为整式不等式,然后根据一元二次不等式的解法或者高次不等式的解法(数轴穿根法)求出解集. 12.C解析:C【分析】①②③都可以写成m a =+,a b 是否是有理数,④计算.【详解】①当1a +=+时,可得1,a b π==,这与,a b Q ∈矛盾,3==3a ∴+=,可得3,1a b == ,都是有理数,所以正确,1==,12a ∴+=-,可得11,2a b ==-,都是有理数,所以正确,④2426=+=而(22222a a b +=++, ,a b Q ∈,(2a ∴+是无理数,不是集合M 中的元素,只有②③是集合M 的元素.故选:C【点睛】本题考查元素与集合的关系,意在考查转化与化归的思想,计算能力,属于基础题型.二、填空题13.2【详解】把函数的零点个数转化为方程解的个数转化为两个函数图象与象交点的个数在同一坐标系中画出这两个函数的图象由图象可知函数g(x)=f(x)-ex 的零点个数为2解析:2【详解】 把函数的零点个数转化为方程解的个数转化为两个函数图象与象交点的个数,在同一坐标系中画出这两个函数的图象,由图象可知,函数g (x )=f (x )-e x 的零点个数为2.14.5【分析】先解方程再根据图象确定实根个数【详解】或图象如图:则由图可知实根的个数是5个故答案为:5【点睛】本题考查函数与方程考查综合分析求解能力属中档题解析:5【分析】先解方程2()3()20f x f x -+=,再根据()f x 图象确定实根个数.【详解】2()3()20()1f x f x f x -+=∴=或()2f x =,2cos ,1()21,1x x f x x x π⎧≤⎪=⎨⎪->⎩图象如图:则由图可知,实根的个数是5个故答案为:5【点睛】本题考查函数与方程,考查综合分析求解能力,属中档题.15.【分析】根据对数的性质可知且最小值为即可求得的值【详解】因为的值域为所以函数的最小值为即解得故答案为:【点睛】本题考查对数函数的值域考查对数的性质合理转化是解题的关键考查了运算能力属于中档题 解析:27【分析】根据对数的性质可知2240y ax x =-+>,且最小值为1,即可求得a 的值. 【详解】因为()()()212log 24f x ax x a R =-+∈的值域为(],1-∞,所以2240ax x -+>, 函数224y ax x =-+的最小值为12,即()20442142a a a >⎧⎪⎨⨯--=⎪⎩,解得27a =, 故答案为:27【点睛】本题考查对数函数的值域,考查对数的性质,合理转化是解题的关键,考查了运算能力,属于中档题.16.【分析】由题可知恒成立再分情况讨论即可【详解】由题可知恒成立当时成立当时当时不等式不恒成立故实数k 的取值范围是故答案为:【点睛】本题主要考查了对数的定义域以及二次函数恒成立问题属于中等题型解析:[)0,4【分析】由题可知210kx kx -+>恒成立.再分情况讨论即可.【详解】由题可知210kx kx -+>恒成立.当0k =时成立.当0k >时,24004k k k ∆=-<⇒<<. 当k 0<时,不等式不恒成立.故实数k 的取值范围是[)0,4.故答案为:[)0,4【点睛】本题主要考查了对数的定义域以及二次函数恒成立问题.属于中等题型.17.【分析】由绝对值不等式可知利用中x 的任意性得再利用函数的单调性解不等式即可【详解】因为任意实数都有且令则故不等式解得即又函数为上的减函数解得故不等式的解集为故答案为:【点睛】方法点睛:本题考查了解抽 解析:(0,2)【分析】由绝对值不等式可知0()4f x <<,利用()(2)4f x f x +-=中x 的任意性得(2)0f =,再利用函数的单调性解不等式即可.【详解】因为任意实数x 都有()(2)4f x f x +-=,且(0)4f =,令2x =,则(2)(0)4f f +=,故(2)0f =不等式|()2|22()22f x f x -<⇒-<-<,解得0()4f x <<,即(2)()(0)f f x f << 又函数()f x 为R 上的减函数,解得02x <<,故不等式|()2|2f x -<的解集为(0,2) 故答案为:(0,2)【点睛】方法点睛:本题考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别.18.【分析】由函数的定义域得出的取值范围结合分母不等于0可求出的定义域【详解】函数的定义域函数应满足:解得的定义域是故答案为:【点睛】本题考查了求函数定义域的问题函数的定义域是函数自变量的取值范围应满足 解析:[1,1)-【分析】由函数()y f x =的定义域,得出21x +的取值范围,结合分母不等于0,可求出()g x 的定义域.【详解】函数()y f x =的定义域[1-,3],∴函数(21)()1f xg x x +=-应满足: 121310x x -≤+≤⎧⎨-≠⎩解得11x -≤< ()g x ∴的定义域是[1,1)-.故答案为:[1,1)-.【点睛】本题考查了求函数定义域的问题,函数的定义域是函数自变量的取值范围,应满足使函数的解析式有意义,是基础题.19.【分析】先将的可能结果列出然后根据相同结果出现的次数确定出的取值集合【详解】将表示为可得如下结果:其中为都出现了次所以若方程至少有三组不同的解则的取值集合为故答案为:【点睛】关键点点睛:解答本题的关 解析:{}3,6,14【分析】先将i j x x -的可能结果列出,然后根据i j x x -相同结果出现的次数确定出k 的取值集合.【详解】将i j x x k -=表示为(),,i j x x k ,可得如下结果: ()()()()()()()19,1,18,16,1,15,15,1,14,13,1,12,7,1,6,5,1,4,2,1,1,()()()()()()19,2,17,16,2,14,15,2,13,13,2,11,7,2,5,5,2,3,()()()()()()19,5,14,16,5,11,15,5,10,13,5,8,7,5,2,19,7,12,()()()()()()16,7,9,15,7,8,13,7,6,19,13,6,16,13,3,15,13,2,()()()19,15,4,16,15,1,19,16,3,其中k 为3,6,14都出现了3次,所以若方程(0)i j x x k k -=>至少有三组不同的解, 则k 的取值集合为{}3,6,14,故答案为:{}3,6,14【点睛】关键点点睛:解答本题的关键是理解方程(0)i j x x k k -=>至少有三组不同的解的含义,即i j x x -的差值出现的次数不小于三次,由此可进行问题的求解.20.【分析】由f (x )=x2﹣(a+2)x+2﹣a <0可得x2﹣2x+1<a (x+1)﹣1即直线在二次函数图像的上方的点只有一个整数1则满足题意结合图象即可求出【详解】f (x )=x2﹣(a+2)x+2﹣ 解析:12(,]23由f(x)=x2﹣(a+2)x+2﹣a<0可得x2﹣2x+1<a(x+1)﹣1,即直线在二次函数图像的上方的点只有一个整数1,则满足题意,结合图象即可求出.【详解】f(x)=x2﹣(a+2)x+2﹣a<0,即x2﹣2x+1<a(x+1)﹣1,分别令y=x2﹣2x+1,y=a(x+1)﹣1,易知过定点(﹣1,﹣1),分别画出函数的图象,如图所示:∵集合A={x∈Z|f(x)<0}中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得∴10 {120 311aaa-≤--≤<,解得12<a23≤故答案为(12,23]【点睛】本题考查了二次函数的性质以及参数的取值范围,考查了转化思想和数形结合的思想,属于中档题三、解答题21.(1)2160500,080281001680,80x x xyx xx⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥⎪⎪⎝⎭⎩;(2)当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.(1)分别求080x <<和80x ≥时函数的解析式可得答案;(2)当080x <<时,21(60)13002y x =--+,配方法求最值、;当80x ≥时, 利用基本不等式求最值,然后再做比较.【详解】 (1)当080x <<时,2211100405006050022y x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭, 当80x ≥时,8100810010010121805001680y x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭, 于是2160500,080281001680,80x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩. (2)由(1)可知当080x <<时,21(60)13002y x =--+, 此时当60x =时y 取得最大值为1300(万元),当80x ≥时,8100168016801500y x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当8100x x=即90x =时y 取最大值为1500(万元), 综上所述,当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.22.(1)()2241,00,041,0x x x f x x x x x ⎧---<⎪==⎨⎪-+>⎩;(2)答案见解析;(3)答案见解析.【分析】(1)当0x <时,0x ->,运用已知区间的解析式和奇函数的定义结合()00f =,即可求解;(2)根据(1)中的解析式作出图象即可;(3)()()g x f x m =-零点的个数即等价于()y f x =与y m =两个函数图象交点的个数,数形结合讨论m 的值即可.【详解】(1)当0x =时,()00f =,当0x <时,0x ->,()241f x x x -=++,因为()f x 时奇函数,所以()()f x f x -=-,所以()()241f x x x f x -=++=-,即()()2410f x x x x =---<,所以()2241,00,041,0x x x f x x x x x ⎧---<⎪==⎨⎪-+>⎩(2)()f x 图象如图所示:(3)由()f x 图象知:()23f -=,()23f =-,①当3m <-或3m >时,()y f x =与y m =两个函数图象有1个交点,函数()()g x f x m =-有1个零点;②当3m =±时,()y f x =与y m =两个函数图象有2个交点,函数()()g x f x m =-有2个零点;③当31m -<≤-或13m ≤<时,()y f x =与y m =两个函数图象有3个交点,函数 ()()g x f x m =-有3个零点;④当11m -<<且0m ≠时,()y f x =与y m =两个函数图象有4个交点,函数 ()()g x f x m =-有4个零点;⑤当0m =时,()y f x =与y m =两个函数图象有5个交点,函数()()g x f x m =-有5个零点;综上所述:当3m <-或3m >时,()g x 有1个零点;当3m =±时,,()g x 有2个零点;当31m -<≤-或13m ≤<时,()g x 有3个零点;当11m -<<且0m ≠时,()g x 有4个零点;当0m = 时,()g x 有5个零点;【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点;(2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.23.(1)2()log f x x =(2)偶函数.见解析【分析】(1)根据(4)(2)1f f -=,代入到函数的解析式中可求得2a =,可求得函数()f x 的解析式; (2)由函数()f x 的解析式,求得函数()g x 的解析式,先求得函数()g x 的定义域,再由函数的奇偶性的判断方法证得函数的奇偶性.【详解】(1)因为()log (0,1)a f x x a a =>≠,且(4)(2)1f f -=,所以log 4log 21a a -=,即log 21a =.,解得2a =,所以2()log f x x =;(2)因为()log a f x x =,所以22()log (2)log (2)g x x x =++-,由2020x x +>⎧⎨->⎩,得22x -<<,所以()g x 的定义域为()22-,, 又因为22()log (2)log (2)()g x x x g x -=-++=,所以22()log (2)log (2)g x x x =++-为偶函数.【点睛】本题考查对数函数的函数解析式的求解,函数的奇偶性的证明,属于基础题.24.(1)32x x⎧⎨⎩或}1x <- (2)(5,)+∞ 【分析】 (1)先使得()22222139x x ---⎛⎫= ⎪⎝⎭,再由3x y =的单调性求解即可; (2)先求定义域,再根据复合函数单调性的“同增异减”原则求解即可.【详解】 解:(1)因为221139x x --⎛⎫> ⎪⎝⎭,且()22222139x x ---⎛⎫= ⎪⎝⎭,所以()222133x x --->,因为3x y =在R 上单调递增,所以()2221x x -->-,解得32x >或1x <-, 则满足不等式221139x x --⎛⎫> ⎪⎝⎭的x 的取值集合为32x x ⎧⎨⎩或}1x <- (2)由题,2450x x -->,解得5x >或1x <-,则定义域为()(),15,-∞-+∞, 设245u x x =--,35log y u =, 因为35log y u =单调递减,若求()f x 的递减区间,则求245u x x =--的递增区间, 因为245u x x =--的对称轴为2x =,所以在()5,+∞上单调递增,所以函数()f x 的单调减区间为()5,+∞【点睛】本题考查解指数不等式,考查复合函数的单调区间.25.(1)21()2f x x x =-+(2)3,8⎡⎫+∞⎪⎢⎣⎭(3)4,0m n =-=,证明见解析 【分析】(1)根据二次函数的对称性求出2b a =-,再将()f x 有且仅有一个“不动点转化为方程()f x x =有且仅有一个解,从而得出()f x 的解析式;(2)当102k -=时,由一次含函数的性质得出12k =满足题意,当102k -≠时,讨论二次函数()g x 的开口方向,根据单调性确定112x k =-与区间()0,4端点的大小关系得出实数k 的取值范围;(3)由2111()(1)222f x x =--+得出16m n <,结合二次函数的单调性确定()f x 在区间[],m n 上是增函数,从而得出()3()3f m m f n n =⎧⎨=⎩,再解方程2132x x x -+=得出m ,n 的值.【详解】(1)22(1)(1)(1)(2)f x a x b x ax a b x a b +=+++=++++为偶函数20,22a b b a a+∴=∴=-- 2()2f x ax ax ∴=-f x 有且仅有一个“不动点”∴方程()f x x =有且仅有一个解,即[](21)0ax x a -+=有且仅有一个解211210,,()22a a f x x x ∴+==-=-+ (2)221()()2g x f x kx k x x ⎛⎫=+=-+ ⎪⎝⎭,其对称轴为112x k =- 函数()()2g x f x kx =+在()0,4上单调递增∴当12k <时,1412k -,解得3182k < 当12k =时,()g x x =符合题意 当12k >时,1012k <-恒成立 综上,3,8k ⎡⎫∈+∞⎪⎢⎣⎭ (3)221111()(1)2222f x x x x =-+=--+ f x 在区间[],m n 上的值域为[]3,3m n ,113,26nn ∴,故16m n < ()f x ∴在区间[],m n 上是增函数()3()3f m m f n n =⎧∴⎨=⎩,即22132 132m m m n n n ⎧-+=⎪⎪⎨⎪-+=⎪⎩ ∴,m n 是方程2132x x x -+=的两根,解得0x =或4x =- 4,0m n ∴=-=【点睛】关键点睛:已知函数21()2g x k x x ⎛⎫=-+ ⎪⎝⎭在具体区间上的单调性求参数k 的范围时,关键是讨论二次项系数的值,结合二次函数的单调性确定参数k 的范围.26.(1)[1,3)-(2)[3,)+∞【分析】(1)可得出N ={x |1 <x <3 },t =2时求出集合M ,然后进行并集的运算即可;(2)根据N M ⊆即可得出集合M ={x |-1≤x ≤t },进而可得出t 的取值范围.【详解】(1){|21}N x x =|-|<={13}xx <<∣, 当2t =时,{(2)(1)0}(1,2)M xx x =-+≤=-∣, [)1,3M N ∴⋃=-(2)N M ⊆,∴M ={x |-1≤x ≤t },3t ∴≥,∴实数t 的取值范围[3,)+∞【点睛】本题主要考查了一元二次不等式和绝对值不等式的解法,并集的定义及运算,子集的定义,考查了计算能力,属于基础题.。
人教版高一数学必修一第一学期期末测试B 卷(含答案和解析)(本卷满分150分,考试时间120分钟) 测试范围:必修第一册(人教A 版2019)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合}101{-=,,M ,}|{M b a b a x x N ∈⋅==、,,则集合M 与集合N 的关系是( )。
A 、N M =B 、N M ⊄C 、M ≠⊂ND 、∅=N M2.若命题p :)(B A x ∈,则p ⌝为( )。
A 、A x ∈且B x ∉ B 、A x ∉或B x ∉C 、A x ∉且B x ∉D 、)(B A x ∉ 3.已知0>x ,0>y ,且182=+yx ,则xy 的最小值为( )。
A 、2 B 、8 C 、16 D 、64 4.若关于x 的不等式012<++c bx x a(1>ab )的解集为空集,则1)2()1(21-++-=ab c b a ab T 的最小值为( )。
A 、2 B 、2 C 、22 D 、45.若函数)2lg()(2a x ax x f +-=的值域为R ,则实数a 的取值范围为( )。
A 、)01(,-B 、]11[,-C 、)10(,D 、]10[,6.已知函数)2cos()(ϕ+ω=x x f (0>ω,2||π<ϕ)的最小正周期为π,将)(x f y =的图像向右平移6π个单位后得函数x x g 2cos )(=的图像,则函数)(x f 的图像( )。
A 、关于直线6π=x 对称B 、关于直线32π=x 对称C 、关于点)032(,π-对称D 、关于点)0125(,π-对称7.设函数42)(-+=x e x f x ,52ln )(2-+=x x x g ,若实数a 、b 分别是)(x f 、)(x g 的零点,则下列不等式一定成立的是( )。
期中考试考前检测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷(选择题)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果A ={x |x >-1},那么A .0⊆AB .{0}∈AC .∅∈AD .{0}⊆A 2.函数f (x )=3x 21-x+lg(3x +1)的定义域是A.⎝⎛⎭⎫-13,+∞ B.⎝⎛⎭⎫-13,1 C.⎝⎛⎭⎫-13,13 D .⎝⎛⎭⎫-∞,-13 3.下列各组函数中,表示同一函数的是 A .y =x 2和y =(x )2B .y =lg(x 2-1)和y =lg(x +1)+lg(x -1)C .y =log a x 2和y =2log a xD .y =x 和y =log a a x4.a =log 0.7 0.8,b =log 1.1 0.9,c =1.10.9的大小关系是 A .c >a >b B .a >b >c C .b >c >aD .c >b >a5.若函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫14x ,x ∈[-1,0),4x ,x ∈[0,1],则f (log 43)=A. 13 B . 14 C . 3 D .4 6.已知函数f (x )=7+a x-1的图象恒过点P ,则P 点的坐标是A .(1,8)B .(1,7)C .(0,8)D .(8,0)7.若x =1是函数f (x )=ax +b (a ≠0)的一个零点,则函数h (x )=ax 2+bx 的零点是A .0或-1B .0或-2C .0或1D .0或28.利用计算器,列出自变量和函数值的对应值如下表:A .(0.6,1.0)B .(1.4,1.8)C .(1.8,2.2)D .(2.6,3.0)9.设α∈{-1,1,12,3},则使函数y =x α的定义域为R 且为奇函数的所有α的值为A .1,3B .-1,1C .-1,3D .-1,1,310.函数y =f (x )是R 上的偶函数,且在(-∞,0]上是增函数,若f (a )≤f (2), 则实数a 的取值范围是A .(-∞,2]B .[-2,+∞)C .[-2,2]D .(-∞,-2]∪[2,+∞) 11.已知a >0,b >0且ab =1,则函数f (x )=a x 与g (x )=-log b x 的图象可能是12.函数y =4x +12x 的图象( )A .关于原点对称B .关于y =x 对称C .关于x 轴对称D .关于y 轴对称第Ⅱ卷(非选择题)二、填空题(本大题共4小题,每小题5分,共20分.)13.已知集合M ={(x ,y )|y =-x +1},N ={(x ,y )|y =x -1},那么M ∩N 为__________. 14.设f (x )=2x 2+3,g (x +1)=f (x ),则g (3)=________. 15.若指数函数f (x )与幂函数g (x )的图象相交于一点(2,4), 则f (x )=___________, g (x )=__________.16.设P ,Q 是两个非空集合,定义集合间的一种运算“⊙”:P ⊙Q ={x |x ∈P ∪Q ,且x ∉P ∩Q },如果P ={y |y =4-x 2},Q ={y |y =4x ,x >0}, 则P ⊙Q =________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分) 已知全集为实数集R ,集合A ={x |y =x -1+3-x }, B ={x |log 2x >1}. (1)求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围. 18.(本小题满分12分)计算: (1)lg 25+23lg 8+lg 5lg 20+(lg 2)2;(2)⎝⎛⎭⎫278-23-⎝⎛⎭⎫4990.5+(0.008)-23×225.19.(本小题满分12分)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=log 2x . (1)求f (x )的解析式; (2)解关于x 的不等式f (x )≤12.20.(本小题满分12分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购1件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.(1)设销售商一次订购x件,服装的实际出厂单价为p元,写出函数p=f(x)的表达式.(2)当销售商一次订购多少件服装时,该厂获得的利润最大?最大利润是多少?21.(本小题满分12分)设函数f(x)的定义域为(-3,3),满足f(-x)=-f(x),且对任意x,y,都有f(x)-f(y)=f(x-y),当x<0时,f(x)>0,f(1)=-2.(1)求f(2)的值;(2)判断f(x)的单调性,并证明;(3)若函数g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.22.(本小题满分12分)已知函数f(x)=a-22x+1(a∈R).(1) 判断函数f(x)的单调性并给出证明;(2) 若存在实数a使函数f(x)是奇函数,求a;(3)对于(2)中的a,若f(x)≥m2x,当x∈[2,3]时恒成立,求m的最大值.期中考试考前检测试题(答案)一、选择题1.解析:由集合与集合之间的关系可以判断只有D 正确.2.解析:要使函数有意义,须使⎩⎪⎨⎪⎧1-x >0,3x +1>0,解得-13<x <1.故选B.3.解析:要表示同一函数必须定义域、对应法则一致,A 、B 、C 中的定义域不同,选D. 4.解析:a =log 0.70.8∈(0,1),b =log 1.10.9∈(-∞,0),c =1.10.9∈(1,+∞),故c >a >b . 选A 5.解析: ∵log 43∈(0,1),∴f (log 43)=44log 3=3,故选C.6.解析:过定点则与a 的取值没有关系,所以令x =1,此时f (1)=8.所以P 点的坐标是(1,8).选A.7.解析:因为1是函数f (x )=ax +b (a ≠0)的零点,所以a +b =0,即a =-b ≠0.所以h (x )=-bx (x -1).令h (x )=0,解得x =0或x =1.故选C.8.解析:构造f (x )=2x -x 2,则f (1.8)=0.242,f (2.2)=-0.245,故在(1.8,2.2)内存在一点使f (x )=2x -x 2=0,所以方程2x =x 2的一个根就位于区间(1.8,2.2)上.选C9.解析:当α=-1时,y =x -1=1x ,定义域不是R ; 当α=1,3时,满足题意;当α=12时,定义域为[0,+∞).选A10.解析:∵y =f (x )是偶函数,且在(-∞,0]上是增函数, ∴y =f (x )在[0,+∞)上是减函数,由f (a )≤f (2),得f (|a |)≤f (2).∴|a |≥2,得a ≤-2或a ≥2. 选D11.解析:当a >1时,0<b <1,又g (x )=-log b x 的图象与y =log b x 的图象关于x 轴对称,故B 符合题意.12.解析: ∵f (x )=4x +12x =2x+2-x ,∴f (-x )=2-x +2x =f (x ). ∴f (x )为偶函数.故选D二、填空题(本大题共4小题,每小题5分,共20分.)13.解析:本题主要考查集合中点集的交集运算.由⎩⎪⎨⎪⎧ y =-x +1,y =x -1,得⎩⎪⎨⎪⎧x =1,y =0,∴M ∩N ={(1,0)}.答案:{(1,0)}14.解析:∵g (x +1)=f (x )=2x 2+3∴g (3)=f (2)=2×22+3=11.答案:11 15.解析:设f (x )=a x ,g (x )=x α,代入(2,4),∴f (x )=2x ,g (x )=x 2.答案:2x x 2 16.解析:P =[0,2],Q =(1,+∞),∴P ⊙Q =[0,1]∪(2,+∞).答案:[0,1]∪(2,+∞)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17. 解:(1)由已知得A ={x |1≤x ≤3}, B ={x |log 2x >1}={x |x >2}, 所以A ∩B ={x |2<x ≤3},(∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}. (2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,若C ⊆A ,则1<a ≤3. 综合①②,可得a 的取值范围是(-∞,3]. 18.解:(1)原式=2lg 5+2lg 2+lg 5(1+lg 2)+(lg 2)2=2(lg 2+lg 5)+lg 5+lg 2×lg 5+(lg 2)2=2+lg 5+lg 2(lg 5+lg 2) =2+lg 5+lg 2=3.(2)原式=⎝⎛⎭⎫82723-⎝⎛⎭⎫49912+⎝⎛⎭⎫1 000823×225=49-73+25×225=-179+2=19. 19.解:(1)∵f (x )是奇函数,∴f (0)=0. 当x <0时,-x >0, ∴f (-x )=log 2(-x ). 又f (x )是奇函数,∴f (x )=-f (-x )=-log 2(-x ).综上,f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,0,x =0,-log 2(-x ),x <0.(2)由(1)得f (x )≤12等价于⎩⎪⎨⎪⎧ x >0,log 2 x ≤12或⎩⎪⎨⎪⎧ x =0,0≤12或⎩⎪⎨⎪⎧x <0,-log 2(-x )≤12,解得0<x ≤2或x =0或x ≤-22,即所求x 的集合为⎩⎨⎧x ⎪⎪⎭⎬⎫0≤x ≤2或x ≤-22. 20. 解:(1)当0<x ≤100且x ∈N *时,p =60;当100<x ≤600且x ∈N *时,p =60-(x -100)×0.02=62-0.02x .∴p =⎩⎪⎨⎪⎧60,0<x ≤100且x ∈N *,62-0.02x ,100<x ≤600且x ∈N *.(2)设该厂获得的利润为y 元,则当0<x ≤100时且x ∈N *,y =60x -40x =20x ;当100<x ≤600时且x ∈N *,y =(62-0.02x )x -40x =22x -0.02x 2.∴y =⎩⎪⎨⎪⎧20x ,0<x ≤100且x ∈N *,22x -0.02x 2,100<x ≤600且x ∈N *.当0<x ≤100时且x ∈N *,y =20x 是单调增函数, ∴当x =100时,y 最大,y max =20×100=2 000;当100<x ≤600时且x ∈N *,y =22x -0.02x 2=-0.02(x -550)2+6 050, ∴当x =550时,y 最大,y max = 6 050. 显然6 050>2 000,∴当销售商一次订购550件时,该厂获得的利润最大,最大利润为6 050元. 21. 解:(1)在f (x )-f (y )=f (x -y )中,令x =2,y =1,代入得:f (2)-f (1)=f (1),所以f (2)=2f (1)=-4. (2)f (x )在(-3,3)上单调递减.证明如下:设-3<x 1<x 2<3,则x 1-x 2<0,所以f (x 1)-f (x 2)=f (x 1-x 2)>0, 即f (x 1)>f (x 2),所以f (x )在(-3,3)上单调递减.(3)由g (x )≤0得f (x -1)+f (3-2x )≤0,所以f (x -1)≤-f (3-2x ). 又f (x )满足f (-x )=-f (x ),所以f (x -1)≤f (2x -3), 又f (x )在(-3,3)上单调递减, 所以⎩⎪⎨⎪⎧-3<x -1<3,-3<2x -3<3,x -1≥2x -3,解得0<x ≤2,故不等式g (x )≤0的解集是(0,2].22. 解:(1)不论a 为何实数,f (x )在定义域上单调递增. 证明:设x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫a -22x 1+1-⎝ ⎛⎭⎪⎫a -22x 2+1=2(2x 1-2x 2)(2x 1+1)(2x 2+1). 由x 1<x 2可知0<2x 1<2x 2,所以2x 1-2x 2<0,2x 1+1>0,2x 2+1>0, 所以f (x 1)-f (x 2)<0,f (x 1)<f (x 2).所以由定义可知,不论a 为何数,f (x )在定义域上单调递增. (2)由f (0)=a -1=0得a =1,经验证,当a =1时,f (x )是奇函数.(3)由条件可得: m ≤2x⎝ ⎛⎭⎪⎫1-22x +1=(2x +1)+22x +1-3恒成立. m ≤(2x +1)+22x +1-3的最小值,x ∈[2,3].设t =2x +1,则t ∈[5,9],函数g (t )=t +2t -3在[5,9]上单调递增,所以g (t )的最小值是g (5)=125,所以m ≤125,即m 的最大值是125.。
新人教A 版2020~2021学年度第一学期期末复习高一数学一、单项选择题1.设集合A={x |x 2−2x−3≤0},B ={x |y =ln(2−x) } ,则A∩B =( ) A. [−3,2) B. (2,3] C. (−1,2) D. [−1,2) 2.已知0.20.3a =,0.23b =,3log 0.3c =,则A. a c b >>B. c a b >>C. b a c >>D. c b a >> 3.“”是“21cos =α”的( ) A .充分而不必要条件 B 必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 4.已知角α的终边上一点P (5)-,则sin tan αα+= (A )2253--(B )253-(C )5(D )55. ︒︒-+︒︒15sin )105cos(15cos 75sin 等于(A )0(B )12(C 3 (D )16.函数()23xf x x =+的零点所在的一个区间是( )(A )(-2,-1) (B )(-1,0) (C )(0,1) (D )(1,2) 7.函数⎩⎨⎧≤>=ππx x x x x f ,cos ,sin )(,则=︒)240(f(A )23-(B )23 (C )21- (D )21 8.已知函数()⎩⎨⎧>≤=1,log 1,22x x x x f x ,若函数()a x x f y ++=2有两个零点,则实数a 的取值范围是A .(]1,2B .[)2,1--C .[)4,2--D .[]2,49. 已知函数()x f y =是R 上的偶函数,且()x f 在),0[+∞上是减函数,若()()2-≥f a f ,则a 的取值范围是(A )2≤a (B )2≥a (C )22≥-≤a a 或 (D )22≤≤-a二、多项选择题10、设,0<<b a 则下列不等式中成立的是A .b a 11> B . ab a 11>- C . b a -> D . b a ->- 11、下列函数为奇函数的是A.tan y x = B .sin y x x =- C .cos y x x =- D .e e xxy -=- 12.函数π()3sin 23f x x ⎛⎫=- ⎪⎝⎭的图象为C ,如下结论中正确的是( ). A 、图象C 关于直线11π12x =对称 B 、图象C 关于点2π03⎛⎫⎪⎝⎭,对称 C 、()f x 在区间π5π1212⎛⎫- ⎪⎝⎭,是增函数 D 、由3sin 2y x =图象向右平移π3个单位长度可得图象C .三、填空题13.命题p :“2,10∃∈+<x R x ”的否定是 14.若x 、y ∈R +,20=+y x ,则xy 的最大值为 .15.化简:sin(90)cos()cos(180)ααα︒-⋅-︒-= .(填最简形式)16.已知2)4πtan(-=+α,则=-αα2cos 2sin 117.已知132a =,则()2log 2a = .18.若“满足x :20x p +<”是“满足x :022>--x x ”的充分条件,求实数p 的取值范围. . 四、解答题19.已知,αβ都是锐角,35cos ,cos(),513ααβ=+=- (1)求sin α和αtan 的值;(2)求)sin(βα+ 和cos β的值.20、已知函数()4sin()cos 16f x x x π=-+.(Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 在区间[,44ππ-]上的最大值和最小值.21.某大型专卖店经营一种耐用消费品.已知该种消费品的进价为每件40元;该店每月销售量q (百件)与销售价p (元/件)之间的关系用右图中的一条折线(实线)表示;职工每人每月平均工资为1200元,该店应交付的其它费用为每月13200元.若当销售价p 为52元/件时,该店正好收支平衡,求该店的职工人数。
高中数学必修一期末卷和答案人教版高中数学必修一测试题二一、:本大10 小,每小 5 分,分 50 分。
1 、已知全集I {0,1,2,3,4} ,集合 M {1,2,3} , N {0,3,4} , (e I M ) I N 等于( )A. { 0,4}B. { 3, 4}C. { 1,2}D.2、集合M { x x2 6 x 5 0} , N { x x2 5x 0} , M U N 等于()A. {0}B. { 0, 5}C. { 0, 1, 5}D.{ 0,- 1,- 5}3、算:log2 9 log 38 =()A 12B 10C 8D 64、函数y a x 2(a 0且 a 1) 象一定点( )A ( 0,1 )B ( 0,3 )C ( 1,0 )D(3,0 )5、“ 兔跑” 述了的故事:先的兔子看着慢慢爬行的,傲起来,睡了一,当它醒来,快到点了,于是急忙追赶,但已晚,是先到达了点⋯用 S1、S2分表示和兔子所行的路程,t ,与故事情相吻合是()6、函数y log 1 x 的定域是()2A {x | x>0}B {x |x≥ 1}C {x |x≤ 1}D {x | 0<x≤ 1}7、把函数y1的象向左平移 1 个位,再向上平移 2 个位后,所得函数的解析式x()2x 3B y 2x 1C y2x 1D2x 3A y1 x 1 x 1 y1x xx1e x1 ,则 ( )8、设 f (x ) lg,g(x)xx1eA f(x) 与 g(x) 都是奇函数B f(x) 是奇函数, g(x) 是偶函数C f(x)与 g(x) 都是偶函数D f(x)是偶函数, g(x) 是奇函数9、使得函数 f ( x)ln x 1 x 2 有零点的一个区间是 ( )2A(0 , 1)B (1 ,2) C(2 ,3) D(3 ,4)10、若 a20.5 , blog π3 , c log 2 0.5 ,则()A a b cBb a cCc a b Db c a二、填空题:本大题共 4 小题,每小题 5 分,满分 20 分11、 函数 f ( x) 2 log 5 ( x 3) 在区间 [-2 ,2] 上的值域是 ______1-32212、计算:+ 64 3 = ______913、函数 y log 1 ( x 24 x 5) 的递减区间为 ______214、函数 f (x )x 22x的定义域是 ______1三、解答题 :本大题共 5 小题,满分 80 分。
必修一数学期末测试卷(含答案)高一数学必修一期末测试题本试卷分为两部分,选择题和非选择题,满分120分,考试时间60分钟。
第Ⅰ卷(选择题,共60分)一、选择题:(每小题5分,共60分,请将所选答案填在括号内)1.已知集合M⊂{4,7,8},且M中至多有一个偶数,则这样的集合共有()A) 3个 (B) 4个 (C) 5个 (D) 6个2.已知S={x|x=2n,n∈Z},T={x|x=4k±1,k∈Z},则()A) S⊂T (B) T⊂S (C) S≠T (D) S=T3.已知集合P={y|y=−x^2+2,x∈R},Q={y|y=−x+2,x∈R},那么P∩Q等于()A) (,2),(1,1) (B) {(,2),(1,1)} (C) {1,2} (D) {y|y≤2}4.不等式ax+ax−4<0的解集为R,则a的取值范围是()A) −16≤a−16 (C) −16<a≤0 (D) a<−165.已知f(x)=⎧⎨⎩x−5(x≥6)f(x+4)(x<6)则f(3)的值为()A) 2 (B) 5 (C) 4 (D) 36.函数y=x−4x+3,x∈[0,3]的值域为()A) [0,3] (B) [−1,0] (C) [−1,3] (D) [0,2]7.函数y=(2k+1)x+b在(-∞,+∞)上是减函数,则()A) k>1/2 (B) k−1/2 (D) k<1/28.若函数f(x)=x+2(a−1)x+2在区间(−∞,4]内递减,那么实数a的取值范围为()A) a≤−3 (B) a≥−3 (C) a≤5 (D) a≥39.函数y=(2a−3a+2)a是指数函数,则a的取值范围是()A) a>0,a≠1 (B) a=1 (C) a=−1 or a=1 (D) a=010.已知函数f(x)=4+ax−1的图象恒过定点p,则点p的坐标是()A) (1,5) (B) (1.4) (C) (−1,4) (D) (4,1)11.函数y=log2(3x−2)的定义域是()A) [1,+∞) (B) (2/3,+∞) (C) (−∞,1] (D) (−∞,2/3]12.设a,b,c都是正数,且3a=4b=6c,则下列正确的是()A) 1/c=1/a+1/b (B) 2/c=1/a+1/b (C) 1/c^2=1/a^2+1/b^2 (D)2/c^2=1/a^2+1/b^2第Ⅱ卷(非选择题,共60分)二、填空题:(每小题5分,共10分,答案填在横线上)13.若$log_a2^3<1$,则$a$的取值范围是$\left(\frac{2}{3},+\infty\right)\cup(1,+\infty)$。
.期中考试考前检测试题本试卷分第Ⅰ卷( 选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分,共150 分,考试时间120 分钟.第Ⅰ卷 ( 选择题 )一、选择题 ( 本大题共12 小题,每小题 5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果 A ={ x| x>-1},那么A .0? A B.{0}∈A C.?∈ A D.{0} ?A2 .函数f ( x ) =3x2+ lg(3 x+ 1) 的定义域是1-x11A. -,+∞B. -, 133111 C. -,D.-∞,-333 3.下列各组函数中,表示同一函数的是A.y=x2和 y=(x)2B.y= lg( x2-1) 和y= lg( x+ 1) + lg( x- 1)C.y= log a x2和y=2log a xxD.y=x和y= log a a4.a= log 0.7 0.8 ,b=log 1.10.9 ,c= 1.1 0.9的大小关系是A. >>B. >>c a b a b cC.b>c>a D.c>b>a1x, x∈[-1,0,5.若函数 f ( x)=4则f(log43)=4x,x∈[0 , 1] ,11A. 3 B .4C. 3 D . 46.已知函数f( x) = 7+a x-1的图象恒过点P,则 P 点的坐标是..A. (1,8)B.(1,7)C.(0,8)D.(8,0)a27.若x= 1是函数 f ( x)=x+ b( a≠0)的一个零点,则函数h( x )=ax + bx 的零点是A. 0 或- 1B.0 或- 2C.0 或 1D.0 或 28.利用计算器,列出自变量和函数值的对应值如下表:x0.20.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4?y=2x 1.149 1.516 2.0 2.639 3.482 4.595 6.0638.010.55?6y= x20.040.36 1.0 1.96 3.24 4.84 6.769.011.56?x那么方程 2= x2的一个根位于下列哪个区间A. (0.6,1.0)B. (1.4,1.8)C. (1.8,2.2)D. (2.6,3.0)19.设α∈{ - 1,1 ,2, 3} ,则使函数y= xα的定义域为R 且为奇函数的所有α的值为A. 1,3 B .- 1,1C.- 1,3D.- 1,1,310.函数y =f(x) 是 R 上的偶函数,且在( -∞, 0] 上是增函数,若f(a) ≤ (2) ,f则实数 a 的取值范围是A .( -∞, 2]B.[ -2,+∞ )C .[ - 2,2]D.(-∞,-2]∪ ,+∞)[211.已知 a>0,b>0且 ab =1,则函数 f ( x)= a x与 g( x)=-log b x 的图象可能是4x+ 112 .函数y=2x的图象( ) ..A.关于原点对称B.关于y= x 对称C.关于x 轴对称D.关于y 轴对称第Ⅱ卷 ( 非选择题 )二、填空题( 本大题共 4 小题,每小题 5 分,共20 分. )13 .已知集合M={( x,y)| y=- x+1},N={( x,y)| y= x-1},那么 M ∩ N 为__________.14 .设f ( x) = 2x2+ 3 ,g( x+1) =f ( x) ,则g(3) = ________.15 .若指数函数 f ( x)与幂函数g ( x )的图象相交于一点(2,4),则f ( x )=___________, g ( x)=__________.16 .设P,Q是两个非空集合,定义集合间的一种运算“⊙”:2xP ⊙ Q={ x| x∈ P∪ Q ,且 x?P ∩ Q},如果P={ y | y=4-x} ,Q= { y| y= 4 ,x>0} ,则P⊙ Q =________.三、解答题( 本大题共 6 小题,共70 分.解答应写出文字说明、证明过程或演算步骤)17 . ( 本小题满分10 分 ) 已知全集为实数集R,集合A={ x| y= x-1+3-x} ,B={ x|log2x>1}.(1)求 A∩ B,( ?R B )∪A;(2)已知集合 C ={ x|1< x< a},若 C ? A ,求实数 a 的取值范围.18 . ( 本小题满分12 分 ) 计算:22 (1)lg 25 +3 lg 8 + lg 5lg 20+(lg 2);27 (2)823-49 0.522+ (0.008)3×.92519 .( 本小题满分12 分 ) 已知函数 f ( x)是定义在R 上的奇函数,当x>0时,f(x)=log2x. ..(1)求 f ( x )的解析式;1(2) 解关于x 的不等式 f ( x)≤.220 . ( 本小题满分12 分 ) 某服装厂生产一种服装,每件服装的成本为40 元,出厂单价定为60 元.该厂为鼓励销售商订购,决定当一次订购量超过100 件时,每多订购 1 件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600 件.(1) 设销售商一次订购x 件,服装的实际出厂单价为p 元,写出函数p= f ( x)的表达式.(2)当销售商一次订购多少件服装时,该厂获得的利润最大?最大利润是多少?21.( 本小题满分 12 分 ) 设函数f (x) 的定义域为( - 3,3) ,满足f( -x) =-f() ,且对任意x,xy,都有 f ( x )-f ( y)= f ( x- y),当 x<0时, f ( x)>0, f (1)=-2.(1)求 f (2)的值;(2)判断 f ( x)的单调性,并证明;(3)若函数 g( x)= f ( x-1)+ f (3-2x),求不等式 g( x)≤0的解集.222 . ( 本小题满分12 分 ) 已知函数 f ( x)= a-2x+1( a∈R).(1)判断函数 f ( x)的单调性并给出证明;(2)若存在实数 a 使函数 f ( x)是奇函数,求 a ;m(3) 对于 (2) 中的a,若f ( x) ≥2x,当x∈ [2,3]时恒成立,求m 的最大值...期中考试考前检测试题(答案 )一、选择题1.解析:由集合与集合之间的关系可以判断只有D 正确.1- x > 0 ,12.解析:要使函数有意义,须使解得- 3 < x < 1. 故选 B.3 +1> 0,x3.解析:要表示同一函数必须定义域、对应法则一致,A 、B 、C 中的定义域不同,选D.4.解析: a = log 0.7 0.8 ∈ (0,1) ,b = log 1.1 0.9 ∈ ( -∞, 0) ,c = 1.10.9∈ (1 ,+∞ ) ,故 c >a >b .选 A5.解析:∵ log 4 3∈ (0,1) ,∴ f (log43) = 4log43= 3,故选 C.6.解析:过定点则与a 的取值没有关系,所以令x =1,此时 f (1) = 8. 所以 P 点的坐标是(1,8) .选 A.a7.解析: 因为 1 是函数 f ( x ) = x+ b ( a ≠ 0) 的零点, 所以 a +b = 0,即 a =- b ≠ 0. 所以 h ( x )=- ( - 1) .令 ( ) = 0,解得 = 0或 = 1. 故选 C.bx xh xxx8.解析:构造f ( x ) = 2x - x 2,则 f (1.8) = 0.242, f (2.2) =- 0.245 ,故在 (1.8,2.2)内存xx在一点使 f ( x ) =2- x 2= 0,所以方程2= x 2的一个根就位于区间(1.8,2.2) 上.选 C- 1112.解析:当 α=- 1 时, y = x = x,定义域不是R ; 当 α=1,3 时,满足题意;当α= 时,9定义域为 [0 ,+∞ ) .选 A10 .解析:∵y= f ( x)是偶函数,且在( -∞, 0]上是增函数,∴y= f ( x)在[0,+∞)上是减函数,由 f ( a)≤ f (2),得 f (| a|)≤ f (2).∴ | a | ≥ 2,得a≤- 2 或a≥ 2. 选 D11 .解析:当>1 时, 0<<1,又() =- log b的图象与= log b的图象关于轴对称,a b g x x y x x故 B 符合题意.4x+ 1x- x12 .解析:∵f ( x)=2x= 2+ 2,∴f (- x )=2-x+2x= f ( x).∴f ( x)为偶函数.故选D二、填空题( 本大题共 4 小题,每小题 5 分,共20 分. )..13.解析:本题主要考查集合中点集的交集运算.由y=- x+1,x=1,得y= x-1,y=0,∴ ∩= {(1,0)} .答案: {(1,0)}M N14.解析:∵ g( x+1)= f ( x)=2x2+3∴ g(3)= f (2)= 2× 22+ 3= 11.答案: 11xαx2x2 15.解析:设 f ( x)= a, g ( x)= x ,代入(2,4),∴ f ( x)=2, g( x)= x .答案:2x 16.解析:= [0,2] ,=(1 ,+∞ ),P Q∴⊙= [0,1]∪ (2,+∞ ).答案:[0,1]∪ (2,+∞ )P Q( 本大题共 670 分.解答应写出文字说明、证明过程或演算步骤 )三、解答题小题,共17 .解: (1)由已知得A={ x|1≤ x≤3},= {|log2> 1}={ |>2} ,B x x x x所以 A∩ B={ x|2< x≤3},( ? R B) ∪A= { x| x≤ 2} ∪ { x|1 ≤x≤ 3} = { x| x≤ 3} .(2)①当 a≤1时, C=?,此时 C? A;②当a>1时,若 C? A,则1< a≤3.综合①②,可得 a 的取值范围是( -∞, 3] .18 .解: (1) 原式= 2lg 5+ 2lg2 + lg 5(1 + lg 2) + (lg 2)2=2(lg 2 + lg 5)+lg 5+ lg 2× lg 5 + (lg 2)2= 2 + lg 5+ lg 2(lg 5+ lg 2)=2+ lg 5 + lg 2 = 3.82491 1 00022472171(2) 原式=3-2+3×=-+25 ×=-+ 2= .27982593259919 .解: (1) ∵f (x)是奇函数,∴ f(0) = 0.当x<0时,- x>0,∴f(- x )=log2(-x).又 f ( x)是奇函数,∴f( x)=- f (-x)=-log2(- x).log 2x, x>0,综上, f ( x)=0, x=0,-log 2-x,x<0.1(2)由 (1) 得f ( x) ≤2等价于x>0,x=0,x<0,1或 1或1 log 2x≤20≤2-log 2-x≤2,..22解得 0< x≤ 2 或x= 0 或x≤- 2 ,即所求x的集合为x0≤x≤2或x≤-2.20 .解: (1) 当 0< x≤ 100 且x∈ N*时,p= 60 ;当100< x≤ 600 且x∈ N*时,p= 60 - ( x- 100) ×0.02 = 62 - 0.02 x.60 ,0< x≤ 100 且x∈N*,∴p=62 - 0.02 x, 100< x≤ 600 且x∈ N * .(2) 设该厂获得的利润为y 元,则当 0< x≤ 100 时且x∈ N*,y= 60 x- 40 x= 20 x;*2当100< x≤ 600 时且x∈ N,y= (62 - 0.02 x) x- 40x= 22x- 0.02 x .20 x, 0< x≤ 100 且x∈ N*,∴y=22 x- 0.02 x2, 100< x≤ 600 且x∈ N * .当 0< x≤ 100 时且x∈ N*,y= 20 x是单调增函数,∴当 x=100时, y 最大, y max=20×100=2 000;当100< x≤ 600 时且x∈ N*,y= 22 x- 0.02 x2=- 0.02( x- 550) 2+ 6 050 ,∴当 x=550时, y 最大, y max=6 050.显然 6 050>2 000 ,∴当销售商一次订购550 件时,该厂获得的利润最大,最大利润为 6 050 元.21 .解: (1) 在f( x) -f ( y) =f ( x-y) 中,令x=2, y=1,代入得: f (2)- f (1)= f (1),所以 f (2)=2f (1)=-4.(2) f ( x) 在 ( - 3,3) 上单调递减.证明如下:设- 3< x1<x2<3 ,则x1-x2 <0,所以f ( x1 ) -f ( x2) =f ( x1-x2 )>0 ,即 f ( x1)> f ( x 2),所以 f ( x)在(-3,3)上单调递减.(3) 由g( x) ≤ 0 得f ( x- 1) +f (3 -2x) ≤ 0,所以f ( x- 1) ≤-f (3 - 2x) .又f ( x)满足 f (- x )=- f ( x),所以 f ( x -1)≤ f (2 x -3),又f ( x)在(-3,3)上单调递减,-3< x- 1<3 ,所以- 3<2 x- 3<3 ,解得≤ ,0<x2x-1≥2x-3,故不等式 g ( x)≤0的解集是(0,2].22 .解: (1)不论 a 为何实数, f ( x)在定义域上单调递增.证明:设 x 1, x2∈R,且 x1<x2,22 2 2 1- 22则 f ( x) -f ( x ) =a-- a -=x x.122x1+ 12x2+ 12x1+ 1 2 x2+ 1由 x1<x2可知0<2 x1<2 x2,..所以 2x1- 2x2 <0,2 x1+ 1>0,2 x2+ 1>0 ,所以 f ( x 1)- f ( x2)<0, f ( x1)< f ( x2).所以由定义可知,不论 a 为何数, f ( x)在定义域上单调递增.(2) 由f (0)=a-1=0得a=1,经验证,当a=1时, f ( x )是奇函数.(3)由条件可得:≤x1- 2 = (2x+ 1)+2- 3恒成立.2m x x2+1 2 + 1x2m+2x+1-3 的最小值,x∈ [2,3].≤ (2 + 1)x2设 t =2+ 1 ,则t∈ [5,9],函数 g ( t) =t+t-3在 [5,9]上单调递增,1212125,所以m ≤5,即 m 的最大值是5 .所以 g( t )的最小值是g(5)=.。