Ch1_线性规划 -
- 格式:ppt
- 大小:2.10 MB
- 文档页数:130
线性规划知识点总结一、概述线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在各个领域中都有广泛的应用,如生产计划、资源分配、运输问题等。
本文将对线性规划的相关知识点进行总结。
二、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
通常用Z表示。
2. 约束条件:线性规划必须满足一系列线性约束条件,如不等式约束和等式约束。
约束条件用来限制决策变量的取值范围。
3. 决策变量:决策变量是问题中需要决策的变量,它们的取值会影响目标函数的值。
4. 可行解:满足所有约束条件的解称为可行解。
5. 最优解:在所有可行解中,使得目标函数达到最大或最小值的解称为最优解。
三、标准形式线性规划问题可以通过转换为标准形式来求解。
标准形式的线性规划问题具有以下特点:1. 目标函数为最小化问题。
2. 所有约束条件均为等式约束。
3. 决策变量为非负数。
四、线性规划的解法线性规划有多种求解方法,下面介绍两种常用的方法:1. 图形法:当问题只有两个决策变量时,可以使用图形法求解。
首先绘制出目标函数和约束条件所构成的图形,然后通过图形的分析找到最优解。
2. 单纯形法:单纯形法是一种迭代求解方法,适用于多个决策变量的线性规划问题。
它通过不断迭代改善目标函数的值,直到找到最优解为止。
五、常见应用线性规划在实际应用中有广泛的应用,以下列举几个常见的应用场景:1. 生产计划:线性规划可以用于确定生产计划中各种资源的最优分配,以达到最大化利润或最小化成本的目标。
2. 运输问题:线性规划可以用于解决货物运输的最优路径和最优运输量的问题,以降低物流成本。
3. 资源分配:线性规划可以用于确定资源的最优分配,如人力资源、物资资源等,以提高资源利用效率。
4. 投资组合:线性规划可以用于确定投资组合中各项投资的最优权重,以最大化投资回报或最小化风险。
六、总结线性规划是一种常用的数学优化方法,通过最大化或最小化线性目标函数,在一系列线性约束条件下求解最优解。
线性规划的基本的内容和线性规划数学模型定义:线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
研究线性约束条件下线性目标函数的极值问题的数学理论和方法,英文缩写LP。
它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。
为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。
数学模型(1)列出约束条件及目标函数线性规划步骤(2)画出约束条件所表示的可行域(3)在可行域内求目标函数的最优解及最优值解法求解线性规划问题的基本方法是单纯形法,现在已有单纯形法的标准软件,可在电子计算机上求解约束条件和决策变量数达10000个以上的线性规划问题。
为了提高解题速度,又有改进单纯形法、对偶单纯形法、原始对偶方法、分解算法和各种多项式时间算法。
对于只有两个变量的简单的线性规划问题,也可采用图解法求解。
这种方法仅适用于只有两个变量的线性规划问题。
它的特点是直观而易于理解,但实用价值不大。
通过图解法求解可以理解线性规划的一些基本概念。
对于一般线性规划问题:图解法解线性规划问题Min z=CXS.T.AX =bX>=0其中A为一个m*n矩阵。
若A行满秩则可以找到基矩阵B,并寻找初始基解。
用N表示对应于B的非基矩阵。
则规划问题1可化为:规划问题2:Min z=CB XB+CNXNS.T. 线性规划法解题B XB+N XN = b (1)XB >= 0, XN >= 0 (2)(1)两边同乘于B-1,得XB + B-1 N XN = B-1 b同时,由上式得XB = B-1 b - B-1 N XN,也代入目标函数,问题可以继续化为:规划问题3:Min z=CB B-1 b + ( CN - CB B-1 N ) XNS.T.XB+B-1N XN = B-1 b (1)XB >= 0, XN >= 0 (2)令N:=B-1N,b:= B-1 b,ζ= CB B-1b,σ= CN - CB B-1 N,则上述问题化为规划问题形式4:Min z= ζ+ σXNS.T.XB+ N XN = b (1)XB >= 0, XN >= 0 (2)在上述变换中,若能找到规划问题形式4,使得b>=0,称该形式为初始基解形式。
线性规划知识点总结一、概述线性规划是一种数学建模技术,用于优化问题的求解。
它在各个领域中都有广泛的应用,如生产计划、资源分配、运输问题等。
本文将介绍线性规划的基本概念、模型建立、求解方法以及常见的应用案例。
二、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
通常用Z表示,可以是利润、成本等。
2. 约束条件:线性规划问题需要满足一系列约束条件,这些约束条件用一组线性不等式或等式表示。
例如,生产的数量不能超过某个限制,资源的使用量不能超过可用数量等。
3. 决策变量:线性规划问题中需要确定的变量称为决策变量,通常用X1、X2等表示。
决策变量的取值决定了问题的解。
4. 可行解:满足所有约束条件的解称为可行解。
5. 最优解:在所有可行解中,使目标函数达到最大或最小值的解称为最优解。
三、模型建立线性规划问题的建模过程包括确定决策变量、目标函数和约束条件。
以下是一个简单的线性规划模型示例:假设某公司生产两种产品A和B,目标是最大化总利润。
已知每单位A产品的利润为P1,每单位B产品的利润为P2。
同时,公司有两个限制条件:1)每天生产的产品总数不能超过N个;2)每天生产的产品A和B的总数不能超过M个。
现在需要确定每天生产的A和B产品的数量。
决策变量:设每天生产的A产品数量为X1,B产品数量为X2。
目标函数:总利润为Z = P1*X1 + P2*X2。
约束条件:1)生产总数限制:X1 + X2 ≤ N;2)产品总数限制:X1 + X2 ≤ M。
四、求解方法线性规划问题可以使用各种求解方法进行求解,常见的方法包括图形法、单纯形法和内点法等。
以下是单纯形法的基本步骤:1. 初等行变换:将线性规划问题转化为标准形式,即将不等式约束转化为等式约束,并引入松弛变量。
2. 构造初始可行解:通过人工选取初始可行解,使得目标函数值为0。
3. 选择进入变量:选择一个非基变量作为进入变量,使得目标函数值增加最快。
线性规划原理范文线性规划是一种数学优化方法,用于最大化或最小化一个线性目标函数在一组线性约束条件下的取值。
线性规划常常用于管理、经济学、工程和科学等领域的决策问题。
本文将介绍线性规划的原理和一些相关概念。
一、线性规划的基本概念1. 目标函数:线性规划的第一步是确定一个目标函数,这个函数是需要最大化或最小化的指标。
目标函数是由变量的线性组合构成的,通常表示为Z=c₁x₁+c₂x₂+...+cnxn,其中x₁、x₂、..,xn是变量,c₁、c₂、..,cn是系数。
2. 约束条件:线性规划的第二步是确定一组约束条件,这些条件限制了变量的取值范围。
约束条件通常是由变量的线性组合与一个给定的常数之间的关系构成,如a₁x₁+a₂x₂+...+aₙxn≤b,其中a₁、a₂、..,aₙ是系数,b是常数。
3.决策变量:决策变量是指在问题中需要决策的变量,也就是需要根据一定的规则或策略来确定其取值的变量。
决策变量是目标函数和约束条件中的变量。
二、线性规划的基本形式线性规划的基本形式可以表示为:最小化(或最大化)目标函数:Z=c₁x₁+c₂x₂+...+cnxn满足以下约束条件:a₁x₁+a₂x₂+...+aₙxn≤b₁aₙ₊₁x₁+aₙ₊₂x₂+...+a₂ₙxn≤b₂...a₂ₙ₋₁x₁+a₂ₙ₋₂x₂+...+a₄ₙxn≤bₙ₋₁其中x₁、x₂、..,xn是决策变量;c₁、c₂、..,cn是目标函数的系数;a₁、a₂、..,an是约束条件的系数;b₁、b₂、..,bₙ是约束条件的常数。
三、线性规划的解题过程线性规划的求解过程可以分为以下几个步骤:1.建立数学模型:根据实际问题的描述,将目标函数和约束条件转化成数学表达式。
2.确定决策变量的取值范围:根据问题的实际背景和限制条件,确定决策变量的取值范围。
3.描述目标函数和约束条件:将目标函数和约束条件转化成标准形式,即转化成上述的线性规划基本形式。
4.求解线性规划问题:利用线性规划求解方法,如单纯形法等,求解得到最优解。