面面垂直的判定定理
- 格式:ppt
- 大小:147.00 KB
- 文档页数:5
【高中数学】高中数学知识点:平面与平面垂直的判定与性质
平面和平面垂直的定义:
如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是
直二面角(平面角是直角),就说这两个平面垂直。
如图,
面面垂直的判定定理:
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
(线面垂直
面面垂直)
面面垂直的性质定理:
如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
(面面垂直
线面垂直)
性质定理符号表示:
线线垂直、线面垂直、面面垂直的转化关系:
证明面面垂直的方法:
证明两个平面垂直,通常是通过证明线线垂直、线面垂直来实现的,在关于垂直问题
的论证中要注意三者之间的相互转化,必要时可添加辅助线,如:已知面面垂直时,一般
用性质定理,在一个平面内作出交线的垂线,使之转化为线面垂直,然后转化为线线垂直,故要熟练掌握三者之间的转化条件及常用方法.线面垂直与面面垂直最终归纳为线线垂直,证共面的两直线垂直常用勾股定理的逆定理、等腰三角形的性质;证不共面的两直线垂直
通常利用线面垂直或利用空间向量.
常用结论:
(1)如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直
线在第一个平面内,此结论可以作为性质定理用,
(2)从该性质定理的条件看出:只要在其中一个平面内通过一点作另一个平面的垂线,那么这条垂线必在这个平面内,点的位置既可以在交线上,也可以不在交线上,如图.
感谢您的阅读,祝您生活愉快。
面面垂直性质
性质定理:如果两个平面相互垂直,那么在一个平面内垂直于它们交
线的直线垂直于另一个平面。
如果两个平面相互垂直,那么经过第一个平
面内的一点作垂直于第二个平面的直线在第一个平面内等。
面面垂直
定义
若两个平面的二面角为直二面角(平面角是直角的二面角),则这两
个平面互相垂直。
性质定理
1、如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直
线垂直于另一个平面。
2、如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于
第二个平面的直线在第一个平面内。
3、如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于
第三个平面。
4、如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。
(判定定理推论1的逆定理)
线面垂直
定义
如果一条直线与一个平面内的任意一条直线都垂直,就说这条直线与
此平面互相垂直。
是将“三维”问题转化为“二维”解决是一种重要的立
体几何数学思想方法。
在处理实际问题过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的重要垂直关系,从而架起已知与未知的“桥梁”。
判定定理
直线与平面垂直的判定定理(线面垂直定理):一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
推论1:如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。
推论2:如果两条直线垂直于同一个平面,那么这两条直线平行。
如何证面面垂直的判定定理如何证面面垂直的判定定理一、引言在几何学中,面面垂直是一个重要的概念。
如果两个平面相互垂直,则它们的交线是一条直线,这条直线被称为它们的公垂线。
本文将介绍如何证明两个平面相互垂直的判定定理。
二、定义和性质1. 定义:如果两个平面相互垂直,则它们的交线是一条直线,这条直线被称为它们的公垂线。
2. 性质:(1)两个平面相互垂直,则它们的法向量也相互垂直;(2)两个平面相互垂直,则它们的法向量所在的直线也相互垂直;(3)如果一条直线与一个平面相交且与该平面上某一条不同于此交点处经过该点的另一条直线都垂直,则该交点在该平面上。
三、证明方法1. 方法一:向量法证明(1)已知两个平面 P1 和 P2,设它们分别由点 A、B、C 和 A、D、E 确定;(2)求出 P1 和 P2 的法向量 n1 和 n2;(3)如果n1 · n2 = 0,则 P1 和 P2 相互垂直;(4)否则,它们不相互垂直。
2. 方法二:点线面法证明(1)已知两个平面 P1 和 P2,设它们分别由点 A、B、C 和 A、D、E 确定;(2)求出线段 AB 和 DE 的交点 F;(3)如果 F 在 P1 上,则 DE 垂直于 P1;(4)如果 F 在 P2 上,则 AB 垂直于 P2;(5)否则,它们不相互垂直。
四、例题解析例题:已知三角形 ABC 中,AB = 3 cm,AC = 4 cm,BC = 5 cm。
在三角形 ABC 中作高 BD,过 D 分别作 BE、CF 垂直于 AC、AB。
求证:BE 垂直于 CF。
解析:根据勾股定理可知:BC² = AB² + AC²= 9 + 16= 25因此,三角形 ABC 是一个直角三角形。
设 BD 的长度为 h,则有:h² + 3² = 4²h² + 9 = 16h² = 7h ≈ 2.65 cm根据三角形相似可知:BE/CE = BD/CDBE/(4-h) = h/(3-h)BE = (4h - h²)/3BE ≈ 0.87 cm同理,有:CF = (3h - h²)/4CF ≈ 1.16 cm因此,BE² + CF² ≈ 2.02,BC² ≈ 25,且 BE 和 CF 的长度均为正数。
立体几何面面垂直判定定理
立体几何面面垂直判定定理是指,如果两个不共面的平面上的任意一条直线垂直于两个平面的交线,则这两个平面互相垂直。
这个定理可以帮助我们在解决立体几何问题时判断两个平面是否垂直。
要理解这个定理,首先需要明确什么是不共面的平面和交线。
不共面的平面是指两个平面不在同一个平面上,它们之间有一定的夹角。
交线是指两个平面的交集,通常是一条直线。
例如,有两个平面A和B,它们不在同一个平面上,它们的交线是直线L。
如果我们能够证明直线L垂直于平面A和平面B的交线,那么就可以得出平面A和平面B互相垂直的结论。
证明方法可以使用向量法或坐标法。
向量法是基于向量的投影和内积来判断平面的垂直关系,而坐标法则是基于平面的法向量来判断平面的垂直关系。
除了理论证明,这个定理还可以应用到实际问题中。
例如,在建筑设计中,如果需要在墙面上嵌入一个电视墙架,需要确保墙面和墙架垂直,否则会影响安装效果。
通过使用面面垂直判定定理,可以准确判断墙面和墙架之间的垂直关系,从而确保安装效果。
总之,立体几何面面垂直判定定理是一个重要的判定工具,可以帮助我们解决立体几何问题中的垂直关系。
熟练掌握这个定理,可以更快地解决立体几何问题,并在实际应用中提高工作效率。
- 1 -。