【附20套中考模拟试题】江苏省淮安市涟水实验中学2019-2020学年中考数学模拟试卷含解析
- 格式:doc
- 大小:7.02 MB
- 文档页数:273
江苏省淮安市2019-2020学年中考数学考前模拟卷(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .92.数据4,8,4,6,3的众数和平均数分别是( )A .5,4B .8,5C .6,5D .4,53.下列运算正确的是 ( )A .22a +a=33aB .()32m =5mC .()222x y x y +=+D .63a a ÷=3a4.下列计算结果等于0的是( )A .11-+B .11--C .11-⨯D .11-÷ 5.如图,已知在Rt △ABC 中,∠ABC=90°,点D 是BC 边的中点,分别以B 、C 为圆心,大于线段BC 长度一半的长为半径圆弧,两弧在直线BC 上方的交点为P ,直线PD 交AC 于点E ,连接BE ,则下列结论:①ED ⊥BC ;②∠A=∠EBA ;③EB 平分∠AED ;④ED=12AB 中,一定正确的是( )A .①②③B .①②④C .①③④D .②③④6.把不等式组2010x x -⎧⎨+<⎩…的解集表示在数轴上,正确的是( ) A .B .C .D . 7.已知二次函数2()1y x h =-+(h 为常数),当13x ≤≤时,函数的最小值为5,则h 的值为( )A .-1或5B .-1或3C .1或5D .1或38.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=︒,在C 点测得60BCD ∠=︒,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A.25 B.253C.10033D.25253+9.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F,S△AEF=3,则S△FCD为()A.6 B.9 C.12 D.2710.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣511.下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查12.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1.其中合理的是()A.①B.②C.①③D.②③二、填空题:(本大题共6个小题,每小题4分,共24分.)13.二次根式1a+中的字母a的取值范围是_____.14.如图,四边形是矩形,四边形是正方形,点在轴的负半轴上,点在轴的正半轴上,点在上,点在反比例函数(为常数,)的图像上,正方形的面积为4,且,则值为________.15.若实数a 、b 在数轴上的位置如图所示,则代数式|b ﹣a|+2a 化简为_____.16.已知关于x 的二次函数y =x 2-2x -2,当a≤x≤a +2时,函数有最大值1,则a 的值为________. 17.直线y=2x +1经过点(0,a),则a=________.18.已知二次函数2y ax bx c =++的图象如图所示,若方程2ax bx c k ++=有两个不相等的实数根,则k的取值范围是_____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB 为⊙O 的直径,点E 在⊙O ,C 为弧BE 的中点,过点C 作直线CD ⊥AE 于D ,连接AC 、BC .试判断直线CD 与⊙O 的位置关系,并说明理由若AD=2,AC=6,求⊙O 的半径.20.(6分)如图,△ABD 是⊙O 的内接三角形,E 是弦BD 的中点,点C 是⊙O 外一点且∠DBC =∠A ,连接OE 延长与圆相交于点F ,与BC 相交于点C .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径为6,BC =8,求弦BD 的长.21.(6分)如图,在中,,点是上一点.尺规作图:作,使与、都相切.(不写作法与证明,保留作图痕迹)若与相切于点D,与的另一个交点为点,连接、,求证:.22.(8分)画出二次函数y=(x﹣1)2的图象.23.(8分)如图,在梯形ABCD中,AD∥BC,对角线AC、BD交于点M,点E在边BC上,且∠DAE=∠DCB,联结AE,AE与BD交于点F.(1)求证:2DM MF MB=⋅;(2)连接DE,如果BF=3FM,求证:四边形ABED是平行四边形.24.(10分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了个评价;②请将图1补充完整;③图2中“差评”所占的百分比是;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.25.(10分)春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率. 26.(12分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.(1)请直接写出袋子中白球的个数.(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)27.(12分)解不等式组43(2)52364x xxx--<-⎧⎪⎨-≥-⎪⎩并写出它的整数解.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.【详解】当a-6=0,即a=6时,方程是-1x+6=0,解得x=63 =84;当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得263a≤≈1.6,取最大整数,即a=1.故选C.2.D【解析】【分析】根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可【详解】∵4出现了2次,出现的次数最多,∴众数是4;这组数据的平均数是:(4+8+4+6+3)÷5=5; 故选D .3.D【解析】【分析】根据整式的混合运算计算得到结果,即可作出判断.【详解】A 、22a 与a 不是同类项,不能合并,不符合题意;B 、()32m =6m ,不符合题意;C 、原式=22x 2y xy ++,不符合题意;D 、63a a ÷=3a ,符合题意,故选D .【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.A【解析】【分析】各项计算得到结果,即可作出判断.【详解】解:A 、原式=0,符合题意;B 、原式=-1+(-1)=-2,不符合题意;C 、原式=-1,不符合题意;D 、原式=-1,不符合题意,故选:A .【点睛】本题考查了有理数的运算,熟练掌握运算法则是解本题的关键.5.B【解析】【详解】解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:根据作图过程可知:PB=CP ,∵D 为BC 的中点,∴PD 垂直平分BC ,∴①ED ⊥BC 正确.∵∠ABC=90°,∴PD ∥AB.∴E 为AC 的中点,∴EC=EA ,∵EB=EC.∴②∠A=∠EBA 正确;③EB 平分∠AED 错误;④ED=12AB 正确. ∴正确的有①②④.故选B .考点:线段垂直平分线的性质.6.B【解析】【分析】首先解出各个不等式的解集,然后求出这些解集的公共部分即可.【详解】解:由x ﹣2≥0,得x≥2,由x+1<0,得x <﹣1,所以不等式组无解,故选B .【点睛】解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了. 7.A【解析】【分析】由解析式可知该函数在x=h 时取得最小值1,x>h 时,y 随x 的增大而增大;当x<h 时,y 随x 的增大而减小;根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1,可得x=1时,y 取得最小值5;②若h>3,可得当x=3时,y 取得最小值5,分别列出关于h 的方程求解即可.【详解】解:∵x>h 时,y 随x 的增大而增大,当x<h 时,y 随x 的增大而减小,∴①若h<1,当13x ≤≤时,y 随x 的增大而增大,∴当x=1时,y 取得最小值5,可得:2(151)-+=h ,解得:h=−1或h=3(舍),∴h=−1;②若h>3,当13x ≤≤时,y 随x 的增大而减小,当x=3时,y 取得最小值5,可得:2(153)-+=h ,解得:h=5或h=1(舍),∴h=5,③若1≤h≤3时,当x=h 时,y 取得最小值为1,不是5,∴此种情况不符合题意,舍去.综上所述,h 的值为−1或5,故选:A .【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键. 8.B【解析】【分析】【详解】解:过点B 作BE ⊥AD 于E .设BE=x .∵∠BCD=60°,tan ∠BCE BE CE=, 3CE x ∴=, 在直角△ABE 中,3x ,AC=50米, 3350x x =, 解得253x =即小岛B 到公路l 的距离为3故选B.9.D【解析】【分析】先根据AE :EB=1:2得出AE :CD=1:3,再由相似三角形的判定定理得出△AEF ∽△CDF ,由相似三角形的性质即可得出结论.【详解】解:∵四边形ABCD 是平行四边形,AE :EB=1:2,∴AE :CD=1:3,∵AB ∥CD ,∴∠EAF=∠DCF ,∵∠DFC=∠AFE ,∴△AEF ∽△CDF ,∵S △AEF =3, ∴AEF FCD S S V V =3FCD S V =(13)2, 解得S △FCD =1.故选D.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键. 10.A【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答. 详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a =−3,故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.11.D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.由此,对各选项进行辨析即可.【详解】A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;C、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;故选D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12.B【解析】【分析】根据图形和各个小题的说法可以判断是否正确,从而解答本题【详解】当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2.故②正确;虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故③错误.故选:B.【点睛】此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.a≥﹣1.【解析】【分析】根据二次根式的被开方数为非负数,可以得出关于a的不等式,继而求得a的取值范围.【详解】由分析可得,a+1≥0,解得:a≥﹣1.【点睛】熟练掌握二次根式被开方数为非负数是解答本题的关键.14.-1【解析】试题分析:∵正方形ADEF的面积为4,∴正方形ADEF的边长为2,∴BF=2AF=4,AB=AF+BF=2+4=1.设B点坐标为(t,1),则E点坐标(t-2,2),∵点B、E在反比例函数y=的图象上,∴k=1t=2(t-2),解得t=-1,k=-1.考点:反比例函数系数k的几何意义.15.2a﹣b.【解析】【分析】直接利用数轴上a,b的位置进而得出b﹣a<0,a>0,再化简得出答案.【详解】解:由数轴可得:b﹣a<0,a>0,则|b﹣2a=a﹣b+a=2a﹣b.故答案为2a﹣b.【点睛】此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.16.-1或1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+2时函数有最大值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】解:当y=1时,x2-2x-2=1,解得:x1=-1,x2=3,∵当a≤x≤a+2时,函数有最大值1,∴a=-1或a+2=3,即a=1.故答案为-1或1.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.17.1【解析】【分析】根据一次函数图象上的点的坐标特征,将点(0,a)代入直线方程,然后解关于a的方程即可.【详解】∵直线y=2x+1经过点(0,a),∴a=2×0+1,∴a=1.故答案为1.18.5k<【解析】分析:先移项,整理为一元二次方程,让根的判别式大于0求值即可.详解:由图象可知:二次函数y=ax2+bx+c的顶点坐标为(1,1),∴244ac ba-=1,即b2-4ac=-20a,∵ax2+bx+c=k有两个不相等的实数根,∴方程ax2+bx+c-k=0的判别式△>0,即b2-4a(c-k)=b2-4ac+4ak=-20a+4ak=-4a(1-k)>0∵抛物线开口向下∴a<0∴1-k>0∴k<1.故答案为k<1.点睛:本题主要考查了抛物线与x轴的交点问题,以及数形结合法;二次函数中当b2-4ac>0时,二次函数y=ax2+bx+c的图象与x轴有两个交点.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)直线CD与⊙O相切;(2)⊙O的半径为1.1.【解析】(1)相切,连接OC ,∵C 为»BE的中点,∴∠1=∠2,∵OA=OC ,∴∠1=∠ACO ,∴∠2=∠ACO ,∴AD ∥OC ,∵CD ⊥AD ,∴OC ⊥CD ,∴直线CD 与⊙O 相切;(2)连接CE ,∵AD=2,AC=6,∵∠ADC=90°,∴CD=22AC AD -=2,∵CD 是⊙O 的切线,∴2CD =AD•DE ,∴DE=1,∴CE=22CD DE +=3,∵C 为»BE的中点,∴BC=CE=3,∵AB 为⊙O 的直径,∴∠ACB=90°,∴AB=22AC BC +=2.∴半径为1.120.(1)详见解析;(2)BD=9.6. 【解析】试题分析:(1)连接OB ,由垂径定理可得BE=DE ,OE ⊥BD ,»»»12BFDF BD == ,再由圆周角定理可得BOE A ∠=∠ ,从而得到∠ OBE +∠ DBC =90°,即90OBC ∠=︒ ,命题得证. (2)由勾股定理求出OC ,再由△OBC 的面积求出BE ,即可得出弦BD 的长. 试题解析:(1)证明:如下图所示,连接OB.∵ E 是弦BD 的中点,∴ BE =DE ,OE ⊥ BD ,»»»12BFDF BD ==, ∴∠ BOE =∠ A ,∠ OBE +∠ BOE =90°. ∵∠ DBC =∠ A ,∴∠ BOE =∠ DBC ,∴∠ OBE +∠ DBC =90°,∴∠ OBC =90°,即BC ⊥OB ,∴ BC 是⊙ O 的切线.(2)解:∵ OB =6,BC =8,BC ⊥OB ,∴2210OC OB BC += , ∵1122OBC S OC BE OB BC =⋅=⋅V ,∴684.810OB BC BE OC -⨯=== , ∴29.6BD BE ==.点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法. 21.(1)详见解析;(2)详见解析.【分析】(1)利用角平分线的性质作出∠BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案.(2)根据切线的性质,圆周角的性质,由相似判定可证△CDB∽△DEB,再根据相似三角形的性质即可求解.【详解】解:(1)如图,及为所求.(2)连接.∵是的切线,∴,∴,即,∵是直径,∴,∴,∵,∴,∴,又∴∽∴∴.【点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键.22.见解析【解析】【分析】首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象.【详解】列表得:x …﹣1 0 1 2 3 …y … 4 1 0 1 4 …如图:.【点睛】此题考查了二次函数的图象.注意确定此二次函数的顶点坐标是关键.23.(1) 证明见解析;(2) 证明见解析.【解析】分析:(1)由AD∥BC可得出∠DAE=∠AEB,结合∠DCB=∠DAE可得出∠DCB=∠AEB,进而可得出AE∥DC、△AMF∽△CMD,根据相似三角形的性质可得出FMDM=AMCM,根据AD∥BC,可得出△AMD∽△CMB,根据相似三角形的性质可得出AMCM=DMBM,进而可得出FMDM=DMBM,即MD2=MF•MB;(2)设FM=a,则BF=3a,BM=4a.由(1)的结论可求出MD的长度,代入DF=DM+MF 可得出DF的长度,由AD∥BC,可得出△AFD∽△△EFB,根据相似三角形的性质可得出AF=EF,利用“对角线互相平分的四边形是平行四边形”即可证出四边形ABED是平行四边形.详解:(1)∵AD∥BC,∴∠DAE=∠AEB.∵∠DCB=∠DAE,∴∠DCB=∠AEB,∴AE∥DC,∴△AMF∽△CMD,∴FMDM=AMCM.∵AD∥BC,∴△AMD∽△CMB,∴AMCM=DM FMBM DM,=DMBM,即MD2=MF•MB.(2)设FM=a,则BF=3a,BM=4a.由MD2=MF•MB,得:MD2=a•4a,∴MD=2a,∴DF=BF=3a.∵AD∥BC,∴△AFD∽△△EFB,∴AFEF=DFBF=1,∴AF=EF,∴四边形ABED是平行四边形.点睛:本题考查了相似三角形的判定与性质、平行四边形的判定、平行线的性质以及矩形,解题的关键是:(1)利用相似三角形的性质找出FMDM=AMCM、AMCM=DMBM;(2)牢记“对角线互相平分的四边形是平行四边形”.24.(1)①150;②作图见解析;③13.3%;(2)59.【解析】【分析】(1)①用“中评”、“差评”的人数除以二者的百分比之和即可得总人数;②用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;③根据“差评”的人数÷总人数×100%即可得“差评”所占的百分比;(2)可通过列表表示出甲、乙对商品评价的所有可能结果数,根据概率公式即可计算出两人中至少有一个给“好评”的概率.【详解】①小明统计的评价一共有:(40+20)÷(1-60%=150(个);②“好评”一共有150×60%=90(个),补全条形图如图1:③图2中“差评”所占的百分比是:20150×100%=13.3%;(2)列表如下:好中差好好,好好,中好,差中中,好中,中中,差差差,好差,中差,差由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,∴两人中至少有一个给“好评”的概率是59.考点:扇形统计图;条形统计图;列表法与树状图法.25.小王在这两年春节收到的年平均增长率是【解析】【分析】增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x)元,在2018年的基础上再增长x,就是2019年收到微信红包金额400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可.【详解】解:设小王在这两年春节收到的红包的年平均增长率是.依题意得:解得(舍去).答:小王在这两年春节收到的年平均增长率是【点睛】本题考查了一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.26.(1)袋子中白球有2个;(2).【解析】试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.试题解析:(1)设袋子中白球有x个,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解, ∴袋子中白球有2个; (2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况, ∴两次都摸到相同颜色的小球的概率为:. 考点:列表法与树状图法;概率公式. 27.不等式组的解集是5<x≤1,整数解是6,1 【解析】 【分析】先分别求出两个不等式的解,求出解集,再根据整数的定义得到答案. 【详解】43(2)52364x x x x --<-⎧⎪⎨-≥-⎪⎩①② ∵解①得:x >5, 解不等式②得:x≤1, ∴不等式组的解集是5<x≤1, ∴不等式组的整数解是6,1. 【点睛】本题考查求一元一次不等式组,解题的关键是掌握求一元一次不等式组的方法。
江苏省淮安市2019-2020学年中考数学四月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是()①13EAEC=,②S△ABC=1,③OF=5,④点B的坐标为(2,2.5)A.1个B.2个C.3个D.4个2.如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB 绕点A沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF的边CF,DE于点G,H.若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是()A.B.C.D.3.定义运算“※”为:a※b=()()22ab bab b⎧>⎪⎨-≤⎪⎩,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.则函数y=2※x的图象大致是()A .B .C .D .4.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =41°,∠D =30°,斜边AB =4,CD =1.把三角板DCE 绕着点C 顺时针旋转11°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .13B .5C .22D .45.如图,经过测量,C 地在A 地北偏东46°方向上,同时C 地在B 地北偏西63°方向上,则∠C 的度数为( )A .99°B .109°C .119°D .129°6.若※是新规定的某种运算符号,设a ※b=b 2 -a ,则-2※x=6中x 的值()A .4B .8C . 2D .-27.二次函数2y ax bx c =++(a 、b 、c 是常数,且a≠0)的图象如图所示,下列结论错误的是( )A .4ac <b 2B .abc <0C .b+c >3aD .a <b8.如图,l 1∥l 2,AF :FB=3:5,BC :CD=3:2,则AE :EC=( )A .5:2B .4:3C .2:1D .3:29.下列计算正确的是( )A .x 4•x 4=x 16B .(a+b )2=a 2+b 2C .=±4D .(a 6)2÷(a 4)3=110.如图,点O 为平面直角坐标系的原点,点A 在x 轴上,△OAB 是边长为4的等边三角形,以O 为旋转中心,将△OAB 按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )A .(2,23)B .(﹣2,4)C .(﹣2,22)D .(﹣2,23)11.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )之间.A .B 与C B .C 与D C .E 与F D .A 与B 12.已知e r 是一个单位向量,a r 、b r 是非零向量,那么下列等式正确的是( ) A .a e a v v v = B .e b b =v v v C .1a e a =v v v D .11a b a b=v v v v 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A’B’C ,A’B’交AC 于点D ,若∠A’DC=90°,则∠A= °.14.如图,在同一平面内,将边长相等的正三角形和正六边形的一条边重合并叠在一起,则∠1的度数为_____.15.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为__________2cm.16.已知扇形的圆心角为120°,弧长为6π,则扇形的面积是_____.17.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为________.18.已知21xy=⎧⎨=⎩是二元一次方程组14{13mx nynx my+=-=的解,则m+3n的立方根为__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A、B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A、B、C.(1)求该抛物线的解析式;(2)根据图象直接写出不等式ax2+(b﹣1)x+c>2的解集;(3)点P是抛物线上一动点,且在直线AB上方,过点P作AB的垂线段,垂足为Q点.当PQ=22时,求P点坐标.20.(6分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.21.(6分)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标.22.(8分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD 的长度.(结果保留根号).23.(8分)综合与探究如图1,平面直角坐标系中,抛物线y=ax 2+bx+3与x 轴分别交于点A (﹣2,0),B (4,0),与y 轴交于点C ,点D 是y 轴负半轴上一点,直线BD 与抛物线y=ax 2+bx+3在第三象限交于点E (﹣4,y )点F 是抛物线y=ax 2+bx+3上的一点,且点F 在直线BE 上方,将点F 沿平行于x 轴的直线向右平移m 个单位长度后恰好落在直线BE 上的点G 处.(1)求抛物线y=ax 2+bx+3的表达式,并求点E 的坐标;(2)设点F 的横坐标为x (﹣4<x <4),解决下列问题:①当点G 与点D 重合时,求平移距离m 的值;②用含x 的式子表示平移距离m ,并求m 的最大值;(3)如图2,过点F 作x 轴的垂线FP ,交直线BE 于点P ,垂足为F ,连接FD .是否存在点F ,使△FDP 与△FDG 的面积比为1:2?若存在,直接写出点F 的坐标;若不存在,说明理由.24.(10分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A 、C 的坐标分别为()4,5-,(1,3)-.请在如图所示的网格平面内作出平面直角坐标系;请作出ABC ∆关于y 轴对称的'''A B C ∆;点'B 的坐标为 .ABC ∆的面积为 .25.(10分)在平面直角坐标系中,一次函数y ax b =+(a≠0)的图象与反比例函数(0)k y k x=≠的图象交于第二、第四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AH ⊥y 轴,垂足为点H ,OH=3,tan ∠AOH=43,点B 的坐标为(m ,-2).求该反比例函数和一次函数的解析式;求△AHO 的周长.26.(12分)某中学九年级甲、乙两班商定举行一次远足活动,A 、B 两地相距10千米,甲班从A 地出发匀速步行到B 地,乙班从B 地出发匀速步行到A 地.两班同时出发,相向而行.设步行时间为x 小时,甲、乙两班离A 地的距离分别为1y 千米、2y 千米,1y 、2y 与x 的函数关系图象如图所示,根据图象解答下列问题:直接写出1y 、2y 与x 的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A 地多少千米?甲、乙两班相距4千米时所用时间是多少小时?27.(12分)如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5 km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】①如图,由平行线等分线段定理(或分线段成比例定理)易得:13 EA OAEC OC'='=;②设过点B且与y轴平行的直线交AC于点G,则S△ABC=S△AGB+S△BCG,易得:S△AED=12,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=12,又易得G为AC中点,所以,S△AGB=S△BGC=12,从而得结论;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得结论;④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,所以④错误.【详解】解:①如图,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴13 EA OAEC OC'='=,故①正确;②设过点B且与y轴平行的直线交AC于点G(如图),则S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=12×1×1=12,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=12,同理得:G为AC中点,∴S△ABG=S△BCG=12,∴S△ABC=1,故②正确;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴13 BG CGEF CE==,∴EF=1.即OF=5,故③正确;④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,故④错误;故选C.【点睛】本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力.考查学生数形结合的数学思想方法.2.D【解析】∵四边形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴CG AC DH AD=,∵AC=CD=1,∴AD=2,∴12xDH=,∴DH=2x,∵DE=2,∴y=2﹣2x,∵0°<α<45°,∴0<x<1,故选D.【点睛】本题主要考查了旋转、相似等知识,解题的关键是根据已知得出△ACG∽△ADH. 3.C【解析】【分析】根据定义运算“※” 为: a※b=()()22ab bab b⎧>⎪⎨-≤⎪⎩,可得y=2※x的函数解析式,根据函数解析式,可得函数图象.【详解】解:y=2※x=()()222020x xx x⎧>⎪⎨-≤⎪⎩,当x>0时,图象是y=22x对称轴右侧的部分;当x <0时,图象是y=22x -对称轴左侧的部分,所以C 选项是正确的.【点睛】本题考查了二次函数的图象,利用定义运算“※”为: a ※b=()()2200ab b ab b ⎧>⎪⎨-≤⎪⎩得出分段函数是解题关键.4.A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt △ABC 中,AB=4,则AO=OC=2.在Rt △AOD 1中,OD 1=CD 1-OC=3,由勾股定理得:AD 1=13.故选A.考点: 1.旋转;2.勾股定理.5.B【解析】【分析】方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF 与∠BCF 的度数,∠ACF 与∠BCF 的和即为∠C 的度数.【详解】解:由题意作图如下∠DAC=46°,∠CBE=63°,由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故选B .【点睛】本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.6.C【解析】解:由题意得:226x +=,∴24x =,∴x=±1.故选C . 7.D【解析】【分析】根据二次函数的图象与性质逐一判断即可求出答案.【详解】由图象可知:△>0,∴b 2﹣4ac >0,∴b 2>4ac ,故A 正确;∵抛物线开口向上,∴a <0,∵抛物线与y 轴的负半轴,∴c <0,∵抛物线对称轴为x=2b a-<0, ∴b <0,∴abc <0,故B 正确;∵当x=1时,y=a+b+c >0,∵4a <0,∴a+b+c >4a ,∴b+c >3a ,故C 正确;∵当x=﹣1时,y=a ﹣b+c >0,∴a ﹣b+c >c ,∴a ﹣b >0,∴a >b ,故D 错误;故选D .考点:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程、不等式之间的转换,根的判别式的熟练运用.8.D【解析】【分析】依据平行线分线段成比例定理,即可得到AG=3x ,BD=5x ,CD=25BD=2x ,再根据平行线分线段成比例定理,即可得出AE 与EC 的比值. 【详解】∵l 1∥l 2,∴35AF AG BF BD ==, 设AG=3x ,BD=5x ,∵BC :CD=3:2,∴CD=25BD=2x , ∵AG ∥CD ,∴3322AE AG x EC CD x ===. 故选D .【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.9.D【解析】试题分析:x 4x 4=x 8(同底数幂相乘,底数不变,指数相加) ;(a+b)2=a 2+b 2+2ab (完全平方公式) ;(表示16的算术平方根取正号);.(先算幂的乘方,底数不变,指数相乘;再算同底数幂相除,底数不变,指数相减.).考点:1、幂的运算;2、完全平方公式;3、算术平方根.10.D【解析】分析:作BC ⊥x 轴于C ,如图,根据等边三角形的性质得4,2,60OA OB AC OC BOA ====∠=o,则易得A 点坐标和O 点坐标,再利用勾股定理计算出224223BC =-=,然后根据第二象限点的坐标特征可写出B 点坐标;由旋转的性质得60,AOA BOB OA OB OA OB ∠'=∠'==='='o,则点A′与点B 重合,于是可得点A′的坐标.详解:作BC ⊥x 轴于C ,如图,∵△OAB 是边长为4的等边三角形∴4,2,60OA OB AC OC BOA ====∠=o ,∴A 点坐标为(−4,0),O 点坐标为(0,0),在Rt △BOC 中,224223BC =-=,∴B 点坐标为(2,23)-;∵△OAB 按顺时针方向旋转60o ,得到△OA′B′,∴60,AOA BOB OA OB OA OB ∠'=∠'==='='o ,∴点A′与点B 重合,即点A′的坐标为(2,23)-,故选D.点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质.11.A【解析】试题分析:在计算器上依次按键转化为算式为﹣=-1.414…;计算可得结果介于﹣2与﹣1之间.故选A .考点:1、计算器—数的开方;2、实数与数轴12.B【解析】【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a的方向不是单位向量,故错误;D. 左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.55.【解析】【详解】试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A =∠A’,.∵∠A’DC=90°,∴∠A’ =55°.∴∠A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系.14.60°【解析】【分析】先根据多边形的内角和公式求出正六边形每个内角的度数,然后用正六边形内角的度数减去正三角形内角的度数即可.【详解】(6-2)×180°÷6=120°,∠1=120°-60°=60°.故答案为:60°.【点睛】题考查了多边形的内角和公式,熟记多边形的内角和公式为(n-2) ×180°是解答本题的关键.15.16【解析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).故答案为:16π.点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.16.27π【解析】试题分析:设扇形的半径为r.则1206180rππ=,解得r=9,∴扇形的面积=21209360π⨯=27π.故答案为27π.考点:扇形面积的计算.17.-2【解析】试题分析:根据题意可得2k+3>2,k<2,解得﹣<k<2.因k为整数,所以k=﹣2.考点:一次函数图象与系数的关系.18.3【解析】【分析】把x与y的值代入方程组求出m与n的值,即可确定出所求.【详解】解:把21xy=⎧⎨=⎩代入方程组得:214,213m nn m+=⎧⎨-=⎩相加得:m+3n=27,则27的立方根为3,故答案为3【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣x2﹣x+2;(2)﹣2<x<0;(3)P点坐标为(﹣1,2).【解析】分析:(1)、根据题意得出点A和点B的坐标,然后利用待定系数法求出二次函数的解析式;(2)、根据函数图像得出不等式的解集;(3)、作PE⊥x轴于点E,交AB于点D,根据题意得出∠PDQ=∠ADE=45°,22PQ DQ+,然后设点P(x,﹣x2﹣x+2),则点D(x,x+2),根据PD的长度得出x的值,从而得出点P的坐标.详解:(1)当y=0时,x+2=0,解得x=﹣2,当x=0时,y=0+2=2,则点A(﹣2,0),B(0,2),把A(﹣2,0),C(1,0),B(0,2),分别代入y=ax2+bx+c得4202a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得112abc=-⎧⎪=-⎨⎪=⎩.∴该抛物线的解析式为y=﹣x2﹣x+2;(2)ax2+(b﹣1)x+c>2,ax2+bx+c>x+2,则不等式ax2+(b﹣1)x+c>2的解集为﹣2<x<0;(3)如图,作PE⊥x轴于点E,交AB于点D,在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠ADE=45°,在Rt△PDQ中,∠DPQ=∠PDQ=45°,PQ=DQ=22,∴PD=22PQ DQ+=1,设点P(x,﹣x2﹣x+2),则点D(x,x+2),∴PD=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,即﹣x2﹣2x=1,解得x=﹣1,则﹣x2﹣x+2=2,∴P点坐标为(﹣1,2).点睛:本题主要考查的是二次函数的性质以及直角三角形的性质,属于基础题型.利用待定系数法求出函数解析式是解决这个问题的关键.20.(1)15人;(2)补图见解析.(3).【解析】【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A 1所在圆心角度数为:×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=.【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.21. (1)、y=-122x +x+4;(2)、不存在,理由见解析. 【解析】试题分析:(1)、首先设抛物线的解析式为一般式,将点C 和点A 意见对称轴代入求出函数解析式;(2)、本题利用假设法来进行证明,假设存在这样的点,然后设出点F 的坐标求出FH 和FG 的长度,然后得出面积与t 的函数关系式,根据方程无解得出结论.试题解析:(1)、∵抛物线y=a 2x +bx+c(a≠0)过点C(0,4) ∴C=4① ∵-2b a=1 ∴b=-2a ② ∵抛物线过点A(-2,0) ∴4a -2b+c="0" ③ 由①②③解得:a=-12,b=1,c=4 ∴抛物线的解析式为:y=-122x +x+4 (2)、不存在 假设存在满足条件的点F ,如图所示,连结BF 、CF 、OF ,过点F 作FH ⊥x 轴于点H ,FG ⊥y 轴于点G . 设点F 的坐标为(t ,212t -+t+4),其中0<t <4 则FH=212t -+t+4 FG=t ∴△OBF 的面积=12OB·FH=12×4×(212t -+t+4)=-2t +2t+8 △OFC 的面积=12OC·FG=2t∴四边形ABFC的面积=△AOC的面积+△OBF的面积+△OFC的面积=-2t+4t+12令-2t+4t+12=17 即-2t+4t-5=0 △=16-20=-4<0 ∴方程无解∴不存在满足条件的点F考点:二次函数的应用22.CD的长度为317cm.【解析】【分析】在直角三角形中用三角函数求出FD,BE的长,而FC=AE=AB+BE,而CD=FC-FD,从而得到答案. 【详解】解:由题意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=BE EC,∴BE=ECtan30°=51×33(cm);∴CF=AE=34+BE=(3cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,则CD=FC﹣33﹣17,答:CD的长度为317cm.【点睛】本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.23.(3)(﹣4,﹣6);(317-3;②4;(2)F的坐标为(﹣3,01733179).【解析】【分析】(3)先将A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E 点坐标代入表达式求出y的值即可;(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入求出k,b的值,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GF∥x轴,故可得F的纵坐标,再将y=﹣2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;②设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;(2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根据△FDP与△FDG的面积比为3:3,故PD:DG=3:3.已知FP∥HD,则FH:HG=3:3.再分别设出F,G点的坐标,再根据两点关系列出等式化简求解即可得F的坐标.【详解】解:(3)将A(﹣3,0),B(4,0),代入y=ax3+bx+2得:4230 16430 a ba b-+=⎧⎨++=⎩,解得:3834ab⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为y=﹣38x3+34x+2,把E(﹣4,y)代入得:y=﹣6,∴点E的坐标为(﹣4,﹣6).(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入得:4046 k bk b+=⎧⎨-+=-⎩,解得:3k4b3⎧=⎪⎨⎪=-⎩,∴直线BD的表达式为y=34x﹣2.把x=0代入y=34x﹣2得:y=﹣2,∴D(0,﹣2).当点G与点D重合时,G的坐标为(0,﹣2).∵GF∥x轴,∴F的纵坐标为﹣2.将y=﹣2代入抛物线的解析式得:﹣38x3+34x+2=﹣2,解得:x=17+3或x=﹣17+3.∵﹣4<x<4,∴点F的坐标为(﹣17+3,﹣2).∴m=FG=17﹣3.②设点F的坐标为(x,﹣38x3+34x+2),则点G的坐标为(x+m,34(x+m)﹣2),∴﹣38x3+34x+2=34(x+m)﹣2,化简得,m=﹣12x3+4,∵﹣12<0,∴m有最大值,当x=0时,m的最大值为4.(2)当点F在x轴的左侧时,如下图所示:∵△FDP与△FDG的面积比为3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.设F的坐标为(x,﹣38x3+34x+2),则点G的坐标为(﹣3x,﹣32x﹣2),∴﹣38x3+34x+2=﹣32x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴点F的坐标为(﹣3,0).当点F在x轴的右侧时,如下图所示:∵△FDP与△FDG的面积比为3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.设F的坐标为(x,﹣38x3+34x+2),则点G的坐标为(3x,32x﹣2),∴﹣38x3+34x+2=32x﹣2,整理得:x3+3x﹣36=0,解得:17﹣3或x=17﹣3(舍去),∴点F17﹣3,31792-).综上所述,点F的坐标为(﹣3,017﹣3,31792).【点睛】本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用. 24.(1)见解析;(2)见解析;(3)'(2,1)B;(4)4.【解析】【分析】(1)根据C点坐标确定原点位置,然后作出坐标系即可;(2)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;(3)根据点B'在坐标系中的位置写出其坐标即可(4)利用长方形的面积剪去周围多余三角形的面积即可.【详解】解:(1)如图所示:(2)如图所示:(3)结合图形可得:()B'2,1;(4)ΔABC 111S 34231224222=⨯-⨯⨯-⨯⨯-⨯⨯ 123144=---=.【点睛】此题主要考查了作图−−轴对称变换,关键是确定组成图形的关键点的对称点位置.25.(1)一次函数为112y x =-+,反比例函数为12y x =-;(2)△AHO 的周长为12 【解析】分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy 为定值,列出方程,求出k 的值,便可求出反比例函数的解析式;根据k 的值求出B 两点的坐标,用待定系数法便可求出一次函数的解析式.(2)由(1)知AH 的长,根据勾股定理,可得AO 的长,根据三角形的周长,可得答案.详解:(1)∵tan ∠AOH=AH OH =43 ∴AH=43OH=4 ∴A (-4,3),代入k y x =,得 k=-4×3=-12∴反比例函数为12y x =-∴122m-=-∴m=6 ∴B (6,-2) ∴4362a b a b -+=⎧⎨+=-⎩∴a =12-,b=1 ∴一次函数为112y x =-+ (2)2222345OA AH OH =+=+=△AHO 的周长为:3+4+5=12点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.26.(1)y 1=4x ,y 2=-5x+1.(2)409km .(3)23h .【解析】【分析】(1)由图象直接写出函数关系式;(2)若相遇,甲乙走的总路程之和等于两地的距离.【详解】(1)根据图可以得到甲2.5小时,走1千米,则每小时走4千米,则函数关系是:y 1=4x ,乙班从B 地出发匀速步行到A 地,2小时走了1千米,则每小时走5千米,则函数关系式是:y 2=−5x+1.(2)由图象可知甲班速度为4km/h ,乙班速度为5km/h ,设甲、乙两班学生出发后,x 小时相遇,则4x+5x=1,解得x=109. 当x=109时,y 2=−5×109+1=409, ∴相遇时乙班离A 地为409km. (3)甲、乙两班首次相距4千米,即两班走的路程之和为6km ,故4x+5x=6,解得x=23h. ∴甲、乙两班首次相距4千米时所用时间是23h. 27.35km【解析】试题分析:如图作CH ⊥AD 于H .设CH=xkm ,在Rt △ACH 中,可得AH=3737CH x tan tan =︒︒,在Rt △CEH 中,可得CH=EH=x ,由CH ∥BD ,推出AH AC HD CB =,由AC=CB ,推出AH=HD ,可得37x tan ︒=x+5,求出x 即可解决问题.试题解析:如图,作CH ⊥AD 于H .设CH=xkm ,在Rt △ACH 中,∠A=37°,∵tan37°=CH AH , ∴AH=3737CH x tan tan =︒︒, 在Rt △CEH 中,∵∠CEH=45°, ∴CH=EH=x ,∵CH ⊥AD ,BD ⊥AD , ∴CH ∥BD , ∴AH AC HD CB=, ∵AC=CB ,∴AH=HD , ∴37x tan ︒=x+5, ∴x=5?37137tan tan ︒-︒≈15, ∴AE=AH+HE=1537tan ︒+15≈35km , ∴E 处距离港口A 有35km .。
江苏省淮安市初中毕业暨中等学校招生文化统一考试数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.下列四个数中最大的数是A.-2B.-1C.0D.1 2.下列图形是中心对称图形的是A B C D 3.月球的直径约为3476000米,将3476000用科学记数法表示应为A. 0.3476×107B. 34.76×105C. 3.476×107D. 3.476×1064.在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3、5、6、2、5、1,这组数据的众数是A.5B.6C.4D.2 5.下列运算正确的是A.236a a =a ⋅B.()222ab =a b C.()235a =a D.824a a =a ÷6.估计71+的值A.在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间 7.已知a -b=2,则代数式2a -2b -3的值是 A.1 B.2 C.5 D.78.如图,在Rt ΔABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交边AC 、AB 于点M 、N ,再分别以M 、N 为圆心, 大于12MN 长为半径画弧,两弧交于点P ,作 射线AP 交边BC 于点D ,若CD =4,A B =15, 则ΔABD 的面积为A.15B.30C.45D.60二、填空题(本大题共有10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 答案P DBCNMA9.若分式1x 5-在实数范围内有意义,则x 的取值范围是 . 10.分解因式:m 2-4= .11.点A (3,-2)关于x 轴对称的点的坐标是 . 12.计算:3a -(2a -b )= .13.一个不透明的袋中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出的球是黄球的概率是 .14.若关于x 的x 2+6x+k=0一元二次方程有两个相等的实数根,则k = . 15.若点A (-2,3)、B (m ,-6)都在反比例函数()ky=k 0x≠的图像上,则m 的值是 . 16.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 . 17.若一个圆锥的底面圆的半径为2,母线长为6,则该圆锥侧面展开图的圆心角为 °18.如图,在Rt ΔABC 中,∠C =90°,AC =6,BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将ΔCEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是 .三、解答题(本大题共有10小题,共96分) 19.(本小题满分10分) (1)计算()3123++-1--(2)解不等式组2x 1x 54x 3x+2++⎧⎨⎩p f20.(本小题满分8分)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修的管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?21.(本小题满分8分)已知,如图,在菱形ABCD 中,点E 、F 分别为边AC 、AD 的中点,连接AE 、CF ,求证:ΔADE ≌ΔCDFPBCF EABCFEA22.(本小题满分8分)如图,转盘A 的三个扇形面积相等,分别标有数字1,2,3,转盘B 的四个扇形面积相等,分别标有数字1,2,3,4。
江苏省淮安市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.实数a b、在数轴上的点的位置如图所示,则下列不等关系正确的是( )A.a+b>0 B.a-b<0 C.ab<0 D.2a>2b2.如图,在Rt△ABC中,∠B=90º,AB=6,BC=8,点D在BC上,以AC为对角线的所有□ADCE 中,DE的最小值是()A.4 B.6 C.8 D.103.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,BD=4,则⊙O的直径等于()A.5B.C.D.74.一元一次不等式组的解集中,整数解的个数是()A.4 B.5 C.6 D.75.关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为()A.B.C.D.6.下列各组数中,互为相反数的是()A .﹣1与(﹣1)2B .(﹣1)2与1C .2与12D .2与|﹣2|7.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大.A .3B .4C .5D .68.如图,反比例函数y =-的图象与直线y =-x 的交点为A 、B ,过点A 作y 轴的平行线与过点B 作的x 轴的平行线相交于点C ,则△ABC 的面积为( )A .8B .6C .4D .29.如图,正方形被分割成四部分,其中I 、II 为正方形,III 、IV 为长方形,I 、II 的面积之和等于III 、IV 面积之和的2倍,若II 的边长为2,且I 的面积小于II 的面积,则I 的边长为( )A .4B .3C .423-D .423+10.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x 元,则下面所列方程中正确的是( )A .1200012000100 1.2x x =+ B .12000120001001.2x x =+ C .1200012000100 1.2x x =- D .12000120001001.2x x=- 11.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( )A .12B .18C .38D .111222++ 12.在下列实数中,﹣320,2,﹣1中,绝对值最小的数是( )A .﹣3B .0C 2D .﹣1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为______ 人.14.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.15.因式分解:a 2﹣a =_____.16.如图,正方形ABCD 中,AB=3,以B 为圆心,13AB 长为半径画圆B ,点P 在圆B 上移动,连接AP ,并将AP 绕点A 逆时针旋转90°至Q ,连接BQ ,在点P 移动过程中,BQ 长度的最小值为_____.17.如图,已知平行四边形ABCD ,E 是边BC 的中点,联结DE 并延长,与AB 的延长线交于点F .设DA u u u v =a v ,DC u u u v =b v ,那么向量DFu u u v 用向量a v 、b v 表示为_____.18.如图,AB 是⊙O 的直径,AC 与⊙O 相切于点A ,连接OC 交⊙O 于D ,连接BD ,若∠C=40°,则∠B=_____度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于()A 2,3-,B ()4,n 两点. (1)求一次函数与反比例函数的解析式;(2)结合图形,直接写出一次函数大于反比例函数时自变量x 的取值范围.20.(6分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).21.(6分)如图,已知AB 是⊙O 的直径,BC ⊥AB ,连结OC ,弦AD ∥OC ,直线CD 交BA 的延长线于点E .(1)求证:直线CD 是⊙O 的切线;(2)若DE =2BC ,AD =5,求OC 的值.22.(8分)如图,四边形ABCD 中,E 点在AD 上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE ,求证:△ABC 与△DEC 全等.23.(8分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(cos80°≈0.17,sin80°≈0.98,2≈1.414)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?24.(10分)发现如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……A n中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠A n﹣(n﹣4)×180°.验证如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……A n中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠A n﹣(n﹣)×180°.25.(10分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22º时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45º时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).求教学楼AB的高度;学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).26.(12分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC 的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=2AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=25,CE=2,求线段AE的长.27.(12分)315211xx x-⎧⎨-+-⎩<()<参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案.【详解】解:由数轴,得b<-1,0<a<1.A、a+b<0,故A错误;B、a-b>0,故B错误;C、ab<0,故C符合题意;D、a2<1<b2,故D错误;故选C.【点睛】本题考查了实数与数轴,利用点在数轴上的位置得出b<-1,0<a<1是解题关键,又利用了有理数的运算.2.B【解析】【分析】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.【详解】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小。
绝密★启用前2020年江苏省淮安市淮安区中考数学模拟试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上,在试卷上作答无效,选择题需使用2B铅笔填涂一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.sin30°的值为()A.B.C.D.2.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)3.把抛物线y=(x+2)2向下平移2个单位长度,再向右平移1个单位长度,所得抛物线是()A.y=(x+2)2+2B.y=(x+1)2﹣2C.y=x2+2D.y=x2﹣24.在△ABC中,∠C=90°,BC=4,,则边AC的长是()A.B.6C.D.5.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.B.C.D.6.在Rt△ABC中,∠C=90°,cos A=,则tan B等于()A.B.C.D.27.已知两点A(2,0),B(0,4),且∠1=∠2,则点C的坐标为()A.(2,0)B.(0,2)C.(1,0)D.(0,1)8.如图,二次函数y=ax2+bx+c的图象与x轴的交点的横坐标分别为﹣3,1,则下列结论正确的个数有()①ac>0;②2a﹣b=0;③4a﹣2b+c>0;④对于任意实数m均有am2+bm≥a﹣b.A.1B.2C.3D.4二、填空题(本大题共有8小题,每小题3分,共24分.请将答案填写在答题卡相应位置上)9.函数y=﹣(x﹣1)2﹣7的最大值为.10.若,则的值为.11.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是.12.如图,身高为1.6m的小李AB站在河的一岸,利用树的倒影去测对岸一棵树CD的高度,CD的倒影是C′D,且AEC′在一条视线上,河宽BD=12m,且BE=2m,则树高CD=m.13.如图,点A(3,m)在第一象限,OA与x轴所夹的锐角为∠1,tan∠1=,则m的值是.14.如图,沿倾斜角为30°的山坡植树,要求相邻两棵树间的水平距离AC为2m,那么相邻两棵树的斜坡距离AB约为m.(结果精确到0.1m)15.如图,六个正方形组成一个矩形,A,B,C均在格点上,则∠ABC的正切值为.16.如图,△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90度,BC分别与AD、AE相交于点F,G,则图中共有对相似三角形.三、解答题(本大题共11小题,共102分,解答应写出文字说明、证明过程或演算步骤)17.(5分)计算:2cos60°+3﹣2+(π﹣)0﹣|﹣2|18.(6分)如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(m2)与它与墙平行的边的长x(m)之间的函数.19.(10分)如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.(1)求证:△ADE∽△MAB;(2)求DE的长.20.(10分)已知二次函数y=﹣x2+2x.(1)在给定的平面直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y<0时,x的取值范围;(3)若将此图象沿x轴向左平移3个单位,再沿y轴向下平移1个单位,请直接写出平移后图象所对应的函数关系式.21.(8分)2018年江苏省扬州市初中英语口语听力考试即将举行,某校认真复习,积极迎考,准备了A、B、C、D四份听力材料,它们的难易程度分别是易、中、难、难;a,b 是两份口语材料,它们的难易程度分别是易、难.(1)从四份听力材料中,任选一份是难的听力材料的概率是.(2)用树状图或列表法,列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,并求出两份材料都是难的一套模拟试卷的概率.22.(10分)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,求大树CD的高度(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)23.(10分)某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:(1)求本次测试共调查了多少名学生?(2)求本次测试结果为B等级的学生数,并补全条形统计图;(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?24.(10分)如图,在11×16 的网格图中,△ABC三个顶点坐标分别为A(﹣4,0),B(﹣1,1),C(﹣2,3).(1)请画出△ABC沿x轴正方向平移4个单位长度所得到的△A1B1C1;(2)以原点O为位似中心,将(1)中的△A1B1C1放大为原来的3倍得到△A2B2C2,请在第一象限内画出△A2B2C2,并直接写出△A2B2C2三个顶点的坐标.25.(10分)某商品交易会上,一商人将每件进价为5元的纪念品,按每件9元出售,每天可售出32件.他想采用提高售价的办法来增加利润,经试验,发现这种纪念品每件提价1元,每天的销售量会减少4件.(1)当售价定为多少元时,每天的利润为140元?(2)写出每天所得的利润y(元)与售价x(元件)之间的函数关系式,每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?(利润=(售价﹣进价)×售出件数)26.(11分)如图.在△ABC中.AB=4,D是AB上的一点(不与点A、B重合),DE ∥BC.交于点E.设△ABC的面积为S.△DEC的面积为S′.(1)当D是AB的中点时.求的值.(2)若AD=x,=y,求y关于x的函数关系式以及自变量x的取值范围.(3)根据y的取值范围,探索S与S′之间的大小关系.并说明理由.27.(12分)已知:如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x 轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.设点Q 的横坐标为m,△CQE的面积为S,求S关于m的函数关系式;当△CQE的面积最大时,求点Q的坐标.参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【分析】根据特殊角三角函数值,可得答案.【解答】解:sin30°=,故选:A.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.2.【分析】直接利用顶点式的特点可写出顶点坐标.【解答】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴抛物线y=(x﹣1)2+2的顶点坐标是(1,2).故选:D.【点评】主要考查了求抛物线的顶点坐标、对称轴的方法.熟记二次函数的顶点式的形式是解题的关键.3.【分析】易得原抛物线的顶点,然后得到经过平移后的新抛物线的顶点,根据平移不改变二次项的系数可得新抛物线解析式.【解答】解:抛物线y=(x+2)2的顶点坐标是(﹣2,0),向下平移2个单位长度,再向右平移1个单位长度后抛物线的顶点坐标是(﹣1,﹣2),所以平移后抛物线的解析式为:y=(x+1)2﹣2故选:B.【点评】本题考查了二次函数图象与几何变换,抛物线平移问题,实际上就是两条抛物线顶点之间的问题,找到了顶点的变化就知道了抛物线的变化.4.【分析】首先根据∠A的正弦值求得斜边,再根据勾股定理求得AC的长.【解答】解:在△ABC中,∠C=90°,BC=4,,∴AB==6,根据勾股定理,得AC===2.故选:A.【点评】此题考查了锐角三角函数的运用以及勾股定理的运用,能够灵活运用边角关系解直角三角形.5.【分析】让是负数的卡片数除以总卡片数即为所求的概率,即可选出.【解答】解:∵五张卡片分别标有0,﹣1,﹣2,1,3五个数,数字为负数的卡片有2张,∴从中随机抽取一张卡片数字为负数的概率为.故选:B.【点评】本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.【分析】由cos A=,知道∠A=60°,得到∠B的度数即可求得答案.【解答】解:∵,∠C=90°,cos A=,∴∠A=60°,得∠B=30°,所以tan B=tan30°=.故选:C.【点评】本题考查了特殊角的锐角三角函数值,解题的关键是正确识记30°角的正切值.7.【分析】由∠1=∠2,∠AOC是公共角,可证得△AOB∽△COA,然后利用相似三角形的对应边成比例,即可求得答案.【解答】解:∵∠1=∠2,∠AOC=∠BOA,∴△AOB∽△COA,∴,∵A(2,0),B(0,4),即OA=2,OB=4,∴,解得:OC=1,∴点C的坐标为:(0,1).故选:D.【点评】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握有两组角对应相等的两个三角形相似与相似三角形的对应边成比例定理的应用,注意数形结合思想的应用.8.【分析】分别根据抛物线的开口方向、与y轴的交点、对称轴、x=﹣2时的函数值及函数的最小值逐一判断即可.【解答】解:①∵抛物线开口向上且与y轴交于负半轴,即x=0时,y<0,∴a>0、c<0,∴ac<0,故此结论错误;②∵抛物线与x轴交点的横坐标分别为﹣3、1,∴x=﹣=,即2a﹣b=0,故此结论正确;③由图象可知,当x=﹣2时,y<0,∴4a﹣2b+c<0,故此结论错误;④∵抛物线的对称轴为x=﹣1,且开口向上,∴当x=﹣1时,二次函数取得最小值,∴当x=m时,am2+bm+c≥a﹣b+c,即am2+bm≥a﹣b,故此结论正确;故选:B.【点评】此题主要考查了二次函数的图象与系数的关系,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).二、填空题(本大题共有8小题,每小题3分,共24分.请将答案填写在答题卡相应位置上)9.【分析】根据二次函数的性质求解可得.【解答】解:∵在函数y=﹣(x﹣1)2﹣7中a=﹣1<0,∴当x=1时,y取得最大值,最大值为﹣7,故答案为:﹣7.【点评】本题考查的是二次函数的性质,把二次函数化为顶点式,根据顶点式可以知道二次函数的开口方向,对称轴以及顶点坐标.10.【分析】根据合比性质,可得答案.【解答】解:由合比性质,得==.故答案为:.【点评】本题考查了比例的性质,利用合比性质是解题关键,合比性质:=⇒=.11.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,∴S乙2<S丁2<S甲2<S丙2,∴二月份白菜价格最稳定的市场是乙;故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12.【分析】利用相似三角形求对应线段成比例,求解即可.【解答】解:利用△ABE∽△CDE,对应线段成比例解题,因为AB,CD均垂直于地面,所以AB∥CD,则有△ABE∽△CDE,∵△ABE∽△CDE,∴,又∵AB=1.6,BE=2,BD=12,∴DE=10,∴,∴CD=8.故填8.【点评】本题考查了相似三角形的应用,利用相似,求对应线段,是相似中经常考查极为普遍的类型题,关键是找准对应边.13.【分析】作AB⊥x轴于点B,根据正切函数的定义即可求解.【解答】解:解:作AB⊥x轴于点B.∵A的坐标是(3,m),∴OB=3,AB=m.又∵tan∠1==,即,∴m=5故答案为:5【点评】本题考查了正切的定义以及平面直角坐标系,理解正切的定义是关键.14.【分析】利用30°的余弦函数求解.【解答】解:由题意可得,cos30°==.∴AB=≈2.3.【点评】本题考查锐角三角函数的应用.15.【分析】首先过点A作AD⊥BC于点D,利用三角形的面积求得AD的长,再利用勾股定理求得BD的长,继而求得答案.【解答】解:过点A作AD⊥BC于点D,=BC•AD=×3×2,BC==,∵S△ABC∴AD==,∵AB==2,∴BD==,∴tan∠ABC===3.故答案为:3.【点评】此题考查了矩形的性质、勾股定理以及三角函数等知识.注意准确作出辅助线是解此题的关键.16.【分析】根据已知及相似三角形的判定方法进行分析,从而得到答案.【解答】解:∵△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠EDA=90°,∴∠C=∠B=∠DAE=∠E=45°,∵∠CFA=∠B+∠FAB,∠GAB=∠FAG+∠FAB,∴∠CFA=∠BAG,∴△CAF∽△BGA,∴△BGA∽△AGF∽△CAF;还有△ABC≌△DEA,∴相似三角形共有4对.故答案为:4.【点评】本题考查了相似三角形的判定:①有两个对应角相等的三角形相;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.三、解答题(本大题共11小题,共102分,解答应写出文字说明、证明过程或演算步骤)17.【分析】先分别计算特殊三角函数值、负指数幂、零指数幂、绝对值,然后算加减法.【解答】解:原式=2×++1﹣2=1++1﹣2=.【点评】本题考查了实数的运算,熟练掌握特殊三角函数值、负指数幂、零指数幂、绝对值的运算是解题的关键.18.【分析】根据已知表示出矩形的长与宽进而表示出面积即可.【解答】解:∵与墙平行的边的长为x(m),则垂直于墙的边长为:=(25﹣0.5x)m,根据题意得出:y=x(25﹣0.5x)=﹣0.5x2+25x.【点评】此题主要考查了根据实际问题列二次函数关系式,表示出矩形的宽是解题关键.19.【分析】(1)先根据矩形的性质,得到AD∥BC,则∠DAE=∠AMB,又由∠DEA=∠B,根据有两角对应相等的两三角形相似,即可证明出△DAE∽△AMB;(2)由△DAE∽△AMB,根据相似三角形的对应边成比例,即可求出DE的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB;(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M是边BC的中点,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=.【点评】此题主要考查了相似三角形的判定与性质,矩形的性质.(1)中根据矩形的对边平行进而得出∠DAE=∠AMB是解题的关键.20.【分析】(1)确定出顶点坐标和与x轴的交点坐标,然后作出大致函数图象即可;(2)根据函数图象写出二次函数图象在x轴下方的部分的x的取值范围;(3)根据向左平移横坐标减,向下平移纵坐标减求出平移后的二次函数图象的顶点坐标,然后利用顶点式形式写出即可.【解答】解:(1)函数图象如图所示;(2)当y<0时,x的取值范围:x<0或x>2;(3)∵图象沿x轴向左平移3个单位,再沿y轴向下平移1个单位,∴平移后的二次函数图象的顶点坐标为(﹣2,0),∴平移后图象所对应的函数关系式为:y=﹣(x+2)2.(或y=﹣x2﹣4x﹣4)【点评】本题考查了二次函数的图象,二次函数的性质,以及二次函数图象与几何变换,作二次函数图象一般先求出与x轴的交点坐标和顶点坐标.21.【分析】(1)依据A、B、C、D四份听力材料的难易程度分别是易、中、难、难,即可得到从四份听力材料中,任选一份是难的听力材料的概率是;(2)利用树状图列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,即可得到两份材料都是难的一套模拟试卷的概率.【解答】解:(1)∵A、B、C、D四份听力材料的难易程度分别是易、中、难、难,∴从四份听力材料中,任选一份是难的听力材料的概率是;故答案为:;(2)树状图如下:∴P(两份材料都是难)==.【点评】本题主要考查了利用树状图或列表法求概率,当有两个元素时,可用树形图列举,也可以列表列举.随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.22.【分析】作BF⊥AE于F,则FE=BD=6米,DE=BF,设BF=x米,则AF=2.4米,在Rt△ABF中,由勾股定理得出方程,解方程求出DE=BF=5米,AF=12米,得出AE 的长度,在Rt△ACE中,由三角函数求出CE,即可得出结果.【解答】解:作BF⊥AE于F,如图所示:则FE=BD=6米,DE=BF,∵斜面AB的坡度i=1:2.4,∴AF=2.4BF,设BF=x米,则AF=2.4x米,在Rt△ABF中,由勾股定理得:x2+(2.4x)2=132,解得:x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt△ACE中,CE=AE•tan36°=18×0.73=13.14米,∴CD=CE﹣DE=13.14米﹣5米≈8.1米;【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.23.【分析】(1)设本次测试共调查了x名学生,根据总体、个体、百分比之间的关系列出方程即可解决.(2)用总数减去A、C、D中的人数,即可解决,画出条形图即可.(3)用样本估计总体的思想解决问题.【解答】解:(1)设本次测试共调查了x名学生.由题意x•20%=10,x=50.∴本次测试共调查了50名学生.(2)测试结果为B等级的学生数=50﹣10﹣16﹣6=18人.条形统计图如图所示,(3)∵本次测试等级为D所占的百分比为=12%,∴该中学八年级共有900名学生中测试结果为D等级的学生有900×12%=108人.【点评】本题考查条形图、样本估计总体的思想、扇形统计图等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.24.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,△A2B2C2三个顶点的坐标:A2(0,0),B2(9,3),C2(6,9).【点评】此题主要考查了位似变换以及平移变换,正确得出对应点位置是解题关键.25.【分析】(1)设售价定为x 元时,每天的利润为140元,根据题意列方程即可得到结论;(2)根据题中等量关系为:利润=(售价﹣进价)×售出件数,根据等量关系列出函数关系式,将函数关系式配方,根据配方后的方程式即可求出y 的最大值.【解答】解:(1)设售价定为x 元时,每天的利润为140元,根据题意,得:(x ﹣5)[32﹣4(x ﹣9)]=140,解得:x 1=12、x 2=10,答:售价定为12元或10元时,每天的利润为140元.(2)根据题意,得:y =(x ﹣5)[32﹣4(x ﹣9)]=﹣4x 2+88x ﹣340=﹣4(x ﹣11)2+144,故当x =11时,y 最大=144,答:售价为11元时,利润最大,最大利润为144元.【点评】本题考查的是二次函数的应用,熟知利润=(售价﹣进价)×售出件数是解答此题的关键.26.【分析】(1)先求出△ADE 和△CDE 的面积相等,再根据平行线得出△ADE ∽△ABC ,推出=()2,把AB =2AD 代入求出即可;(2)求出=x 2①,==②,①÷②即可得出答案;(3)由(2)知x 的取值范围是0<x <4,于是得到y ==﹣x 2+x =﹣(x﹣2)2+≤,即可得到结论.【解答】解:(1)∵D 为AB 中点,∴AB =2AD ,∵DE ∥BC ,∴AE =EC ,∵△ADE 的边AE 上的高和△CED 的边CE 上的高相等,∴S △ADE =S △CDE =S 1,∵DE ∥BC ,∴△ADE ∽△ABC ,∴=()2=()2=,∴S′:S=1:4;(2)∵AB=4,AD=x,∴=()2=()2,∴=x2①,∵DE∥BC,∴△ADE∽△ABC,∴=,∵AB=4,AD=x,∴=,∴=∵△ADE的边AE上的高和△CED的边CE上的高相等,∴==②,①÷②得:∴y==﹣x2+x,∵AB=4,∴x的取值范围是0<x<4;(3)由(2)知x的取值范围是0<x<4,∴y==﹣x2+x=﹣(x﹣2)2+≤,∴S′≤S.【点评】本题主要考查了相似三角形的性质和判定,三角形的面积的计算方法,二次函数的最值问题,熟练掌握相似三角形的判定和性质定理是解题的关键.27.【分析】(1)把C (0,4),A (4,0)代入y 抛物线的解析式得到关于a 与c 的方程组,解方程组即可;(2)设点Q 的坐标为(m ,0),过点E 作EG ⊥x 轴于点G ,解方程﹣+x +4=0可求得B (﹣2,0),则AB =6,BG =m +2,分别由QE ∥AC ,EG ∥OC ,根据三角形相似的判定得到△BEQ ∽△BCA ,△BEG ∽△BCO ,利用相似比可表示出EG =,而S △CQE =S △BCQ ﹣S △BEQ ,根据三角形的面积公式用m 表示S △CQE ,配成顶点式为S △CQE =﹣(m ﹣1)2+3,再根据二次函数的最值问题即可得到m =1时,S △CQE 有最大值3,由此确定Q 的坐标.【解答】解:(1)把C (0,4),A (4,0)代入y =ax 2﹣2ax +c (a ≠0)得, c =4,16a ﹣8a +c =0,解得a =﹣,c =4,∴该抛物线的解析式;y =﹣+x +4;(2)设点Q 的坐标为(m ,0),过点E 作EG ⊥x 轴于点G ,如图,解方程﹣+x +4=0得x 1=﹣2,x 2=4, ∴B 点坐标为(﹣2,0),∴AB =6,BQ =m +2,∵QE ∥AC ,∴△BEQ ∽△BCA ,∴==,又∵EG ∥OC ,∴△BEG ∽△BCO ,∴==, ∴=,∴EG =, ∴S △CQE =S △BCQ ﹣S △BEQ=BQ•OC﹣BQ•EG=(m+2)•4﹣(m+2)•=﹣m2+m+=﹣(m﹣1)2+3,又∵﹣2≤m≤4,有最大值3,此时Q点的坐标为(1,0).∴当m=1时,S△CQE【点评】本题考查了二次函数的综合题:点在抛物线上,则点的横纵坐标满足其二次函数解析式;通过几何关系列出二次函数关系式,并配成抛物线的顶点式y=a(x﹣h)2+k,当a<0,x=h,y有最大值k.也考查了三角形相似的判定与性质.。
江苏省淮安市2019-2020学年中考数学模拟试题(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设P n(x n,y n),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为()A.1 B.3 C.﹣1 D.20192.下表是某校合唱团成员的年龄分布.年龄/岁13 14 15 16频数 5 15 x 10x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.众数、中位数B.平均数、中位数C.平均数、方差D.中位数、方差3.下列命题是真命题的是()A.如实数a,b满足a2=b2,则a=bB.若实数a,b满足a<0,b<0,则ab<0C.“购买1张彩票就中奖”是不可能事件D.三角形的三个内角中最多有一个钝角4.在平面直角坐标系xOy中,若点P(3,4)在⊙O内,则⊙O的半径r的取值范围是()A.0<r<3 B.r>4 C.0<r<5 D.r>55.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1. 其中合理的是( ) A .①B .②C .①②D .①③6.在数轴上到原点距离等于3的数是( ) A .3B .﹣3C .3或﹣3D .不知道7.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,若∠C =65°,则∠P 的度数为( )A .65°B .130°C .50°D .100°8.如图,AB 与⊙O 相切于点B ,OA=2,∠OAB=30°,弦BC ∥OA ,则劣弧»BC的长是( )A .2πB .3π C .4π D .6π 9.下列运算正确的是( ) A .32()x =x 5B .55()x x -=-C .3x ·2x =6xD .32x +2 35x 5x =10.计算3a 2-a 2的结果是( ) A .4a 2 B .3a 2 C .2a 2 D .311.点(,2)A a a -是一次函数2y x m =+图象上一点,若点A 在第一象限,则m 的取值范围是( ). A .24m -<<B .42m -<<C .24m -≤≤D .42m -≤≤12.如图,将△ABC 沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A .42B .96C .84D .48二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系xOy 中,点A (4,3)为⊙O 上一点,B 为⊙O 内一点,请写出一个符合条件要求的点B 的坐标______.14.因式分解:2xy 4x -= .15.计算x x x 111---的结果是__________. 16.若代数式x 2﹣6x+b 可化为(x+a )2﹣5,则a+b 的值为____.17.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则∠AOB 等于 ______ 度.18.如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A 在整个旋转过程中所经过的路径总长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)(1)计算:|﹣3|+(π﹣2 018)0﹣2sin 30°+(13)﹣1. (2)先化简,再求值:(x ﹣1)÷(21x +﹣1),其中x 为方程x 2+3x+2=0的根. 20.(6分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD 所示.(1)求线段AB 的表达式,并写出自变量x 的取值范围; (2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?21.(6分)如图,要修一个育苗棚,棚的横截面是Rt ABC V ,棚高 1.5m AB =,长10m d =,棚顶与地面的夹角为27ACB ∠=︒.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:sin 270.45︒=,cos270.89︒=,tan 270.51︒=)22.(8分) 已知AC ,EC 分别是四边形ABCD 和EFCG 的对角线,直线AE 与直线BF 交于点H (1)观察猜想如图1,当四边形ABCD 和EFCG 均为正方形时,线段AE 和BF的数量关系是;∠AHB = . (2)探究证明如图2,当四边形ABCD 和FFCG 均为矩形,且∠ACB =∠ECF =30°时,(1)中的结论是否仍然成立,并说明理由. (3)拓展延伸在(2)的条件下,若BC =9,FC =6,将矩形EFCG 绕点C 旋转,在整个旋转过程中,当A 、E 、F 三点共线时,请直接写出点B 到直线AE 的距离.23.(8分)(1)(﹣2)2+2sin 45°﹣11()182-⨯(2)解不等式组523(1)131322x x x x +>-⎧⎪⎨-≤-⎪⎩,并将其解集在如图所示的数轴上表示出来.24.(10分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列各题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全频数分布直方图;(4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读.25.(10分)如图,二次函数y=12x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).求二次函数的解析式;求函数图象的顶点坐标及D点的坐标;二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.26.(12分)解方程:3221xx x=+-.27.(12分)数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大致位于直线CD上.年龄组x7 8 9 10 11 12 13 14 15 16 17男生平均身高y115.2 118.3 122.2 126.5 129.6 135.6 140.4 146.1 154.8 162.9 168.2(1)该市男学生的平均身高从岁开始增加特别迅速.(2)求直线AB所对应的函数表达式.(3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】+x2+…+x7;经过观察分析可得每4个数的和为2,把2019个根据各点横坐标数据得出规律,进而得出x1数分为505组,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5;∴x1+x2+…+x7=﹣1∵x1+x2+x3+x4=1﹣1﹣1+3=2;x5+x6+x7+x8=3﹣3﹣3+5=2;…x97+x98+x99+x100=2…∴x1+x2+…+x2016=2×(2016÷4)=1.而x2017、x2018、x2019的值分别为:1009、﹣1009、﹣1009,∴x2017+x2018+x2019=﹣1009,∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,故选C.此题主要考查规律型:点的坐标,解题关键在于找到其规律 2.A 【解析】 【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案. 【详解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为1010x x +-=,则总人数为3151030++=,故该组数据的众数为14岁,中位数为1414142+=(岁),所以对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数,故选A. 【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键. 3.D 【解析】 【分析】A. 两个数的平方相等,这两个数不一定相等,有正负之分即可判断B. 同号相乘为正,异号相乘为负,即可判断C. “购买1张彩票就中奖”是随机事件即可判断D. 根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断 【详解】如实数a ,b 满足a 2=b 2,则a =±b ,A 是假命题; 数a ,b 满足a <0,b <0,则ab >0,B 是假命题; 若实“购买1张彩票就中奖”是随机事件,C 是假命题; 三角形的三个内角中最多有一个钝角,D 是真命题; 故选:D 【点睛】本题考查了命题与定理,根据实际判断是解题的关键 4.D 【解析】 【分析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r 的范围.∵点P的坐标为(3,4),∴OP==1.∵点P(3,4)在⊙O内,∴OP<r,即r>1.故选D.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.5.B【解析】①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1.错误,故选B.【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.6.C【解析】【分析】根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.【详解】绝对值为3的数有3,-3.故答案为C.【点睛】本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.7.C【解析】试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.考点:切线的性质.8.B【解析】解:连接OB,OC.∵AB为圆O的切线,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC的弧长为601180π⨯=13π.故选B.点睛:此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解答本题的关键. 9.B 【解析】 【分析】根据幂的运算法则及整式的加减运算即可判断. 【详解】 A. ()23x =x 6,故错误;B. ()55x x -=-,正确; C. 3x ·2x =5x ,故错误; D. 32x +2 3x 不能合并,故错误, 故选B. 【点睛】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则. 10.C 【解析】【分析】根据合并同类项法则进行计算即可得. 【详解】3a 2-a 2=(3-1)a 2 =2a 2, 故选C.【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变. 11.B 【解析】试题解析:把点(,2)A a a -代入一次函数2y x m =+得,22a a m -=+ 23m a =-.∵点A 在第一象限上, ∴0{20a a >->,可得02a <<,因此4232a -<-<,即42m -<<, 故选B . 12.D 【解析】 【分析】 【详解】由平移的性质知,BE=6,DE=AB=10, ∴OE=DE ﹣DO=10﹣4=6, ∴S 四边形ODFC =S 梯形ABEO =12(AB+OE )•BE=12(10+6)×6=1. 故选D. 【点睛】本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.(2,2). 【解析】 【分析】连结OA ,根据勾股定理可求OA ,再根据点与圆的位置关系可得一个符合要求的点B 的坐标. 【详解】 如图,连结OA , OA =2234+=5, ∵B 为⊙O 内一点,∴符合要求的点B 的坐标(2,2)答案不唯一. 故答案为:(2,2).【点睛】考查了点与圆的位置关系,坐标与图形性质,关键是根据勾股定理得到OA 的长.14..【解析】 要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x 后继续应用平方差公式分解即可:()()()22xy 4x x y 4x y 2y 2-=-=+-. 15.1【解析】分析:利用同分母分式的减法法则计算,分子整理后分解因式,约分即可得到结果. 详解:原式11 1.111x x x x x -=-==--- 故答案为:1.点睛:本题考查了分式的加减运算,分式的加减运算关键是通分,通分的关键是找最简公分母. 16.1【解析】【分析】根据题意找到等量关系x 2﹣6x+b=(x+a )2﹣5,根据系数相等求出a,b,即可解题.【详解】解:由题可知x 2﹣6x+b=(x+a )2﹣5,整理得:x 2﹣6x+b= x 2+2ax+a 2-5,即-6=2a,b= a 2-5,解得:a=-3,b=4,∴a+b=1.【点睛】本题考查了配方法的实际应用,属于简单题,找到等量关系求出a,b 是解题关键.17.108°【解析】【分析】如图,易得△OCD 为等腰三角形,根据正五边形内角度数可求出∠OCD ,然后求出顶角∠COD ,再用360°减去∠AOC 、∠BOD 、∠COD 即可【详解】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案为108°【点睛】本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键. 18.3026π.【解析】分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.详解:∵AB=4,BC=3,∴AC=BD=5,转动一次A的路线长是:90π42π180⨯=,转动第二次的路线长是:90π55π1802⨯=,转动第三次的路线长是:90π33π1802⨯=,转动第四次的路线长是:0,以此类推,每四次循环,故顶点A转动四次经过的路线长为:53ππ2π6π22++=,∵2017÷4=504…1,∴顶点A转动四次经过的路线长为:6π5042π3026π.⨯+=故答案为3026π.点睛:考查旋转的性质和弧长公式,熟记弧长公式是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)6;(2)﹣(x+1),1.【解析】【详解】(1)原式=3+1﹣2×12+3=6(2)由题意可知:x2+3x+2=0,解得:x=﹣1或x=﹣2原式=(x ﹣1)÷11x x -+ =﹣(x+1) 当x=﹣1时,x+1=0,分式无意义,当x=﹣2时,原式=120.(1)()20320416y x x =-+≤≤;(2)80米/分;(3)6分钟【解析】【分析】(1)根据图示,设线段AB 的表达式为:y=kx+b ,把把(4,240),(16,0)代入得到关于k ,b 的二元一次方程组,解之,即可得到答案,(2)根据线段OA ,求出甲的速度,根据图示可知:乙在点B 处追上甲,根据速度=路程÷时间,计算求值即可,(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案.【详解】(1)根据题意得:设线段AB 的表达式为:y=kx+b (4≤x≤16),把(4,240),(16,0)代入得:4240160k b k b +=⎧⎨+=⎩, 解得:20320k b =-⎧⎨=⎩, 即线段AB 的表达式为:y= -20x+320 (4≤x≤16),(2)又线段OA 可知:甲的速度为:2404=60(米/分), 乙的步行速度为:()24016460164+-⨯-=80(米/分), 答:乙的步行速度为80米/分,(3)在B 处甲乙相遇时,与出发点的距离为:240+(16-4)×60=960(米),与终点的距离为:2400-960=1440(米), 相遇后,到达终点甲所用的时间为:144060=24(分), 相遇后,到达终点乙所用的时间为:144080=18(分),24-18=6(分),答:乙比甲早6分钟到达终点.【点睛】本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键.21.33.3【解析】【分析】根据解直角三角形的知识先求出AC 的值,再根据矩形的面积计算方法求解即可.【详解】解:∵AC=sin AB ACB ∠ = 1.5sin 27︒=1.50.45=103∴矩形面积=10⨯103≈33.3(平方米) 答:覆盖在顶上的塑料薄膜需33.3平方米【点睛】本题考查了解直角三角形的应用,掌握正弦的定义是解题的关键.22.(1)BF AE 2=,45°;(2)不成立,理由见解析;(3)32 . 【解析】【分析】(1)由正方形的性质,可得AC CE BC CF == ,∠ACB =∠GEC =45°,求得△CAE ∽△CBF ,由相似三角形的性质得到BF AE =,∠CAB ==45°,又因为∠CBA =90°,所以∠AHB =45°. (2)由矩形的性质,及∠ACB =∠ECF =30°,得到△CAE ∽△CBF ,由相似三角形的性质可得∠CAE=∠CBF ,BF BC AE AC ==,则∠CAB =60°,又因为∠CBA =90°, 求得∠AHB =30°,故不成立.(3)分两种情况讨论:①作BM ⊥AE 于M ,因为A 、E 、F 三点共线,及∠AFB =30°,∠AFC =90°,进而求得AC 和EF ,根据勾股定理求得AF ,则AE =AF ﹣EF ,再由(2)得:BF AE = ,所以BF =﹣3,故BM .②如图3所示:作BM ⊥AE 于M ,由A 、E 、F 三点共线,得:AE =BF =+3,则BM【详解】解:(1)如图1所示:∵四边形ABCD 和EFCG 均为正方形,∴AC CE BC CF==,∠ACB =∠GEC =45°, ∴∠ACE =∠BCF ,∴△CAE ∽△CBF ,∴∠CAE =∠CBF ,AE AC BF BC ==,∴BF AE =,∠CAB =∠CAE+∠EAB =∠CBF+∠EAB =45°, ∵∠CBA =90°,∴∠AHB =180°﹣90°﹣45°=45°,故答案为BF AE =,45°; (2)不成立;理由如下:∵四边形ABCD 和EFCG 均为矩形,且∠ACB =∠ECF =30°,∴BC CF AC CE ==,∠ACE =∠BCF , ∴△CAE ∽△CBF ,∴∠CAE =∠CBF ,BF BC AE AC ==, ∴∠CAB =∠CAE+∠EAB =∠CBF+∠EAB =60°,∵∠CBA =90°,∴∠AHB =180°﹣90°﹣60°=30°;(3)分两种情况:①如图2所示:作BM ⊥AE 于M ,当A 、E 、F 三点共线时,由(2)得:∠AFB =30°,∠AFC =90°,在Rt △ABC 和Rt △CEF 中,∵∠ACB =∠ECF =30°,∴AC =cos30BC ︒EF =CF×tan30°== ,在Rt △ACF 中,AF ===,∴AE =AF ﹣EF = ﹣由(2)得:BF AE = ,∴BF =2(﹣)=﹣3, 在△BFM 中,∵∠AFB =30°,∴BM =12BF ; ②如图3所示:作BM ⊥AE 于M ,当A 、E 、F 三点共线时,同(2)得:AE=62+23,BF=36+3,则BM=12BF=363+;综上所述,当A、E、F三点共线时,点B到直线AE的距离为363±.【点睛】本题考察正方形的性质和矩形的性质以及三点共线,熟练掌握正方形的性质和矩形的性质,知道分类讨论三点共线问题是解题的关键.本题属于中等偏难.23.(1)4﹣2;﹣52<x≤2,在数轴上表示见解析【解析】【分析】(1)此题涉及乘方、特殊角的三角函数、负整数指数幂和二次根式的化简,首先针对各知识点进行计算,再计算实数的加减即可;(2)首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【详解】解:(1)原式=4+2×2﹣2×22﹣2=4﹣2;(2)()5231131322x xx x⎧+>-⎪⎨-≤-⎪⎩①②,解①得:x>﹣52,解②得:x≤2,不等式组的解集为:﹣52<x≤2,在数轴上表示为:.【点睛】此题主要考查了解一元一次不等式组,以实数的运算,关键是正确确定两个不等式的解集,掌握特殊角的三角函数值.24.(1)总调查人数是100人;(2)在扇形统计图中“其它”类的圆心角是36°;(3)补全频数分布直方图见解析;(4)估计一下全校课余爱好是阅读的学生约为960人.【解析】【分析】(1)利用参加运动的人数除以其所占的比例即可求得这次调查的总人数;(2)用360°乘以“其它”类的人数所占的百分比即可求解;(3)求得“其它”类的人数、“娱乐”类的人数,补全统计图即可;(4)用总人数乘以课余爱好是阅读的学生人数所占的百分比即可求解.【详解】(1)从条形统计图中得出参加运动的人数为20人,所占的比例为20%,∴总调查人数=20÷20%=100人;(2)参加娱乐的人数=100×40%=40人,从条形统计图中得出参加阅读的人数为30人,∴“其它”类的人数=100﹣40﹣30﹣20=10人,所占比例=10÷100=10%,在扇形统计图中“其它”类的圆心角=360×10%=36°;(3)如图(4)估计一下全校课余爱好是阅读的学生约为3200×30100=960(人).【点睛】本题考查了条形统计图、扇形统计图的应用,从条形统计图、扇形统计图中获取必要的信息是解决问题的关键.25.(1)y=12x1﹣4x+6;(1)D点的坐标为(6,0);(3)存在.当点C的坐标为(4,1)时,△CBD的周长最小【解析】【分析】(1)只需运用待定系数法就可求出二次函数的解析式;(1)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D 的坐标;(3)连接CA ,由于BD 是定值,使得△CBD 的周长最小,只需CD+CB 最小,根据抛物线是轴对称图形可得CA=CD ,只需CA+CB 最小,根据“两点之间,线段最短”可得:当点A 、C 、B 三点共线时,CA+CB 最小,只需用待定系数法求出直线AB 的解析式,就可得到点C 的坐标.【详解】(1)把A (1,0),B (8,6)代入212y x bx c =++,得 14202164862b c b c ⎧⨯++=⎪⎪⎨⎪⨯++=⎪⎩ 解得:46b c =-⎧⎨=⎩ ∴二次函数的解析式为21462y x x =+﹣; (1)由2211464222y x x x =+=﹣(﹣)﹣,得 二次函数图象的顶点坐标为(4,﹣1).令y=0,得214602x x +=﹣, 解得:x 1=1,x 1=6,∴D 点的坐标为(6,0);(3)二次函数的对称轴上存在一点C ,使得CBD V 的周长最小.连接CA ,如图,∵点C 在二次函数的对称轴x=4上,∴x C =4,CA=CD ,∴CBD V 的周长=CD+CB+BD=CA+CB+BD ,根据“两点之间,线段最短”,可得当点A 、C 、B 三点共线时,CA+CB 最小,此时,由于BD 是定值,因此CBD V 的周长最小.设直线AB 的解析式为y=mx+n ,把A (1,0)、B (8,6)代入y=mx+n ,得208m n m n +=⎧⎨+=⎩ 解得:12m n =⎧⎨=-⎩∴直线AB 的解析式为y=x ﹣1.当x=4时,y=4﹣1=1,∴当二次函数的对称轴上点C 的坐标为(4,1)时,CBD V 的周长最小.【点睛】本题考查了(1)二次函数综合题;(1)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短.26.x=12,x=﹣2 【解析】【分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】3221x x x=+-, 则2x (x+1)=3(1﹣x ),2x 2+5x ﹣3=0,(2x ﹣1)(x+3)=0,解得:x 1=12,x 2=﹣3, 检验:当x=12,x=﹣2时,2(x+1)(1﹣x )均不等于0, 故x=12,x=﹣2都是原方程的解. 【点睛】本题考查解分式方程的能力.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根;(3)去分母时要注意符号的变化.27.(1)11;(2)y =3.6x+90;(3)该市18岁男生年龄组的平均身高大约是174cm 左右.【解析】【分析】(1)根据统计图仔细观察即可得出结果(2)先设函数表达式,选取两个点带入求值即可(3)先设函数表达式,选取两个点带入求值,把x 18=带入预测即可.【详解】解:(1)由统计图可得,该市男学生的平均身高从 11 岁开始增加特别迅速,故答案为:11;(2)设直线AB 所对应的函数表达式y kx b =,+ ∵图象经过点7115.211129.6(,)、(,),则115.27129.611k b k b =+⎧⎨=+⎩, 解得k 3.6b 90=⎧⎨=⎩. 即直线AB 所对应的函数表达式:y 3.6x 90+=;(3)设直线CD 所对应的函数表达式为:y mx n +=,135.612154.815m+n m n =+⎧⎨=⎩,得 6.458.8m n =⎧⎨=⎩, 即直线CD 所对应的函数表达式为:y 6.4x 58.8=,+ 把x 18=代入y 6.4x 58.8+=得y 174=, 即该市18岁男生年龄组的平均身高大约是174cm 左右.【点睛】此题重点考察学生对统计图和一次函数的应用,熟练掌握一次函数表达式的求法是解题的关键.。
江苏省淮安市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.对于不等式组1561 33 3(1)51x xx x⎧-≤-⎪⎨⎪-<-⎩,下列说法正确的是()A.此不等式组的正整数解为1,2,3B.此不等式组的解集为716x-<≤C.此不等式组有5个整数解D.此不等式组无解2.下列实数中,有理数是()A.2B.2.1&C.πD.533.反比例函数y=mx的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h<k;④若点P(x,y)在上,则点P′(﹣x,﹣y)也在图象.其中正确结论的个数是( )A.1 B.2 C.3 D.44.下列运算正确的是()A.a2+a3=a5B.(a3)2÷a6=1 C.a2•a3=a6D.(+)2=55.二次函数2y ax bx c=++的图象如图所示,则一次函数24y bx b ac=+-与反比例函数a b cyx++=在同一坐标系内的图象大致为( )A.B.C.D.6.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=1.则∠BDC的度数是()A.15°B.30°C.45°D.60°7.在Rt△ABC中,∠C=90°,如果sinA=12,那么sinB的值是()A.32B.12C.2D.228.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是()A.28 B.29 C.30 D.319.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.810.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正确的是()A.①②③④B.②④C.①②③D.①③④11.|﹣3|=()A.13B.﹣13C.3 D.﹣312.如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为()A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边AB=5,则它的周长等于_____.14.如图所示,点C 在反比例函数k y (x 0)x=>的图象上,过点C 的直线与x 轴、y 轴分别交于点A 、B ,且AB BC =,已知AOB V 的面积为1,则k 的值为______.15.如图,小强和小华共同站在路灯下,小强的身高EF =1.8m ,小华的身高MN =1.5m ,他们的影子恰巧等于自己的身高,即BF =1.8m ,CN =1.5m ,且两人相距4.7m ,则路灯AD 的高度是___.16.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC“先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC 的顶点C 的坐标为_____.17.已知,在Rt △ABC 中,∠C=90°,AC=9,BC=12,点 D 、E 分别在边AC 、BC 上,且CD:CE=3︰1.将△CDE 绕点D 顺时针旋转,当点C 落在线段DE 上的点 F 处时,BF 恰好是∠ABC 的平分线,此时线段CD的长是________.18.分解因式:a2-2ab+b2-1=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)20.(6分)计算:4cos30°+|3﹣12|﹣(12)﹣1+(π﹣2018)021.(6分)计算:(-1)-1-27+12⎛⎫-⎪⎝⎭+|1-33|22.(8分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.23.(8分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图.(1)测试不合格人数的中位数是.(2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;(3)在(2)的条件下补全条形统计图和扇形统计图.24.(10分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.25.(10分)解方程:(x﹣3)(x﹣2)﹣4=1.26.(12分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m³)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m³)与时间(天)的关系如图中线段l2所示(不考虑其他因素).(1)求原有蓄水量y1(万m³)与时间(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y万(万m³)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m³为严重干旱,直接写出发生严重干旱时x的范围.27.(12分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.若苗圃园的面积为72平方米,求x;若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】解:1561333(1)51x x x x ⎧-≤-⎪⎨⎪-<-⎩①②,解①得x≤72,解②得x >﹣1,所以不等式组的解集为﹣1<x≤72,所以不等式组的整数解为1,2,1.故选A .点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.2.B【解析】【分析】实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,π等,很容易选择.【详解】A 、二次根2不能正好开方,即为无理数,故本选项错误,B 、无限循环小数为有理数,符合;C 、π为无理数,故本选项错误;D、不能正好开方,即为无理数,故本选项错误;故选B.【点睛】本题考查的知识点是实数范围内的有理数的判断,解题关键是从实际出发有理数有分数,自然数等,无理数有π、根式下开不尽的从而得到了答案.3.B【解析】【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【详解】解:∵反比例函数的图象位于一三象限,∴m >0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y 随x 的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y =xm ,得到h =﹣m ,2k =m , ∵m >0∴h <k故③正确;将P(x ,y)代入y =x m 得到m =xy ,将P′(﹣x ,﹣y)代入y =xm 得到m =xy , 故P(x ,y)在图象上,则P′(﹣x ,﹣y)也在图象上故④正确,故选:B .【点睛】本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键. 4.B【解析】【分析】利用合并同类项对A 进行判断;根据幂的乘方和同底数幂的除法对B 进行判断;根据同底数幂的乘法法则对C 进行判断;利用完全平方公式对D 进行判断.【详解】解:A 、a 2与a 3不能合并,所以A 选项错误;B 、原式=a 6÷a 6=1,所以A 选项正确;C 、原式=a 5,所以C 选项错误;D 、原式=2+2+3=5+2,所以D 选项错误. 故选:B .【点睛】本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a>0,∵对称轴为直线02b x a=->, ∴b<0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x=1时y=a+b+c<0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键. 6.B【解析】【分析】只要证明△OCB 是等边三角形,可得∠CDB=12∠COB 即可解决问题. 【详解】如图,连接OC ,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB 是等边三角形,∴∠COB=60°,∴∠CDB=12∠COB=30°, 故选B .【点睛】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.7.A【解析】【分析】【详解】∵Rt△ABC中,∠C=90°,sinA=12,∴=,∴∠A+∠B=90°,∴故选A.8.C【解析】【分析】根据中位数的定义即可解答.【详解】解:把这些数从小到大排列为:28,29,29,29,31,31,31,31,最中间的两个数的平均数是:29+312=30,则这组数据的中位数是30;故本题答案为:C.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.9.C【解析】【详解】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得AB DEBC EF=,即123EF =,解得EF=6,故选C.10.A【解析】分析:只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;详解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正确,故选A.点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.11.C【解析】【分析】根据绝对值的定义解答即可.【详解】|-3|=3故选:C【点睛】本题考查的是绝对值,理解绝对值的定义是关键.12.A【解析】【分析】过O作OC⊥AB于C,过N作ND⊥OA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=,求出ON,在Rt△NDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tan∠AON=求出即可.【详解】过O作OC⊥AB于C,过N作ND⊥OA于D,∵N在直线y=x+3上,∴设N的坐标是(x,x+3),则DN=x+3,OD=-x,y=x+3,当x=0时,y=3,当y=0时,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,∴3×4=5OC,OC=,∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=,∴ON=,在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(x+3)2+(-x)2=()2,解得:x1=-,x2=,∵N 在第二象限, ∴x 只能是-,x+3=,即ND=,OD=,tan ∠AON=.故选A . 【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.52 . 【解析】 【分析】分两种情况讨论:①Rt △ABC 中,CD ⊥AB ,CD=12AB=52;②Rt △ABC 中,AC=12BC ,分别依据勾股定理和三角形的面积公式,即可得到该三角形的周长为55 【详解】由题意可知,存在以下两种情况:(1)当一条直角边是另一条直角边的一半时,这个直角三角形是半高三角形,此时设较短的直角边为a ,则较长的直角边为2a ,由勾股定理可得:222(2)5a a +=,解得:5a =,55 ∴此时直角三角形的周长为:535+;(2)当斜边上的高是斜边的一半是,这个直角三角形是半高三角形,此时设两直角边分别为x 、y , 这有题意可得:①2225x y +=,②S △=1155222xy =⨯⨯, ∴③225xy =,由①+③得:22250x xy y ++=,即2()50x y +=, ∴52x y +=∴此时这个直角三角形的周长为:综上所述,这个半高直角三角形的周长为:5+或故答案为5+【点睛】(1)读懂题意,弄清“半高三角形”的含义是解题的基础;(2)根据题意,若直角三角形是“半高三角形”,则存在两种情况:①一条直角边是另一条直角边的一半;②斜边上的高是斜边的一半;解题时这两种情况都要讨论,不要忽略了其中一种. 14.1 【解析】 【分析】根据题意可以设出点A 的坐标,从而以得到点C 和点B 的坐标,再根据AOB V 的面积为1,即可求得k 的值. 【详解】解:设点A 的坐标为()a,0-,Q 过点C 的直线与x 轴,y 轴分别交于点A ,B ,且AB BC =,AOB V 的面积为1,∴点k C a,a ⎛⎫ ⎪⎝⎭,∴点B 的坐标为k 0,2a ⎛⎫⎪⎝⎭,1k a 122a∴⋅⋅=, 解得,k 4=, 故答案为:1. 【点睛】本题考查了反比例函数系数k 的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 15.4m 【解析】 【分析】设路灯的高度为x(m),根据题意可得△BEF ∽△BAD ,再利用相似三角形的对应边正比例整理得DF=x ﹣1.8,同理可得DN=x ﹣1.5,因为两人相距4.7m ,可得到关于x 的一元一次方程,然后求解方程即可. 【详解】设路灯的高度为x(m),∵EF∥AD,∴△BEF∽△BAD,∴,即,解得:DF=x﹣1.8,∵MN∥AD,∴△CMN∽△CAD,∴,即,解得:DN=x﹣1.5,∵两人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路灯AD的高度是4m.16.(﹣20163+1)【解析】【分析】据轴对称判断出点C变换后在x轴上方,然后求出点C纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.【详解】解:∵△ABC是等边三角形AB=3﹣1=2,∴点C到x轴的距离为1+2×33,横坐标为2,∴C(23+1),第2018次变换后的三角形在x轴上方,点C3,横坐标为2﹣2018×1=﹣2016,所以,点C的对应点C′的坐标是(﹣2016,3+1)故答案为:(﹣2016,3+1)【点睛】本题考查坐标与图形变化,平移和轴对称变换,等边三角形的性质,读懂题目信息,确定出连续2018次这样的变换得到三角形在x轴上方是解题的关键.17.2【解析】分析:设CD=3x,则CE=1x,BE=12﹣1x,依据∠EBF=∠EFB,可得EF=BE=12﹣1x,由旋转可得DF=CD=3x,再根据Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(1x)2=(3x+12﹣1x)2,进而得出CD=2.详解:如图所示,设CD=3x,则CE=1x,BE=12﹣1x.∵CD CACE CB=34,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣1x,由旋转可得DF=CD=3x.在Rt△DCE 中,∵CD2+CE2=DE2,∴(3x)2+(1x)2=(3x+12﹣1x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=2.故答案为2.点睛:本题考查了相似三角形的判定与性质,勾股定理以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.18.(a-b+1)(a-b-1)【解析】【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a2-2ab+b2可组成完全平方公式,再和最后一项用平方差公式分解.【详解】a2-2ab+b2-1,=(a-b)2-1,=(a-b+1)(a-b-1).【点睛】本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题前三项可组成完全平方公式,可把前三项分为一组,分解一定要彻底.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.4 9【解析】【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】列表如下:A1A2 BA1(A1,A1)(A2,A1)(B,A1)A2(A1,A2)(A2,A2)(B,A2)B (A1,B)(A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为49.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.134-【解析】【分析】直接利用特殊角的三角函数值和负指数幂的性质、零指数幂的性质、二次根式的性质分别化简得出答案.【详解】原式=1×+2﹣3﹣2+1=2+2﹣1=1﹣1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.21.-1【解析】试题分析:根据运算顺序先分别进行负指数幂的计算、二次根式的化简、0次幂的运算、绝对值的化简,然后再进行加减法运算即可.试题解析:原式=-1-331331+=-1.22.(1)不可能;(2)1 6 .【解析】【分析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=21 126.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式mn计算事件A或事件B的概率.23.(1)1;(2)这两次测试的平均增长率为20%;(3)55%.【解析】【分析】(1)将四次测试结果排序,结合中位数的定义即可求出结论;(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,解之取其中的正值即可得出结论;(3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数÷参加测试的总人数×100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充完整,此题得解.【详解】解:(1)将四次测试结果排序,得:30,40,50,60,∴测试不合格人数的中位数是(40+50)÷2=1.故答案为1;(2)∵每次测试不合格人数的平均数为(60+40+30+50)÷4=1(人),∴第四次测试合格人数为1×2﹣18=72(人).设这两次测试的平均增长率为x,根据题意得:50(1+x)2=72,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),∴这两次测试的平均增长率为20%;(3)50×(1+20%)=60(人),(60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%=1%,1﹣1%=55%.补全条形统计图与扇形统计图如解图所示.【点睛】本题考查了一元二次方程的应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据.24.证明见解析.【解析】【分析】利用三角形中位线定理判定OE∥BC,且OE=12BC.结合已知条件CF=12BC,则OE//CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.【详解】∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=12 BC.又∵CF=12BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.【点睛】本题考查了平行四边形的性质和三角形中位线定理.此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理.熟记相关定理并能应用是解题的关键.25.x15+17x2517【解析】试题分析:方程整理为一般形式,找出a ,b ,c 的值,代入求根公式即可求出解. 试题解析:解:方程化为2520x x -+=,1a =,5b =-,2c =.224(5)41217b ac ∆=-=--⨯⨯=>1.x ===.即152x +=,252x =. 26.(1)y 1=-20x+1200, 800;(2)15≤x≤40. 【解析】 【分析】(1)根据图中的已知点用待定系数法求出一次函数解析式(2)设y 2=kx+b ,把(20,0)和(60,1000)代入求出解析式,在已知范围内求出解即可. 【详解】解:(1)设y 1=kx+b ,把(0,1200)和(60,0)代入得1200600b k b =⎧⎨+=⎩解得201200k b =-⎧⎨=⎩,所以y 1=-20x+1200,当x=20时,y 1=-20×20+1200=800, (2)设y 2=kx+b ,把(20,0)和(60,1000)代入得200601000k b k b +=⎧⎨+=⎩则25500k b =⎧⎨=-⎩,所以y 2=25x-500,当0≤x≤20时,y=-20x+1200,当20<x≤60时,y=y 1+y 2=-20x+1200+25x-500=5x+700, 由题意2012009005700900x x -+≤⎧⎨+≤⎩解得该不等式组的解集为15≤x≤40 所以发生严重干旱时x 的范围为15≤x≤40. 【点睛】此题重点考察学生对一次函数和一元一次不等式的实际应用能力,掌握一次函数和一元一次不等式的解法是解题的关键.27.(1)2(2)当x=4时,y 最小=88平方米 【解析】(1)根据题意得方程解即可;(2)设苗圃园的面积为y ,根据题意得到二次函数的解析式y=x (31-2x )=-2x 2+31x ,根据二次函数的性质求解即可.解: (1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3(舍去),x2=2.(2)依题意,得8≤31-2x≤3.解得6≤x≤4.面积S=x(31-2x)=-2(x-152)2+2252(6≤x≤4).①当x=152时,S有最大值,S最大=2252;②当x=4时,S有最小值,S最小=4×(31-22)=88“点睛”此题考查了二次函数、一元二次不等式的实际应用问题,解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.。
江苏省淮安市2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>02.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB 绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为()A.3π2B.πC.2πD.3π3.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣54.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个5.如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是()A.①②③B.①②④C.②③④D.③④⑤6.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.125B.95C.65D.1657.3-的相反数是()A.33B.-33C.3D.3-8.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.9.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=13C.a=1 D.a=210.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD平分∠BAC,则四边形AEDF是矩形D.若AD⊥BC且AB=AC,则四边形AEDF是菱形11.下列标志中,可以看作是轴对称图形的是()A.B.C.D.12.关于的一元二次方程有两个不相等的实数根,则的取值范围为()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为_____.14.已知关于x的二次函数y=x2-2x-2,当a≤x≤a+2时,函数有最大值1,则a的值为________.15.如图,这是怀柔区部分景点的分布图,若表示百泉山风景区的点的坐标为()0,1,表示慕田峪长城的点的坐标为()5,1--,则表示雁栖湖的点的坐标为______.16.甲、乙两点在边长为100m 的正方形ABCD 上按顺时针方向运动,甲的速度为5m/秒,乙的速度为10m/秒,甲从A 点出发,乙从CD 边的中点出发,则经过__秒,甲乙两点第一次在同一边上. 17.如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.18.A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,BD 为△ABC 外接圆⊙O 的直径,且∠BAE=∠C .求证:AE 与⊙O 相切于点A ;若AE ∥BC ,7,2,求AD 的长.20.(6分)先化简,再求值:(1a ﹣a )÷(1+212a a ),其中a 是不等式﹣2 <a <2的整数解. 21.(6分)已知抛物线y =ax 2+(3b+1)x+b ﹣3(a >0),若存在实数m ,使得点P (m ,m )在该抛物线上,我们称点P (m ,m )是这个抛物线上的一个“和谐点”.(1)当a =2,b =1时,求该抛物线的“和谐点”;(2)若对于任意实数b ,抛物线上恒有两个不同的“和谐点”A 、B .①求实数a 的取值范围;②若点A ,B 关于直线y =﹣x ﹣(21a +1)对称,求实数b 的最小值. 22.(8分)为上标保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:设从甲仓库运送到A 港口的物资为x 吨,求总运费y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;求出最低费用,并说明费用最低时的调配方案.23.(8分)如图,AB 是⊙O 的直径,点E 是上的一点,∠DBC=∠BED .(1)请判断直线BC 与⊙O 的位置关系,并说明理由;(2)已知AD=5,CD=4,求BC 的长.24.(10分)如图,正方形ABCD 的边长为2,BC 边在x 轴上,BC 的中点与原点O 重合,过定点M(-2,0)与动点P(0,t)的直线MP 记作l.(1)若l的解析式为y=2x+4,判断此时点A是否在直线l上,并说明理由;(2)当直线l与AD边有公共点时,求t的取值范围.25.(10分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x()件.(1)分别直接写出优惠方案一购买费用(元)、优惠方案二购买费用(元)与所买乙种商品x(件)之间的函数关系式;(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.26.(12分)如图,在矩形ABCD中,AB=3,AD=4,P沿射线BD运动,连接AP,将线段AP绕点P 顺时针旋转90°得线段PQ.(1)当点Q落到AD上时,∠PAB=____°,PA=_____,»AQ长为_____;(2)当AP⊥BD时,记此时点P为P0,点Q为Q0,移动点P的位置,求∠QQ0D的大小;(3)在点P运动中,当以点Q为圆心,23BP为半径的圆与直线BD相切时,求BP的长度;(4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果.27.(12分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(-3,m+8),B(n,-6)两点.求一次函数与反比例函数的解析式;求△AOB的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.【详解】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.【点睛】本题考查了有理数大小的比较、有理数的运算,绝对值的性质,熟练掌握相关的知识是解题的关键2.A【解析】【分析】根据旋转的性质和弧长公式解答即可.【详解】解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,∴∠AOC=90°,∵OC=3,∴点A经过的路径弧AC的长=903180π⨯=3π2,故选:A.【点睛】此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.3.B【解析】【分析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,∴-2+m=−31,解得,m=-1,故选B.4.C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.故选:C.【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.5.C【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】解:①由图象可知:a>0,c<0,∴ac<0,故①错误;②由于对称轴可知:b2a-<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤当x>b2a-时,y随着x的增大而增大,故⑤错误;故选:C.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.6.A【解析】【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【详解】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM= 22AB BM-= 2253-=4,又S△AMC=12MN•AC=12AM•MC,∴MN=·AM CM AC= 125.故选A.【点睛】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.7.C【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可.【详解】所以故选C.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.8.B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得出答案.【详解】A.不是轴对称图形,故本选项错误;B.是轴对称图形,故本选项正确;C.不是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项错误.故选B.9.A【解析】【分析】将各选项中所给a的值代入命题“对于任意实数a,a a>-”中验证即可作出判断.【详解】(1)当2a =-时,22?(2)2a a =-=-=--=,,此时a a =-, ∴当2a =-时,能说明命题“对于任意实数a ,a a >- ”是假命题,故可以选A ;(2)当13a =时,11 33a a =-=-,,此时a a >-, ∴当13a =时,不能说明命题“对于任意实数a ,a a >- ”是假命题,故不能B ; (3)当1a =时,1?1a a =-=-,,此时a a >-, ∴当1a =时,不能说明命题“对于任意实数a ,a a >- ”是假命题,故不能C ;(4)当a =?a a =-=a a >-,∴当a =“对于任意实数a ,a a >- ”是假命题,故不能D ; 故选A.【点睛】熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键. 10.C【解析】A 选项,∵在△ABC 中,点D 在BC 上,DE ∥AC ,DF ∥AB ,∴DE ∥AF ,DF ∥AE ,∴四边形AEDF 是平行四边形;即A 正确;B 选项,∵四边形AEDF 是平行四边形,∠BAC=90°,∴四边形AEDF 是矩形;即B 正确;C 选项,因为添加条件“AD 平分∠BAC”结合四边形AEDF 是平行四边形只能证明四边形AEDF 是菱形,而不能证明四边形AEDF 是矩形;所以C 错误;D 选项,因为由添加的条件“AB=AC ,AD ⊥BC”可证明AD 平分∠BAC ,从而可通过证∠EAD=∠CAD=∠EDA 证得AE=DE ,结合四边形AEDF 是平行四边形即可得到四边形AEDF 是菱形,所以D 正确.故选C.11.D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、不是轴对称图形,是中心对称图形,不符合题意;B 、不是轴对称图形,是中心对称图形,不符合题意;C 、不是轴对称图形,是中心对称图形,不符合题意;D 、是轴对称图形,符合题意.故选D .【点睛】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.12.B【解析】试题分析:根据题意得△=32﹣4m >0,解得m <.故选B .考点:根的判别式.点睛:本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的根的判别式△=b 2-4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】【分析】设两个正方形的边长是x 、y (x <y ),得出方程x 2=1,y 2=9,求出x 3y =1,代入阴影部分的面积是(y ﹣x )x 求出即可.【详解】设两个正方形的边长是x 、y (x <y ),则x 2=1,y 2=9,x 3=y =1,则阴影部分的面积是(y ﹣x )x =(13333-=)1.故答案为31.【点睛】本题考查了二次根式的应用,主要考查学生的计算能力.14.-1或1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x 的值,结合当a≤x≤a+2时函数有最大值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】解:当y=1时,x2-2x-2=1,解得:x1=-1,x2=3,∵当a≤x≤a+2时,函数有最大值1,∴a=-1或a+2=3,即a=1.故答案为-1或1.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.1,3-15.()【解析】【分析】直接利用已知点坐标得出原点位置,进而得出答案.【详解】解:如图所示:雁栖湖的点的坐标为:(1,-3).故答案为(1,-3).【点睛】本题考查坐标确定位置,正确得出原点的位置是解题关键.16.1【解析】试题分析:设x秒时,甲乙两点相遇.根据题意得:10x-5x=250,解得:x=50,相遇时甲走了250m,乙走了500米,则根据题意推得第一次在同一边上时可以为1.17.15°、30°、60°、120°、150°、165°【解析】分析:根据CD∥AB,CE∥AB和DE∥AB三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.详解:①、∵CD∥AB,∴∠ACD=∠A=30°,∵∠ACD+∠ACE=∠DCE=90°,∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD∥AB时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如图1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE∥AB时,∠ECB=∠B=60°.③如图2,DE∥AB时,延长CD交AB于F,则∠BFC=∠D=45°,在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.18.16 5【解析】【分析】由图象得出解析式后联立方程组解答即可.【详解】由图象可得:y甲=4t(0≤t≤5);y乙=()() 2112 916(24)t tt t<⎧-≤≤⎨-≤⎩;由方程组4916y ty t⎧⎨-⎩==,解得t=165.故答案为165.【点睛】此题考查一次函数的应用,关键是由图象得出解析式解答.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2).【解析】【分析】(1)如图,连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA⊥BC,由垂径定理得:»»AB AC=,FB=12BC,根据勾股定理计算AF、OB、AD的长即可.【详解】(1)如图,连接OA ,交BC 于F ,则OA=OB ,∴∠D=∠DAO ,∵∠D=∠C ,∴∠C=∠DAO ,∵∠BAE=∠C ,∴∠BAE=∠DAO ,∵BD 是⊙O 的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE ⊥OA ,∴AE 与⊙O 相切于点A ;(2)∵AE ∥BC ,AE ⊥OA ,∴OA ⊥BC ,∴»»AB AC =,FB=12BC , ∴AB=AC ,∵7,2,∴72,在Rt △ABF 中,()()22227-,在Rt △OFB 中,OB 2=BF 2+(OB ﹣AF )2,∴OB=4, ∴BD=8,∴在Rt △ABD 中,22648214BD AB -=-=【点睛】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.20.()211a a -+,1.【解析】【分析】首先化简(1a ﹣a )÷(1+212a a +),然后根据a <a 的整数解,求出a 的值,再把求出的a 的值代入化简后的算式,求出算式的值是多少即可.【详解】解:(1a ﹣a )÷(1+212a a +)=21a a -×()221a a +=()211a a -+,∵a <a 的整数解,∴a=﹣1,1,1,∵a≠1,a+1≠1,∴a≠1,﹣1,∴a=1,当a=1时,原式=()21111⨯-+=1.21.(1)(11,22)或(﹣1,﹣1);(1)①2<a <17②b 的最小值是13【解析】【分析】 (1)把x=y=m ,a=1,b=1代入函数解析式,列出方程,通过解方程求得m 的值即可;(1)抛物线上恒有两个不同的“和谐点”A 、B .则关于m 的方程m=am 1+(3b+1)m+b-3的根的判别式△=9b 1-4ab+11a .①令y=9b 1-4ab+11a ,对于任意实数b ,均有y >2,所以根据二次函数y=9b 1-4ab+11的图象性质解答; ②利用二次函数图象的对称性质解答即可.【详解】(1)当a =1,b =1时,m =1m 1+4m+1﹣4,解得m =12或m =﹣1. 所以点P 的坐标是(12,12)或(﹣1,﹣1); (1)m =am 1+(3b+1)m+b ﹣3,△=9b 1﹣4ab+11a .①令y =9b 1﹣4ab+11a ,对于任意实数b ,均有y >2,也就是说抛物线y =9b 1﹣4ab+11的图象都在b 轴(横轴)上方.∴△=(﹣4a )1﹣4×9×11a <2.∴2<a <17.②由“和谐点”定义可设A (x 1,y 1),B (x 1,y 1),则x 1,x 1是ax 1+(3b+1)x+b ﹣3=2的两不等实根,123122x x b a ++=-. ∴线段AB 的中点坐标是:(﹣312b a +,﹣312b a +).代入对称轴y =x ﹣(21a +1),得 ﹣312b a +=312b a +﹣(21a+1), ∴3b+1=1a+a . ∵a >2,1a >2,a•1a =1为定值,∴3b+1=1a =1, ∴b≥13. ∴b 的最小值是13. 【点睛】此题考查了二次函数综合题,其中涉及到了二次函数图象上点的坐标特征,抛物线与x 轴的交点,一元二次方程与二次函数解析式间的关系,二次函数图象的性质等知识点,难度较大,解题时,掌握“和谐点”的定义是解题的难点.22.(1)y=﹣8x+2560(30≤x≤1);(2)把甲仓库的全部运往A 港口,再从乙仓库运20吨往A 港口,乙仓库的余下的全部运往B 港口.【解析】试题分析:(1)设从甲仓库运x 吨往A 港口,根据题意得从甲仓库运往B 港口的有(1﹣x )吨,从乙仓库运往A 港口的有吨,运往B 港口的有50﹣(1﹣x )=(x ﹣30)吨,再由等量关系:总运费=甲仓库运往A 港口的费用+甲仓库运往B 港口的费用+乙仓库运往A 港口的费用+乙仓库运往B 港口的费用列式并化简,即可得总运费y (元)与x (吨)之间的函数关系式;由题意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x 的取值;(2)因为所得的函数为一次函数,由增减性可知:y 随x 增大而减少,则当x=1时,y 最小,并求出最小值,写出运输方案.试题解析:(1)设从甲仓库运x 吨往A 港口,则从甲仓库运往B 港口的有(1﹣x )吨,从乙仓库运往A 港口的有吨,运往B 港口的有50﹣(1﹣x )=(x ﹣30)吨,所以y=14x+20+10(1﹣x )+8(x ﹣30)=﹣8x+2560,x 的取值范围是30≤x≤1.(2)由(1)得y=﹣8x+2560y 随x 增大而减少,所以当x=1时总运费最小,当x=1时,y=﹣8×1+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.考点:一次函数的应用.23.(1)BC与相切;理由见解析;(2)BC=6【解析】试题分析:(1)BC与相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB为直径可得∠ADB=90°,从而可得∠CBO=90°,继而可得BC与相切(2)由AB为直径可得∠ADB=90°,从而可得∠BDC=90°,由BC与相切,可得∠CBO=90°,从而可得∠BDC=∠CBO,可得,所以得,得,由可得AC=9,从而可得BC=6(BC="-6" 舍去)试题解析:(1)BC与相切;∵,∴∠BAD=∠BED ,∵∠DBC=∠BED,∴∠BAD=∠DBC,∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴点B在上,∴BC与相切(2)∵AB为直径,∴∠ADB=90°,∴∠BDC=90°,∵BC与相切,∴∠CBO=90°,∴∠BDC=∠CBO,∴,∴,∴,∵,∴AC=9,∴,∴BC=6(BC="-6" 舍去)考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.勾股定理.24.(1)点A在直线l上,理由见解析;(2)43≤t≤4.【解析】【分析】(1)由题意得点B、A坐标,把点A的横坐标x=-1代入解析式y=2x+4得出y的值,即可得出点A 在直线l上;(2)当直线l经过点D时,设l的解析式代入数值解出即可【详解】(1)此时点A在直线l上.∵BC=AB=2,点O为BC中点,∴点B(-1,0),A(-1,2).把点A的横坐标x=-1代入解析式y=2x+4,得y=2,等于点A的纵坐标2,∴此时点A在直线l上.(2)由题意可得,点D(1,2),及点M(-2,0),当直线l经过点D时,设l的解析式为y=kx+t(k≠0),∴解得由(1)知,当直线l经过点A时,t=4.∴当直线l与AD边有公共点时,t的取值范围是≤t≤4.【点睛】本题考查的知识点是一次函数综合题,解题的关键是熟练的掌握一次函数综合题.25.(1)y1=80x+4400;y2=64x+4800;(2)当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.【解析】(1)根据方案即可列出函数关系式;(2)根据题意建立w与m之间的关系式,再根据一次函数的增减性即可得出答案.解:(1)得:;得:;(2),因为w是m的一次函数,k=-4<0,所以w随的增加而减小,m当m=20时,w取得最小值.即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品.26. (1)45,1227,62π;(2)满足条件的∠QQ 0D 为45°或135°;(3)BP 的长为275或2725;(4)7210≤CQ≤7. 【解析】【分析】 (1)由已知,可知△APQ 为等腰直角三角形,可得∠PAB ,再利用三角形相似可得PA ,及弧AQ 的长度;(2)分点Q 在BD 上方和下方的情况讨论求解即可.(3)分别讨论点Q 在BD 上方和下方的情况,利用切线性质,在由(2)用BP 0表示BP ,由射影定理计算即可;(4)由(2)可知,点Q 在过点Q o ,且与BD 夹角为45°的线段EF 上运动,有图形可知,当点Q 运动到点E 时,CQ 最长为7,再由垂线段最短,应用面积法求CQ 最小值.【详解】解:(1)如图,过点P 做PE ⊥AD 于点E由已知,AP =PQ ,∠APQ =90°∴△APQ 为等腰直角三角形∴∠PAQ =∠PAB =45°设PE =x ,则AE =x ,DE =4﹣x∵PE ∥AB∴△DEP ∽△DAB∴DE DA =PE AB ∴4-x 4=3x 解得x =127∴PA 2PE =27∴弧AQ 的长为1412262. 故答案为45,2762. (2)如图,过点Q 做QF ⊥BD 于点F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.当点Q在BD的右下方时,同理可得∠PQ0Q=45°,此时∠QQ0D=135°,综上所述,满足条件的∠QQ0D为45°或135°.(3)如图当点Q直线BD上方,当以点Q为圆心,23BP为半径的圆与直线BD相切时过点Q做QF⊥BD于点F,则QF=23BP由(2)可知,PP0=23BP∴BP0=13BP∵AB=3,AD=4 ∴BD=5∵△ABP0∽△DBA ∴AB2=BP0•BD∴9=13BP×5∴BP=27 5同理,当点Q位于BD下方时,可求得BP=27 25故BP的长为275或2725(4)由(2)可知∠QQ0D=45°则如图,点Q在过点Q0,且与BD夹角为45°的线段EF上运动,当点P与点B重合时,点Q与点F重合,此时,CF=4﹣3=1当点P与点D重合时,点Q与点E重合,此时,CE=4+3=7∴EF22CF+CE2217+2过点C做CH⊥EF于点H由面积法可知CH=FC ECEF•52=7210∴CQ的取值范围为:210≤CQ≤7【点睛】本题是几何综合题,考查了三角形全等、勾股定理、切线性质以及三角形相似的相关知识,应用了分类讨论和数形结合的数学思想.27.(1)y=-6x,y=-2x-1(2)1【解析】试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.试题解析:(1)将A(﹣3,m+8)代入反比例函数y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函数解析式为y=﹣2x﹣1;(2)设AB与x轴相交于点C,令﹣2x﹣1=0解得x=﹣2,所以,点C的坐标为(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1,=3+1,=1.考点:反比例函数与一次函数的交点问题.。
2020年江苏省淮安市中考数学模拟试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.抛掷一枚普通的骰子(各个面分别标 12、3、4、5、6),朝上一面是偶数的概率为( ) A .16 B .12 C .13 D .142.下列说法中正确的个数有( )①直径不是弦②三点确定一个圆③圆是轴对称图形,任何一条直径所在直线都是它的对称轴④相等的圆心角所对的弧相等,所对的弦也相等A .1个B .2个C .3个D .4个3.下列图形中的角是圆周角的是( )4.如图所示,能使BF ∥EG 的条件是( )A .∠l=∠3B .∠2=∠4C .∠2=∠3D .∠l=∠45.2006 年 8月超强台风登陆浙江苍南,苍南遭受严重的损失,各方积极投入抢险,抗洪救灾小组A 地段有 28 人,B 地段有 15 入,现又凋来 29 人,分配在 A ,B 两个地段,使A 地段的人是B 地段的 2倍,则调往A ,B 地段的人数分别是( )A .l8 人, 11人B . 24 人,25 人C. 20人 ,9人 D . 14 人,15 人 6.从长度为 1,3,5,7,9 的五条线段中任取三条,组成三角形的机会是( )A . 50%B . 30%C . 10%D . 100% 二、填空题7.直线y=kx-4与y 轴相交所成的锐角的正切值为12,则k 的值为 .8.若a:2=b:3,则b a a += . 9.二次函数2y ax bx c =++图象的一部分如图所示,则a+b= .10.命题“等腰三角形是轴对称图形”的逆命题是 (真或假)命题.11.某地某天的最高气温为8℃,最低气温比最高气温低10℃,则这天此地气温t(℃)的取值范围是 .12.当x 满足 时,分式2136x +的值为负数. 13.a 3·a 3+(a 3)2=________.14.已知4×23m ·44m =29,则m= .15.在下列条件中:①∠A+∠B=∠C ;②∠A ∶∠B ∶∠C=1∶2∶3;③∠A=900-∠B ;④∠A=∠B=12∠C 中,能确定△ABC 是直角三角形的条件有 个. 16.己公路全长为 s(km),骑自行车 t(h)到达,为了提前 1 h 到达,自行车每小时应多走 km.17.某电影院共有座位n 排,已知第一排有座位m 个,后一排的座位总是比前一排多 1个,则电影院中共有座位 个.三、解答题18.如图,⊙O 的直径为 12 cm ,AB 、CD 为两条互相垂直的直径,连结 AD ,求图中阴影部分的面积.19.如图昕示.在四边形ABCD 中,∠A=∠C ,∠B=∠D .求证:AD=BC .20.如图,六边形ABCDEF的每个内角都是120°,AF=AB=2,BC=CD=3,求DE,EF的长.21.用反证法证明命题“三角形中最多有一个角是直角或钝角”时,应假设.22.如图,△ABC中,AC⊥BC,CE⊥AB于点E,AF平分∠CAB交CE于点F,过点F作FD∥BC交AB于点D,求证:AC=AD.23.计算11 (318504)52+3224.解不等式,并把不等式的解在数轴上表示出来:(1)3(3)4(1)2y y -<++;(2)323228x x -≥-25.某包装盒的形状是直四棱柱,底面为长方形,其尺寸如图所示(单位:分米),现要制作1000个这样的包装盒,问至少需要包装材料多少平方米(不计接缝材料).26.若(x+y )2=36,(x -y )2=16,求xy 与x 2+y 2的值.27.已知3x y +=,1xy =,求22x y +,2()x y -的值.28.方程124346m m n x y --+-=是二元一次方程,求 m ,n 的值;若12x =,求相应的 y 值.29.如图,陈华同学想测量一个无法直接测量的深沟的宽度(即图中A 、B 之间的距离),他从点B 出发,沿着与直线AB 成80°角的BC 方向(即∠CBD=80°)前进至C ,在C 处测得∠C=40°,他量出BC 的长为20米,于是就说这深沟的宽度也为20米,你认为陈华同学的说法对吗?你能说出理由吗?30.京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.A5.C6.B二、填空题7.2 8.52 9. -110.假11.-2≤t ≤82x <13.2a 614.117 15. 416.2s t t -17. (1)2n n mn -+三、解答题18.221694AOD S cm ππ=⨯⨯=扇形,20166182A D S cm ∆=⨯⨯=, ∴2(918)S cm π=-阴影19.略20.把边AB ,CD ,EF 向两方延长,构成等边三角形,可得EF=4,DE=121.三角形中至少有两个角不小于90°22.利用“ASA ”证△ACF ≌△ADF ,得AC=AD23.解:原式=÷=÷ 224.(1)y>-15;(2)x ≤412图略 25.520平方米26.5,26.222()27x y x y xy +=+-=,22()()45x y x y xy -=+-=28.m=2,n=7. 当12x =时,98y =- 29.陈华同学的说法正确,理由略30.解:设这次试车时,由北京到天津的平均速度是每小时x 千米,则由天津返回北京的平均速度是每小时(40)x +千米.依题意,得3061(40)602x x +=+. 解得200x =.答:这次试车时,由北京到天津的平均速度是每小时200千米.。
江苏省淮安市2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.计算±81的值为( ) A .±3B .±9C .3D .92.如图所示,ABC △的顶点是正方形网格的格点,则sin A 的值为( )A .12B .5 C .25D .10 3.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .804.如图,平行四边形 ABCD 中, E 为 BC 边上一点,以 AE 为边作正方形AEFG ,若 40BAE ∠=︒,15CEF ∠=︒,则 D ∠的度数是A .65︒B .55︒C .70︒D .75︒5.已知,如图,AB 是⊙O 的直径,点D ,C 在⊙O 上,连接AD 、BD 、DC 、AC ,如果∠BAD =25°,那么∠C 的度数是( )A .75°B .65°C .60°D .50°6.如图,在⊙O 中,直径AB ⊥弦CD ,垂足为M ,则下列结论一定正确的是( )A.AC=CD B.OM=BM C.∠A=12∠ACD D.∠A=12∠BOD7.已知函数()()()()22113{513x xyx x--≤=-->,则使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.38.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,39.已知:如图,在扇形OAB中,110AOB∠=︒,半径18OA=,将扇形OAB沿过点B的直线折叠,点O恰好落在弧AB上的点D处,折痕交OA于点C,则弧AD的长为()A.2πB.3πC.4πD.5π10.如图,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是()A.3 B.4 C.5 D.611.下列方程有实数根的是()A.420x+=B221x-=-C.x+2x−1=0D.111xx x=--12.小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:①小明家距学校4千米;②小明上学所用的时间为12分钟;③小明上坡的速度是0.5千米/分钟;④小明放学回家所用时间为15分钟.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.使x2有意义的x的取值范围是______.14.在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在区域的可能性最大(填A或B或C).15.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.16.如图,已知⊙O1与⊙O2相交于A、B两点,延长连心线O1O2交⊙O2于点P,联结PA、PB,若∠APB=60°,AP=6,那么⊙O2的半径等于________.17.如图,在平行四边ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是(把所有正确结论的序号都填在横线上)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF18.如果75x3n y m+4与﹣3x6y2n是同类项,那么mn的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,A为y轴正半轴上一点,过点A作x轴的平行线,交函数2(0) y xx=<的图象于B点,交函数6(0)y xx=>的图象于C,过C作y轴和平行线交BO的延长线于D.(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;(3)在(1)条件下,四边形AODC的面积为多少?20.(6分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.(1)求证:△ADC∽△CDB;(2)若AC=2,AB=32CD,求⊙O半径.21.(6分)列方程解应用题:某景区一景点要限期完成,甲工程队单独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,则工程期限为多少天?22.(8分)阅读下列材料:材料一:早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验.材料二:以下是某同学根据网上搜集的数据制作的年度中国国家博物馆参观人数及年增长率统计表.年度2013 2014 2015 2016 2017参观人数(人次)7450 0007630 0007290 0007550 0008060 000年增长率(%)38.7 2.4 -4.5 3.6 6.8他还注意到了如下的一则新闻:2018年3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.” 尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.根据以上信息解决下列问题:(1)补全以下两个统计图;(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由.23.(8分)如图,△ABC中,CD是边AB上的高,且AD CDCD BD.求证:△ACD∽△CBD;求∠ACB的大小.24.(10分)某中学为了考察九年级学生的中考体育测试成绩(满分30分),随机抽查了40名学生的成绩(单位:分),得到如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图中m的值为_______________.(2)求这40个样本数据的平均数、众数和中位数:(3)根据样本数据,估计该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生。
2019-2020年淮安市初三中考数学第⼀次模拟试题【含答案】2019-2020年淮安市初三中考数学第⼀次模拟试题【含答案】⼀、选择题(本⼤题共12⼩题,共36.0分)1.下列各组数中结果相同的是()A. 与B. 与C. 与D. 与2.据有关部门统计,2018年“五⼀⼩长假”期间,⼴东各⼤景点共接待游客约14420000⼈次,将数14420000⽤科学记数法表⽰为()A. B. C. D.3.下列计算中,错误的是()A. B.C. D.4.下列分⼦结构模型的平⾯图中,既是轴对称图形⼜是中⼼对称图形的有()A. 1个B. 2个C. 3个D. 4个5.某班班长统计去年1-8⽉“书⾹校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A. 平均数是58B. 众数是42C. 中位数是58D. 每⽉阅读数量超过40的有4个⽉6.在半径为R的圆上依次截取等于R的弦,顺次连接各分点得到的多边形是()A. 正三⾓形B. 正四边形C. 正五边形D. 正六边形7.下列命题错误的是()A. 若⼀个多边形的内⾓和与外⾓和相等,则这个多边形是四边形B. 矩形⼀定有外接圆C. 对⾓线相等的菱形是正⽅形D. ⼀组对边平⾏,另⼀组对边相等的四边形是平⾏四边形8.如图是某⼏何体的三视图,则该⼏何体的表⾯积为()A. B. C. D.9.在排球训练中,甲、⼄、丙三⼈相互传球,由甲开始发球(记作为第⼀次传球),则经过三次传球后,球仍回到甲⼿中的概率是()A. B. C. D.10.运算※按下表定义,例如3※2=1,那么(2※4)※(1※3)=()A. 1B. 2C. 3D. 411.如图,在?ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂⾜为G,若EF=2,则线段CG的长为()A. B. C. D.12.如图,在正⽅形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形=2S△BGE.ECFGA. 4B. 3C. 2D. 1⼆、填空题(本⼤题共4⼩题,共12.0分)13.分解因式:4ax2-ay2=______.14.如图,菱形ABCD的边长为2,∠A=60°,以点B为圆⼼的圆与AD、DC相切,与AB、CB的延长线分别相交于点E、F,则图中阴影部分的⾯积为______.15.如图,已知第⼀象限内的点A在反⽐例函数y=上,第⼆象限的点B在反⽐例函数y=上,且OA⊥OB,cos A=,则k的值为______.16.如图,在四边形纸⽚ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸⽚先沿直线BD对折,再将对折后的图形沿从⼀个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有⼀个是⾯积为2的平⾏四边形,则CD=______.三、计算题(本⼤题共2⼩题,共12.0分)17.先化简,再求值:(-)÷,其中a=.18.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第⼀步,分别以点A、D为圆⼼,以⼤于AD的长为半径在AD两侧作弧,交于两点M、N;第⼆步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,求线段BE的长.四、解答题(本⼤题共5⼩题,共40.0分)19.计算:+tan30°+|1-|-(-)-2.20.将九年级部分男⽣掷实⼼球的成绩进⾏整理,分成5个⼩组(x表⽰成绩,单位:⽶).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E 组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直⽅图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男⽣有多少⼈?其中成绩合格的有多少⼈?(2)这部分男⽣成绩的中位数落在哪⼀组?扇形统计图中D组对应的圆⼼⾓是多少度?(3)要从成绩优秀的学⽣中,随机选出2⼈介绍经验,已知甲、⼄两位同学的成绩均为优秀,求他俩⾄少有1⼈被选中的概率.21.某⼩区准备新建50个停车位,⽤以解决⼩区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该⼩区新建1个地上停车位和1个地下停车位需多少万元?(2)该⼩区的物业部门预计投资⾦额超过12万元⽽不超过13万元,那么共有⼏种建造停车位的⽅案?22.如图,△AOB中,A(-8,0),B(0,),AC平分∠OAB,交y轴于点C,点P是x轴上⼀点,⊙P经过点A、C,与x轴于点D,过点C作CE⊥AB,垂⾜为E,EC的延长线交x轴于点F,(1)⊙P的半径为______;(2)求证:EF为⊙P的切线;(3)若点H是上⼀动点,连接OH、FH,当点P在上运动时,试探究是否为定值?若为定值,求其值;若不是定值,请说明理由.23.如图,在平⾯直⾓坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的⼀点,若=,且△BCG与△BCD⾯积相等,求点G的坐标;(3)若在x轴上有且仅有⼀点P,使∠APB=90°,求k的值.答案和解析1.【答案】D【解析】解:A、32=9,23=8,故不相等;B、|-3|3=27(-3)3=-27,故不相等;C、(-3)2=9,-32=-9,故不相等;D、(-3)3=-27,-33=-27,故相等,故选:D.利⽤有理数乘⽅法则判定即可.本题主要考查了有理数乘⽅,解题的关键是注意符号.2.【答案】A【解析】解:14420000=1.442×107,故选:A.根据科学记数法的表⽰⽅法可以将题⽬中的数据⽤科学记数法表⽰,本题得以解决.本题考查科学记数法-表⽰较⼤的数,解答本题的关键是明确科学记数法的表⽰⽅法.3.【答案】D【解析】解:A、5a3-a3=4a3,正确,本选项不符合题意;B、(-a)2?a3=a5,正确,本选项不符合题意;C、(a-b)3?(b-a)2=(a-b)5,正确,本选项不符合题意;D、2m?3n≠6m+n,错误,本选项符合题意;故选:D.根据合并同类项法则,同底数幂的乘法法则等知识求解即可求得答案.本题考查的是合并同类项法则,同底数幂的乘法,需注意区别:同底数幂的乘法:底数不变,指数相加;幂的乘⽅:底数不变,指数相乘.4.【答案】C【解析】解:A是轴对称图形,不是中⼼对称图形;B,C,D是轴对称图形,也是中⼼对称图形.故选C.根据轴对称图形与中⼼对称图形的概念求解.掌握中⼼对称图形与轴对称图形的概念:轴对称图形:如果⼀个图形沿着⼀条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中⼼对称图形:在同⼀平⾯内,如果把⼀个图形绕某⼀点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中⼼对称图形.5.【答案】C【解析】解:A、每⽉阅读数量的平均数是=56.625,故A错误;B、出现次数最多的是58,众数是58,故B错误;C、由⼩到⼤顺序排列数据28,36,42,58,58,70,78,83,中位数是58,故C正确;D、由折线统计图看出每⽉阅读量超过40天的有6个⽉,故D错误;故选:C.根据平均数的计算⽅法,可判断A;根据众数的定义,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.本题考查的是折线统计图、平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位,关键是根据折线统计图获得有关数据.6.【答案】D【解析】解:由题意这个正n边形的中⼼⾓=60°,∴n==6,∴这个多边形是正六边形,故选:D.求出正多边形的中⼼⾓即可解决问题.本题考查正多边形与圆,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】D【解析】解:A、⼀个多边形的外⾓和为360°,若外⾓和=内⾓和=360°,所以这个多边形是四边形,故此选项正确;B、矩形的四个⾓都是直⾓,满⾜对⾓互补,根据对⾓互补的四边形四点共圆,则矩形⼀定有外接圆,故此选项正确;C、对⾓线相等的菱形是正⽅形,故此选项正确;D、⼀组对边平⾏且相等的四边形是平⾏四边形;⽽⼀对边平⾏,另⼀组对边相等的四边形可能是平⾏四边形或是梯形,故此选项错误;本题选择错误的命题,故选:D.A、任意多边形的外⾓和为360°,然后利⽤多边形的内⾓和公式计算即可;B、判断⼀个四边形是否有外接圆,要看此四边形的对⾓是否互补,矩形的对⾓互补,⼀定有外接圆;C、根据正⽅形的判定⽅法进⾏判断;。
江苏省淮安淮安区五校联考2019-2020学年中考数学模拟试卷一、选择题1.如图,已知直线y =334x -,与x 轴、y 轴分别交于A 、B 两点,P 是以C (0,1)为圆心,1为半径的圆上一动点,连结PA 、PB ,则△PAB 面积的最小值是( )A.6B.5.5C.5D.4.52.如图,直线y =kx+b 交坐标轴于A 、B 两点,则不等式kx+4<0的解集是( )A.x <﹣3B.x >﹣3C.x <﹣6D.x >﹣63.在的环湖越野赛中,甲乙两选手的行程(单位:)随时间(单位:)变化的图象如图所示,根据图中提供的信息,下列说法中,错误的是:( )A.出发后1小时,两人行程均为;B.出发后1.5小时,甲的行程比乙多;C.两人相遇前,甲的速度小于乙的速度;D.甲比乙先到达终点.4.下列运算正确的是( ) A .22321a a -=B .22122a a a ⋅= C .623a a a ÷= D .()()3223a ba b b -÷=-5.一蓄水池有水40m 3,按一定的速度放水,水池里的水量y (m 3)与放水时间t(分)有如下关系:A .y 随t 的增加而增大B .放水时间为15分钟时,水池中水量为8m 3C .每分钟的放水量是2m 3D .y 与t 之间的关系式为y=38-2t6.如图,半径为3的⊙O 经过等边△ABO 的顶点A 、B ,点P 为半径OB 上的动点,连接AP ,过点P 作PC ⊥AP 交⊙O 于点C ,当∠ACP=30°时,AP 的长为( )A .3B .3C .1.5D .3或1.57.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=( )A.30°B.25°C.20°D.15°8.如图,是反比例函数在第一象限内的图像上的两点,且两点的横坐标分别是2和4,则的面积是( )A. B. C. D.9.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,DC CB =.若110C ∠=︒,则ABC ∠的度数等于( )A .55︒B .60︒C .65︒D .70︒10.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有( )A .1个B .2个C .3个D .4个11.如图,菱形OABC 的一条边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至OA′B′C′的位置,若OA =2,∠C =120°,则点B′的坐标为( )A.)B.)C.(3D.(312.下列各式中,能用平方差公式分解因式的是( )A .a 2+4b 2B .-x 2+16y 2C .-a 2-b 2D .a-4b 2二、填空题13x 的取值范围是______. 14.写出一个解为1的分式方程:_____.15.我们用[m]表示不大于m 的最大整数,如:[2]=2,[4.1]=4,[3.99]=3.(1)=_____;(2)若6=,则x 的取值范围是_____. 16.分解因式:2a 2-2=__________. 17.计算(3)(4)a a +-的结果等于_______.18.张老师上班途中要经过1个十字路口,十字路口红灯亮30秒、黄灯亮5秒、绿灯亮25秒,张老师希望上班经过路口是绿灯,但实际上这样的机会是___. 三、解答题19.在一块直角三角形的废料上,要裁下一个半圆形的材料,并且要半圆的直径在斜边AB 上,且充分利用原三角形废料.(1)试画出你的设计(用圆规、直尺作图,不写作法,但要保留作图痕迹.) (2)若AC=4,BC=3,试计算出该半圆形材料的半径.20.如图,一次函数y =x ﹣2的图象与反比例函数y =kx(k >0)的图象相交于A 、B 两点,与x 轴交于点C ,连接OA 、OB ,且tan ∠AOC =13. (1)求反比例函数的解析式;(2)D 是y 轴上一点,且△BOD 是以OB 为腰的等腰三角形,请你求出所有符合条件的D 点的坐标.21.为了解八年级学生双休日的课外阅读情况,学校随机调查了该年级25名学生,得到了一组样本数据,其统计表如下:八年级25名学生双休日课外阅读时间统计表(2)试确定这个样本的众数和平均数.22)2﹣|﹣3+5|+(1023.观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④……(1)第⑤个式子____,第⑩个式子_____;(2)请用含n(n 为正整数)的式子表示上述的规律,并证明.24.某校计划购进甲、乙两种规格的书架,经市场调查发现有线上和线下两种购买方式,具体情况如下表:(2)如果在线上购买甲、乙两种书架共30个,且购买乙种书架的数量不少于甲种书架的3倍,请求出花费最少的购买方案及花费.25.(1)(问题发现)如图1,在Rt △ABC 中,AB =AC ,∠BAC =90°,点D 为BC 的中点,以CD 为一边作正方形CDEF ,点E 恰好与点A 重合,请判断线段BE 与AF 的数量关系并写出推断过程;(2)(拓展研究)在(1)的条件下,如果正方形CDEF 绕点C 旋转,连接BE ,CE ,AF ,线段BE 与AF 的数量关系有无变化?请仅就图2的情形给出证明;(3)(结论运用)在(1)(2)的条件下,若△ABC 的面积为2,当正方形CDEF 旋转到B ,E ,F 三点在同一直线上时,请直接写出线段AF 的长.【参考答案】*** 一、选择题13.x 3≤ 14.11x=(答案不唯一) 15.916x ≤< 16..17.212a a -- 18.512. 三、解答题19.(1)答案见解析;(2)127.【分析】(1)作∠ACB 的角平分线交AB 于O ,过O 作OE ⊥AC 于E ,以O 为圆心,OE 为半径作圆交AB 于D 、F .图中半圆即为所求.(2)作OH ⊥BC 于H .首先证明OE=OH ,设OE=OH=r ,利用面积法构建方程求出r 即可. 【详解】解:(1)作∠ACB 的角平分线交AB 于O ,过O 作OE ⊥AC 于E ,以O 为圆心,OE 为半径作圆交AB 于D 、F .(2)∵OC 平分∠ACB ,OE ⊥AC ,OH ⊥BC , ∴OE=OH ,设OE=OH=r , ∵S △ABC =12•AC•BC=12•AC•r+12•BC•r, ∴r=127. 【点睛】本题考查作图-应用与设计,角平分线的性质等知识,解题的关键是熟练掌握五种基本作图,学会利用面积法构建方程解决问题.20.(1)3y x=;(2)点D 坐标为(0)或(0)或(0,﹣6). 【解析】 【分析】如图,作AE ⊥OC 于E, 由13AE tan AOC OE ∠==,可以假设3AE a OE a ==,,可得3A a a (,),再利用待定系数法即可解决问题.(2)分两种情况分别求解即可解决问题. 【详解】解:(1)如图,作AE ⊥OC 于E .∵13AE tan AOC OE ∠==, ∴可以假设3AE a OE a ==, , ∴3A a a (,), ∵点A 在直线2y x=﹣上, ∴32a a =﹣ ,∴A (3,1), 把A (3,1)代入ky x=上, ∴3k = , ∴3y x=. (2)由23y x y x =-⎧⎪⎨=⎪⎩,解得3113x x y y ==-⎧⎧⎨⎨==-⎩⎩或 , ∴13B (﹣,﹣) ,∴OB① 当OD OB =时,120(0D D (, , ② 当BO BD =时,6OD =, ∴3)(06D ,- ,综上所述,满足条件的点D坐标为120(0D D (,或3)(06D ,-. 【点睛】本题主要考查了反比例函数综合题,反比例函数的应用,一次函数的应用,等腰三角形的判定和性质等知识,熟练掌握基本知识,学会用分类讨论的思想思考问题是解题关键. 21.(1)28%;(2)众数4小时;平均数3.36小时 【解析】 【分析】(1)先求得阅读时间为4小时的人数,然后除以被调查的人数即可求得其所占的百分比; (2)利用众数及加权平均数的定义确定答案即可. 【详解】(1)阅读量为4小时的有25﹣3﹣4﹣6﹣3﹣2=7,所以阅读时间为4小时的人数所占百分比为725⨯100%=28%; (2)阅读量为4小时的人数最多,所以众数为4小时,平均数为(1×3+2×4+3×6+4×7+5×3+6×2)÷25=3.36(小时). 【点睛】本题考查了确定一组数据的加权平均数和众数的能力,比较简单. 22.1 【解析】 【分析】原式第一项利用平方的定义,第二项根据绝对值的性质化简,第三项依据零指数幂法则运算即可. 【详解】原式=2﹣2+1=1. 【点睛】此题考查了实数的混合运算,掌握运算法则和运算顺序是解答此题的关键. 23.(1)4×6+1=52,9×11+1=102;(2)(n ﹣1)(n+1)+1=n 2;证明见解析. 【解析】 【分析】(1)根据已知等式中的规律即可得;(2)根据整数的平方等于前一个整数与后一个整数乘积与1的和可得,利用整理的运算法则即可验证.【详解】(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102;故答案为:4×6+1=52,9×11+1=102;(2)第n个式子为(n﹣1)(n+1)+1=n2,证明:左边=n2﹣1+1=n2,右边=n2,∴左边=右边,即(n﹣1)(n+1)+1=n2.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出(n﹣1)(n+1)+1=n2的规律,并熟练加以运用.24.(1)甲种书架购买了12个,乙种书架购买了18个.(2) 当线上购买7个甲种书架、23个乙种书架时总花费最少,最少费用为8050元.【解析】【分析】(1)设线下购买甲种书架x个,购买乙种书架y个,根据在线下购买甲、乙两种书架30个共花费8280元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设线上购买总花费为w元,购买甲种书架m个,则购买乙种书架(30-m)个,根据总价=单价×数量可得出w关于m的函数关系式,由购买乙种书架的数量不少于甲种书架的3倍可得出关于m的一元一次不等式,解之即可得出m的取值范围,再利用一次函数的性质结合m为整数即可解决最值问题.【详解】(1)设线下购买甲种书架x个,购买乙种书架y个,依题意,得:30 2403008280 x yx y+=⎧⎨+=⎩,解得:1218 xy=⎧⎨=⎩.答:甲种书架购买了12个,乙种书架购买了18个.(2)设线上购买总花费为w元,购买甲种书架m个,则购买乙种书架(30﹣m)个,依题意,得:w=(210+20)m+(250+30)(30﹣m)=﹣50m+8400.∵买乙种书架的数量不少于甲种书架的3倍,∴30﹣m≥3m,解得:m≤712.∵m为整数,∴m≤7.∵﹣50<0,∴w值随m值的增大而减小,∴当m=7时,总花费最小,最少费用为8050,此时30﹣m=23.答:当线上购买7个甲种书架、23个乙种书架时总花费最少,最少费用为8050元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的最值,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)由总价=单价×数量,找出w关于m的函数关系式.25.(1)BE AF .见解析;(2)无变化.证明见解析;(3)线段AF 1-1. 【解析】 【分析】(1)首先证明△ADB 是等腰直角三角形,推出AD ,再证明AF=AD 即可解决问题;(2)先利用三角函数得出2CA CB =,2CF CE =,推出CA CF CB CE =,夹角相等即可得出△ACF ∽△BCE ,进而得出结论;(3)分两种情况计算,当点E 在线段BF 上时,如图2,先利用勾股定理求出,,即可得出,借助(2)得出的结论,当点E 在线段BF 的延长线上,同前一种情况一样即可得出结论. 【详解】(1)在Rt △ABC 中,AB =AC ,根据勾股定理得,BC AB ,又∵点D 为BC 的中点,∴AD =12BC AB ,∵四边形CDEF 是正方形,∴AF =EF =AD AB BE ,∴BE AF . (2)无变化.证明:如图2,在Rt △ABC 中,∵AB =AC , ∴∠ABC =∠ACB =45°,∴sin ∠ABC =CA CB =2, 在正方形CDEF 中,∠FEC =12∠FED =45°,在Rt △CEF 中,sin ∠FEC =2CF CE =, ∴CF CACE CB=, ∵∠FCE =∠ACB =45°,∴∠FCE -∠ACE =∠ACB -∠ACE , ∴∠FCA =∠ECB , ∴△ACF ∽△BCE ,∴BE CBAF CA==∴BE AF ,∴线段BE 与AF 的数量关系无变化; (3)当点E 在线段AF 上时,如图2,由(1)知,,在Rt △BCF 中,,根据勾股定理得,,∴,由(2)知,AF ,∴,当点E 在线段BF 的延长线上时,如图3,在Rt △ABC 中,AB=AC=2, ∴∠ABC=∠ACB=45°,∴sin ∠ABC=2CA CB =, 在正方形CDEF 中,∠FEC=12∠FED=45°,在Rt △CEF 中,sin ∠FEC=CF CE =∴CF CACE CB=, ∵∠FCE=∠ACB=45°, ∴∠FCB+∠ACB=∠FCB+∠FCE , ∴∠FCA=∠ECB , ∴△ACF ∽△BCE ,∴BE CBAF CA==∴,由(1)知,,在Rt △BCF 中,,根据勾股定理得,,∴,由(2)知,AF ,∴.即:当正方形CDEF 旋转到B ,E ,F 三点共线时候,线段AF . 【点睛】本题是四边形综合题,主要考查了,等腰直角三角形的性质,正方形的性质,旋转的性质,相似三角形的判定和性质,解(2)(3)的关键是判断出△ACF ∽△BCE .第三问要分情况讨论.。
江苏省淮安市2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为()A.252B.252πC.50 D.50π2.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>-14B.k>-14且0k≠C.k<-14D.k≥-14且0k≠3.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点H,连接DH,下列结论正确的是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤线段DH的最小值是25﹣2A.①②⑤B.①③④⑤C.①②④⑤D.①②③④4.一个数和它的倒数相等,则这个数是()A.1 B.0 C.±1 D.±1和05.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确6.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2+57.下列说法正确的是()A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近8.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为()A.(a﹣20%)元B.(a+20%)元C.a元D.a元9.下列运算正确的是()A.(﹣2a)3=﹣6a3B.﹣3a2•4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2D.2a3﹣a2=2a10.下列4个数:9,227,π,(3)0,其中无理数是()A.9B.227C.πD.(3)011.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3D.12.39×10﹣4g/cm312.等腰三角形的两边长分别为5和11,则它的周长为()A.21 B.21或27 C.27 D.25二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知一个多边形的每一个内角都等于108°,则这个多边形的边数是.14.因式分解:x2y-4y3=________.15.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为_____.16.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______. 17.小明和小亮分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C ,小明先到达奶茶店C ,并在C 地休息了一小时,然后按原速度前往B 地,小亮从B 地直达A 地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B 地时,小亮距离A 地_____千米.18.计算2x 3·x 2的结果是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)近几年“雾霾”成为全社会关注的话题某校环保志愿者小组对该市2018年空气质量进行调查,从全年365天中随机抽查了50天的空气质量指数(AQI ),得到以下数据:43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1. (1)请你完成如下的统计表; AQI0~50 51~100 101~150 151~200 201~250 300以上 质量等级A (优)B (良)C (轻度污染)D (中度污染)E (重度污染)F (严重污染) 天数(2)请你根据题中所给信息绘制该市2018年空气质量等级条形统计图;(3)请你估计该市全年空气质量等级为“重度污染”和“严重污染”的天数.20.(6分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x <20)之间满足一次函数关系,其图象如图所示:求y 与x 之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?21.(6分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.22.(8分)在平面直角坐标系xOy中,点C是二次函数y=mx2+4mx+4m+1的图象的顶点,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.(1)请你求出点A、B、C的坐标;(2)若二次函数y=mx2+4mx+4m+1与线段AB恰有一个公共点,求m的取值范围.23.(8分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).求灯杆CD的高度;求AB的长度(结果精确到0.1米).(参考数据:3=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)24.(10分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:△ACE≌△BCD;若AD=5,BD=12,求DE的长.25.(10分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.这次调查的市民人数为________人,m=________,n=________;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.26.(12分)解方程:252112xx x+--=1.27.(12分)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)生产量最多的一天比生产量最少的一天多生产多少辆?半年内总生产量是多少?比计划多了还是少了,增加或减少多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据新定义得到扇形的弧长为5,然后根据扇形的面积公式求解.【详解】解:圆锥的侧面积=12•5•5=252.故选A.【点睛】本题考查圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.2.B【解析】【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b2-4ac≥1.【详解】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>14且k≠1.故选B.【点睛】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.3.B【解析】【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【详解】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同理可证:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正确.取AB的中点O,连接OD、OH.∵正方形的边长为4,∴AO=OH=12×4=1,由勾股定理得,224225+=由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小5.无法证明DH平分∠EHG,故②错误,故①③④⑤正确.故选B.【点睛】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.4.C【解析】【分析】根据倒数的定义即可求解.【详解】的倒数等于它本身,故C符合题意.故选:C.【点睛】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.5.A【解析】【分析】过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB【详解】如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,∵两把完全相同的长方形直尺,∴CE=CF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.6.A【解析】【分析】结合向左平移的法则,即可得到答案.【详解】解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,故选A.【点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答. 7.D【解析】【分析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.【详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;B. “抛一枚硬币正面朝上的概率为12”表示每次抛正面朝上的概率都是12,故B不符合题意;C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;D. “抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近,故D符合题意;故选D【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.8.C【解析】【分析】根据题意列出代数式,化简即可得到结果.【详解】根据题意得:a÷(1−20%)=a÷= a(元),故答案选:C.【点睛】本题考查的知识点是列代数式,解题的关键是熟练的掌握列代数式. 9.B【解析】【分析】先根据同底数幂的乘法法则进行运算即可。
江苏省淮安市2019-2020学年中考数学仿真第一次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在△ABC 中,点D 、E 分别在AB 、AC 上,如果AD =2,BD =3,那么由下列条件能够判定DE ∥BC 的是( )A .DE BC =23B .DE BC =25 C .AE AC =23D .AE AC =252.二次函数y=-x 2-4x+5的最大值是( )A .-7B .5C .0D .9 3.已知a=12(7+1)2,估计a 的值在( ) A .3 和4之间B .4和5之间C .5和6之间D .6和7之间 4.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 5.|–12|的倒数是( ) A .–2 B .–12 C .12 D .26.如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为»AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35C .43D .457.如图,在ABC ∆中,90,4,3C AC BC ︒∠===,将ABC ∆绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则,B D 两点间的距离为( )A.10B.22C.3D.5 8.观察下列图形,则第n个图形中三角形的个数是()A.2n+2 B.4n+4 C.4n﹣4 D.4n 9.如图,若a∥b,∠1=60°,则∠2的度数为()A.40°B.60°C.120°D.150°10.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗11.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,312.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若a﹣3有平方根,则实数a的取值范围是_____.14.已知16xx+=,则221xx+=______15.已知a+=3,则的值是_____.16.二次函数y=x2-2x+1的对称轴方程是x=_______.17.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP 的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是___.18.如图,是用火柴棒拼成的图形,则第n个图形需_____根火柴棒.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:(x+1y)1﹣(1y+x)(1y﹣x)﹣1x1,其中x=3+1,y=3﹣1.20.(6分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?21.(6分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)根据上图提供的信息回答下列问题:(1)被抽查的居民中,人数最多的年龄段是岁;(1)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图1.注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数×100%. 22.(8分)如图,在平行四边形ABCD 中,边AB 的垂直平分线交AD 于点E ,交CB 的延长线于点F ,连接AF ,BE.(1)求证:△AGE ≌△BGF ;(2)试判断四边形AFBE 的形状,并说明理由.23.(8分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等. (1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x 台,这100台家电的销售利润为Y 元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种? (3)实际进货时,厂家对电冰箱出厂价下调K (0<K <150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.24.(10分)(1)(﹣2)2+2sin 45°﹣11()182-⨯ (2)解不等式组523(1)131322x x x x +>-⎧⎪⎨-≤-⎪⎩,并将其解集在如图所示的数轴上表示出来.25.(10分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.写出销售量y 件与销售单价x 元之间的函数关系式;写出销售该品牌童装获得的利润w 元与销售单价x 元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?26.(12分)我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y (万元)与年产量x (万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z (元/件)与年销售量x (万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W 万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?27.(12分)(1)问题发现如图1,在Rt△ABC中,∠A=90°,ABAC=1,点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD.(1)①求PBCD的值;②求∠ACD的度数.(2)拓展探究如图2,在Rt△ABC中,∠A=90°,ABAC=k.点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD,请判断∠ACD与∠B 的数量关系以及PB与CD之间的数量关系,并说明理由.(3)解决问题如图3,在△ABC中,∠B=45°,AB=42,BC=12,P 是边BC上一动点(不与点B重合),∠PAD=∠BAC,∠APD=∠B,连接CD.若PA=5,请直接写出CD的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据平行线分线段成比例定理的逆定理,当AD AE DB EC =或AD AE AB AC=时,DE BD P ,然后可对各选项进行判断.【详解】 解:当AD AE DB EC =或AD AE AB AC=时, DE BD P , 即23AE EC =或25AE AC =. 所以D 选项是正确的.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.2.D【解析】【分析】直接利用配方法得出二次函数的顶点式进而得出答案.【详解】y=﹣x 2﹣4x+5=﹣(x+2)2+9,即二次函数y=﹣x 2﹣4x+5的最大值是9,故选D .【点睛】此题主要考查了二次函数的最值,正确配方是解题关键.3.D【解析】【分析】的范围,进而可得的范围.【详解】解:a=12×(,∵2<3,∴6<<7,∴a的值在6和7之间,故选D.【点睛】此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值.4.B【解析】分析:直接利用2<7<3,进而得出答案.详解:∵2<7<3,∴3<7+1<4,故选B.点睛:此题主要考查了估算无理数的大小,正确得出7的取值范围是解题关键.5.D【解析】【分析】根据绝对值的性质,可化简绝对值,根据倒数的意义,可得答案.【详解】|−12|=12,12的倒数是2;∴|−12|的倒数是2,故选D.【点睛】本题考查了实数的性质,分子分母交换位置是求一个数倒数的关键.6.D【解析】【详解】如图,连接AB,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴4 cos cos5OBC ABOAB=∠==.故选D.7.A【解析】【分析】先利用勾股定理计算出AB,再在Rt△BDE中,求出BD即可;【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=5,∵△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=AC=4,DE=BC=3,∴BE=AB-AE=5-4=1,在Rt△DBE中,=故选A.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8.D【解析】试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选D.考点:规律型:图形的变化类.9.C【解析】如图:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故选C.点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.10.B【解析】试题解析:由题意得25134xx yxx y⎧⎪+⎪⎨⎪⎪++⎩==,解得:23 xy⎧⎨⎩==.故选B.11.A 【解析】【分析】根据题意可得方程组2127a ba b+=⎧⎨-=⎩,再解方程组即可.【详解】由题意得:21 27 a ba b+=⎧⎨-=⎩,解得:31 ab=⎧⎨=-⎩,故选A.12.A 【解析】【详解】∵AB ∥CD ,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E ,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选A .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.a≥1.【解析】【分析】根据平方根的定义列出不等式计算即可.【详解】根据题意,得30.a -≥解得: 3.a ≥故答案为 3.a ≥【点睛】考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根. 14.34【解析】 ∵16x x +=,∴221x x +=22126236234x x ⎛⎫+-=-=-= ⎪⎝⎭, 故答案为34.15.7【解析】【详解】根据完全平方公式可得:原式=. 16.1【解析】【分析】利用公式法可求二次函数y=x 2-2x+1的对称轴.也可用配方法.【详解】∵-2b a =-22-=1,故答案为:1【点睛】本题考查二次函数基本性质中的对称轴公式;也可用配方法解决.17.12【解析】【分析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出线段长度解答.【详解】根据题意观察图象可得BC=5,点P 在AC 上运动时,BP ⊥AC 时,BP 有最小值,观察图象可得,BP 的最小值为4,即BP ⊥AC 时BP=4,又勾股定理求得CP=3,因点P 从点C 运动到点A ,根据函数的对称性可得CP=AP=3,所以ABC ∆的面积是13+342⨯⨯()=12. 【点睛】本题考查动点问题的函数图象,解题的关键是注意结合图象求出线段的长度,本题属于中等题型. 18.2n+1.【解析】【详解】解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;……由此可以看出:当三角形的个数为n 时,火柴棒的根数为3+2(n ﹣1)=2n+1.故答案为:2n+1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.﹣2【解析】【分析】先利用完全平方公式、平方差公式进行展开,然后合并同类项,最后代入x 、y 的值进行计算即可得.【详解】原式=x 1+2xy+2y 1﹣(2y 1﹣x 1)﹣1x 1=x 1+2xy+2y 1﹣2y 1+x 1﹣1x 1当,﹣1时,原式=2×)×1)=2×(3﹣2)=﹣2.【点睛】本题考查了整式的混合运算——化简求值,熟练掌握完全平方公式、平方差公式是解题的关键. 20.(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.【解析】【分析】(1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数×每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题.【详解】(1)解:设2018至2020年寝室数量的年平均增长率为x,根据题意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=﹣2.375(不合题意,舍去).答:2018至2020年寝室数量的年平均增长率为37.5%.(2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(121﹣6y)间,∵单人间的数量在20至30之间(包括20和30),∴121620{121630yy-≥-≤,解得:15 16≤y≤1656.根据题意得:w=2y+20y+121﹣6y=16y+121,∴当y=16时,16y+121取得最大值为1.答:该校的寝室建成后最多可供1名师生住宿.【点睛】本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式.21.(1)11~30;(1)31~40岁年龄段的满意人数为66人,图见解析;【解析】【分析】(1)取扇形统计图中所占百分比最大的年龄段即可;(1)先求出总体感到满意的总人数,然后减去其它年龄段的人数即可,再补全条形图.【详解】(1)由扇形统计图可得11~30岁的人数所占百分比最大为39%,所以,人数最多的年龄段是11~30岁;(1)根据题意,被调查的人中,总体印象感到满意的有:400×83%=331人,31~40岁年龄段的满意人数为:331﹣54﹣116﹣53﹣14﹣9=331﹣116=66人,补全统计图如图.【点睛】本题考点:条形统计图与扇形统计图.22.(1)证明见解析(2)四边形AFBE是菱形【解析】试题分析:(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF 即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF (AAS);(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.23.(1)每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)共有5种方案;(3)当100<k<150时,购进电冰箱38台,空调62台,总利润最大;当0<k<100时,购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元.【解析】【分析】(1)用“用9000元购进电冰箱的数量与用7200元购进空调数量相等”建立方程即可;(2)建立不等式组求出x的范围,代入即可得出结论;(3)建立y1=(k﹣100)x+20000,分三种情况讨论即可.【详解】(1)设每台空调的进价为m元,则每台电冰箱的进价(m+300)元,由题意得,90007200300m m=+,∴m=1200,经检验,m=1200是原分式方程的解,也符合题意,∴m+300=1500元,答:每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)由题意,y=(1600﹣1500)x+(1400﹣1200)(100﹣x)=﹣100x+20000,∵10020000162001002xx-+≥⎧⎨-≤⎩,∴3313≤x≤38,∵x为正整数,∴x=34,35,36,37,38,即:共有5种方案;(3)设厂家对电冰箱出厂价下调k(0<k<150)元后,这100台家电的销售总利润为y1元,∴y1=(1600﹣1500+k)x+(1400﹣1200)(100﹣x)=(k﹣100)x+20000,当100<k<150时,y1随x的最大而增大,∴x=38时,y1取得最大值,即:购进电冰箱38台,空调62台,总利润最大,当0<k<100时,y1随x的最大而减小,∴x=34时,y1取得最大值,即:购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元.【点睛】本题考查了一次函数的应用,分式方程的应用,不等式组的应用,根据题意找出等量关系是解题的关键.24.(1)4﹣;﹣52<x≤2,在数轴上表示见解析【解析】【分析】(1)此题涉及乘方、特殊角的三角函数、负整数指数幂和二次根式的化简,首先针对各知识点进行计算,再计算实数的加减即可;(2)首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【详解】解:(1)原式=4+2×2﹣2×32=4+2﹣62=4﹣52; (2)()5231131322x x x x ⎧+>-⎪⎨-≤-⎪⎩①②, 解①得:x >﹣52, 解②得:x≤2,不等式组的解集为:﹣52<x≤2, 在数轴上表示为:.【点睛】此题主要考查了解一元一次不等式组,以实数的运算,关键是正确确定两个不等式的解集,掌握特殊角的三角函数值.25.(1)201800y x =-+;(2)2203000108000w x x =-+-;(3)最多获利4480元.【解析】【分析】(1)销售量y 为200件加增加的件数(80﹣x )×20; (2)利润w 等于单件利润×销售量y 件,即W=(x ﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x 2+3000x ﹣108000的对称轴为x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根据二次函数的性质得到当76≤x≤78时,W 随x 的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【详解】(1)根据题意得,y=200+(80﹣x )×20=﹣20x+1800, 所以销售量y 件与销售单价x 元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式为:W=﹣20x2+3000x﹣108000;(3)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x2+3000x﹣108000,对称轴为x=﹣30002(20)⨯-=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤78时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【点睛】二次函数的应用.26.(1)y=110x1.z=﹣110x+30(0≤x≤100);(1)年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)今年最多可获得毛利润1080万元【解析】【分析】(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;(1)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w与x的函数关系式,再利用配方法求出最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.【详解】(1)图①可得函数经过点(100,1000),设抛物线的解析式为y=ax1(a≠0),将点(100,1000)代入得:1000=10000a,解得:a=1 10,故y与x之间的关系式为y=110x1.图②可得:函数经过点(0,30)、(100,10),设z=kx+b,则1002030k bb+=⎧⎨=⎩,解得:1k10b30⎧⎪⎨⎪⎩==,故z 与x 之间的关系式为z =﹣110x +30(0≤x≤100); (1)W =zx ﹣y =﹣110x 1+30x ﹣110x 1 =﹣x 1+30x =﹣15(x 1﹣150x ) =﹣15(x ﹣75)1+1115, ∵﹣15<0, ∴当x =75时,W 有最大值1115,∴年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)令y =360,得110x 1=360, 解得:x =±60(负值舍去),由图象可知,当0<y≤360时,0<x≤60,由W =﹣15(x ﹣75)1+1115的性质可知, 当0<x≤60时,W 随x 的增大而增大,故当x =60时,W 有最大值1080,答:今年最多可获得毛利润1080万元.【点睛】本题主要考查二次函数的应用以及待定系数法求一次函数解析式,注意二次函数最值的求法,一般用配方法.27.(1)1,45°;(2)∠ACD=∠B ,PB AB CD AC = =k ;(3)2. 【解析】【分析】(1)根据已知条件推出△ABP ≌△ACD ,根据全等三角形的性质得到PB=CD ,∠ACD=∠B=45°,于是得到 1;PB CD= ()2根据已知条件得到△ABC ∽△APD ,由相似三角形的性质得到AB AP k AC AD ==,得到 ABP ∽△CAD ,根据相似三角形的性质得到结论;()3过A 作AH ⊥BC 于 H ,得到△ABH 是等腰直角三角形,求得 AH=BH=4, 根据勾股定理得到3,AC PH ====根据相似三角形的性质得到AB AP AC AD=,推出△ABP ∽△CAD ,根据相似三角形的性质即可得到结论.【详解】(1)∵∠A=90°,1,AB AC= ∴AB=AC ,∴∠B=45°,∵∠PAD=90°,∠APD=∠B=45°, ∴AP=AD ,∴∠BAP=∠CAD ,在△ABP 与△ACD 中,AB=AC, ∠BAP=∠CAD ,AP=AD, ∴△ABP ≌△ACD ,∴PB=CD ,∠ACD=∠B=45°, ∴PB CD=1, (2),PB AB ACD B k CD AC ,∠=∠== ∵∠BAC=∠PAD=90°,∠B=∠APD , ∴△ABC ∽△APD ,AB AP k AC AD==Q ∵∠BAP+∠PAC=∠PAC+∠CAD=90°, ∴∠BAP=∠CAD ,∴△ABP ∽△CAD ,∴∠ACD=∠B ,,PB AB k CD AC== (3)过 A 作 AH ⊥BC 于 H ,∵∠B=45°,∴△ABH 是等腰直角三角形, ∵42AB =,∴AH=BH=4,∵BC=12,∴CH=8, ∴2245,AC AH CH =+= ∴22PA AH -, ∴PB=1,∵∠BAC=∠PAD=,∠B=∠APD , ∴△ABC ∽△APD , ∴AB AP AC AD=, ∵∠BAP+∠PAC=∠PAC+∠CAD , ∴∠BAP=∠CAD ,∴△ABP ∽△CAD , ∴,AB PB AC CD =421,45CD = ∴10CD =过 A 作 AH ⊥BC 于 H ,∵∠B=45°,∴△ABH 是等腰直角三角形, ∵42AB =,∴AH=BH=4,∵BC=12,∴CH=8, ∴2245,AC AH CH =+= ∴22PA AH -, ∴PB=7,∵∠BAC=∠PAD=,∠B=∠APD , ∴△ABC ∽△APD , ∴AB AP AC AD=, ∵∠BAP+∠PAC=∠PAC+∠CAD , ∴∠BAP=∠CAD ,∴△ABP ∽△CAD , ∴,AB PB AC CD =427,45CD= ∴710CD =【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.。
江苏省淮安市2019-2020学年中考数学仿真第三次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在6×4的正方形网格中,△ABC 的顶点均为格点,则sin ∠ACB=( )A .12B .2C .255D .1342.如图,在ABC V 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE CA P ,DF BA P .下列四种说法: ①四边形AEDF 是平行四边形;②如果90BAC ∠=o ,那么四边形AEDF 是矩形;③如果AD 平分BAC ∠,那么四边形AEDF 是菱形;④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中,正确的有( ) 个A .1B .2C .3D .43.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是( )A .2003503x x =-B .2003503x x =+C .2003503x x=+ D .2003503x x=- 4.如图,∠ACB=90°,D 为AB 的中点,连接DC 并延长到E ,使CE=13CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F ,若AB=6,则BF 的长为( )A .6B .7C .8D .105.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m 的正方形,使不规则区域落在正方形内.现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在常数0.65附近,由此可估计不规则区域的面积约为()A.2.6m2B.5.6m2C.8.25m2D.10.4m26.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是( )A.60o B.65o C.70o D.75o7.如图,在△ABC中,DE∥BC,若23ADDB=,则AEEC等于( )A.13B.25C.23D.358.如图,扇形AOB 中,半径OA=2,∠AOB=120°,C 是弧AB的中点,连接AC、BC,则图中阴影部分面积是( )A.4233π-B.2233π-C.433πD.233π9.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是()A.(﹣2,4),(1,3)B.(﹣2,4),(2,3)C.(﹣3,4),(1,4)D.(﹣3,4),(1,3)10.实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是()A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c11.﹣2018的绝对值是()A.±2018 B.﹣2018 C.﹣12018D.201812.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±3 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在△ABC中,∠C=90°,若tanA=12,则sinB=______.14.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=3x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则¼20192018A B的长是_____.15.如图,在平面直角坐标系xOy中,△ABC的顶点A、C在坐标轴上,点B的坐标是(2,2).将△ABC沿x轴向左平移得到△A1B1C1,点1B落在函数y=-6x.如果此时四边形11AAC C的面积等于552,那么点1C的坐标是________.16.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.17.327﹣|﹣1|=______.18.把16a3﹣ab2因式分解_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.20.(6分)如图,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).(2)在(1)条件下,求证:AB2=BD•BC.21.(6分)如图,AB是⊙O的直径,点C在⊙O上,CE^ AB于E,CD平分ÐECB,交过点B的射线于D,交AB于F,且BC=BD.(1)求证:BD是⊙O的切线;(2)若AE=9,CE=12,求BF的长.22.(8分)如图,在平面直角坐标系中,等边三角形ABC的顶点B与原点O重合,点C在x轴上,点C坐标为(6,0),等边三角形ABC的三边上有三个动点D、E、F(不考虑与A、B、C重合),点D从A向B运动,点E从B向C运动,点F从C向A运动,三点同时运动,到终点结束,且速度均为1cm/s,设运动的时间为ts,解答下列问题:(1)求证:如图①,不论t如何变化,△DEF始终为等边三角形.(2)如图②过点E作EQ∥AB,交AC于点Q,设△AEQ的面积为S,求S与t的函数关系式及t为何值时△AEQ的面积最大?求出这个最大值.(3)在(2)的条件下,当△AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标,若不存在请说明理由?23.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)24.(10分)如图所示,在△ABC中,AB=CB,以BC为直径的⊙O交AC于点E,过点E作⊙O的切线交AB于点F.(1)求证:EF⊥AB;(2)若AC=16,⊙O的半径是5,求EF的长.25.(10分)如图,在△ABC中,∠B=90°,AB=4,BC=1.在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)求BP的长.26.(12分)如图,某校数学兴趣小组要测量大楼AB的高度,他们在点C处测得楼顶B的仰角为32°,再往大楼AB方向前进至点D处测得楼顶B的仰角为48°,CD=96m,其中点A、D、C在同一直线上.求AD的长和大楼AB的高度(结果精确到2m)参考数据:sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,3≈2.7327.(12分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,求证:AC•CD=CP•BP;若AB=10,BC=12,当PD∥AB时,求BP的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】如图,由图可知BD=2、CD=1、BC=5,根据sin∠BCA=BDBC可得答案.【详解】解:如图所示,∵BD=2、CD=1,∴则sin ∠BCA=BDBC , 故选C .【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.2.D【解析】【分析】先由两组对边分别平行的四边形为平行四边形,根据DE ∥CA ,DF ∥BA ,得出AEDF 为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF ,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD 平分∠BAC ,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA ,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC ,AD ⊥BC ,根据等腰三角形的三线合一可得AD 平分∠BAC ,同理可得四边形AEDF 是菱形,④正确,进而得到正确说法的个数.【详解】解:∵DE ∥CA ,DF ∥BA ,∴四边形AEDF 是平行四边形,选项①正确;若∠BAC=90°,∴平行四边形AEDF 为矩形,选项②正确;若AD 平分∠BAC ,∴∠EAD=∠FAD ,又DE ∥CA ,∴∠EDA=∠FAD ,∴∠EAD=∠EDA ,∴AE=DE ,∴平行四边形AEDF 为菱形,选项③正确;若AB=AC ,AD ⊥BC ,∴AD 平分∠BAC ,同理可得平行四边形AEDF 为菱形,选项④正确,则其中正确的个数有4个.故选D .【点睛】此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键. 3.B【解析】试题分析:设每个笔记本的价格为x 元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程4.C【解析】∵∠ACB=90°,D 为AB 的中点,AB=6,∴CD=12AB=1. 又CE=13CD , ∴CE=1,∴ED=CE+CD=2.又∵BF ∥DE ,点D 是AB 的中点,∴ED 是△AFB 的中位线,∴BF=2ED=3.故选C .5.D【解析】【分析】首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可.【详解】∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.65附近,∴小石子落在不规则区域的概率为0.65,∵正方形的边长为4m ,∴面积为16 m 2设不规则部分的面积为s m 2 则16s =0.65 解得:s=10.4故答案为:D .【点睛】利用频率估计概率.6.D【解析】【详解】由题意知:△ABC ≌△DEC ,∴∠ACB=∠DCE=30°,AC=DC ,∴∠DAC=(180°−∠DCA )÷2=(180°−30°)÷2=75°.故选D .【点睛】本题主要考查了旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.7.C【解析】试题解析::∵DE ∥BC , ∴23AE AD EC DB ==, 故选C .考点:平行线分线段成比例.8.A【解析】试题分析:连接AB 、OC ,AB ⊥OC ,所以可将四边形AOBC 分成三角形ABC 、和三角形AOB ,进行求面积,求得四边形面积是S=13πr 2= 43π,所以阴影部分面积是扇形面积减去四边形面积即43π-故选A. 9.A【解析】【分析】作CD ⊥x 轴于D ,作AE ⊥x 轴于E ,作BF ⊥AE 于F ,由AAS 证明△AOE ≌△OCD ,得出AE=OD ,OE=CD ,由点A 的坐标是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C (1,3),同理:△AOE ≌△BAF ,得出AE=BF=1,OE ﹣BF=3﹣1=2,得出B (﹣2,4)即可.【详解】解:如图所示:作CD ⊥x 轴于D ,作AE ⊥x 轴于E ,作BF ⊥AE 于F ,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵AEO ODCOAE CODOA CO∠∠∠∠=⎧⎪=⎨⎪=⎩,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).故选A.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.10.A【解析】【分析】根据数轴上点的位置确定出a,b,c的范围,判断即可.【详解】由数轴上点的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故选A.【点睛】考查了实数与数轴,弄清数轴上点表示的数是解本题的关键.11.D【解析】分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.详解:﹣2018的绝对值是2018,即20182018-=.故选D.点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.12.B【解析】解:由题意得:x ﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,则y x =9,9的算术平方根是1.故选B . 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.25 【解析】分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.详解:如图所示:∵∠C=90°,tanA=12, ∴设BC=x ,则AC=2x ,故5,则sinB=2555AC AB x==. 故答案为:255 . 点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.14.201923π 【解析】 【分析】先根据一次函数方程式求出B 1点的坐标,再根据B 1点的坐标求出A 2点的坐标,得出B 2的坐标,以此类推总结规律便可求出点A 2019的坐标,再根据弧长公式计算即可求解,.【详解】直线3,点A 1坐标为(2,0),过点A 1作x 轴的垂线交直线于点B 1可知B 1点的坐标为(2,3,以原O 为圆心,OB 1长为半径画弧x 轴于点A 2,OA 2=OB 1,OA 2()22223+,点A 2的坐标为(4,0),这种方法可求得B 2的坐标为(4,3,故点A 3的坐标为(8,0),B 3(8,3以此类推便可求出点A 2019的坐标为(22019,0),则¼20192018A B 的长是2019201960221803ππ⨯⨯=, 故答案为:201923π. 【点睛】本题主要考查了一次函数图象上点的坐标特征,弧长的计算,解题的关键找出点的坐标的变化规律、运用数形结合思想进行解题.15.(-5,112)【解析】分析:依据点B的坐标是(2,2),BB2∥AA2,可得点B2的纵坐标为2,再根据点B2落在函数y=﹣6x的图象上,即可得到BB2=AA2=5=CC2,依据四边形AA2C2C的面积等于552,可得OC=112,进而得到点C2的坐标是(﹣5,112).详解:如图,∵点B的坐标是(2,2),BB2∥AA2,∴点B2的纵坐标为2.又∵点B2落在函数y=﹣6x的图象上,∴当y=2时,x=﹣3,∴BB2=AA2=5=CC2.又∵四边形AA2C2C的面积等于552,∴AA2×OC=552,∴OC=112,∴点C2的坐标是(﹣5,112).故答案为(﹣5,112).点睛:本题主要考查了反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质以及平移的性质.在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度.16.1 2【解析】分析:根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.详解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.所以颜色搭配正确的概率是12.故答案为:12.点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.17.2【解析】【分析】原式利用立方根定义,以及绝对值的代数意义计算即可求出值.【详解】解:原式=3﹣1=2,故答案为:2【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.a(4a+b)(4a﹣b)【解析】【分析】首先提取公因式a,再利用平方差公式分解因式得出答案.【详解】解:16a3-ab2=a(16a2-b2)=a(4a+b)(4a-b).故答案为:a(4a+b)(4a-b).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.证明过程见解析【解析】【分析】由∠BAE=∠BCE=∠ACD=90°,可求得∠DCE=∠ACB,且∠B+∠CEA=∠CEA+∠DEC=180°,可求得∠DEC=∠ABC,再结合条件可证明△ABC≌△DEC.【详解】∵∠BAE=∠BCE=∠ACD=90°,∴∠5+∠4=∠4+∠3,∴∠5=∠3,且∠B+∠CEA=180°,又∠7+∠CEA=180°,∴∠B=∠7,在△ABC 和△DEC 中537BC CE B ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEC (ASA ).20.(1)作图见解析;(2)证明见解析;【解析】【分析】(1)①以C 为圆心,任意长为半径画弧,交CB 、CA 于E 、F ;②以A 为圆心,CE 长为半径画弧,交AB 于G ;③以G 为圆心,EF 长为半径画弧,两弧交于H ;④连接AH 并延长交BC 于D ,则∠BAD=∠C ;(2)证明△ABD ∽△CBA ,然后根据相似三角形的性质得到结论.【详解】(1)如图,∠BAD 为所作;(2)∵∠BAD=∠C ,∠B=∠B∴△ABD ∽△CBA ,∴AB :BC=BD :AB ,∴AB 2=BD•BC .【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线; 过一点作已知直线的垂线).也考查了相似三角形的判定与性质.21.(1)证明见解析;(2)1.【解析】试题分析:(1)根据垂直的定义可得∠CEB=90°,然后根据角平分线的性质和等腰三角形的性质,判断出∠1=∠D ,从而根据平行线的判定得到CE ∥BD ,根据平行线的性质得∠DBA=∠CEB ,由此可根据切线的判定得证结果;(2)连接AC ,由射影定理可得,进而求得EB 的长,再由勾股定理求得BD=BC 的长,然后由“两角对应相等的两三角形相似”的性质证得△EFC ∽△BFD ,再由相似三角形的性质得出结果. 试题解析:(1)证明:∵,∴.∵CD平分,BC=BD,∴,.∴.∴∥.∴.∵AB是⊙O的直径,∴BD是⊙O的切线.(2)连接AC,∵AB是⊙O直径,∴.∵,可得.∴在Rt△CEB中,∠CEB=90°,由勾股定理得∴.∵,∠EFC =∠BFD,∴△EFC∽△BFD.∴.∴.∴BF=1.考点:切线的判定,相似三角形,勾股定理22.(1)证明见解析;(2)当t=3时,△AEQ的面积最大为93cm2;(3)(3,0)或(6,33)或(0,33)【解析】【分析】(1)由三角形ABC为等边三角形,以及AD=BE=CF,进而得出三角形ADF与三角形CFE与三角形BED 全等,利用全等三角形对应边相等得到BF=DF=DE,即可得证;(2)先表示出三角形AEC面积,根据EQ与AB平行,得到三角形CEQ与三角形ABC相似,利用相似三角形面积比等于相似比的平方表示出三角形CEQ面积,进而表示出AEQ面积,利用二次函数的性质求出面积最大值,并求出此时Q的坐标即可;(3)当△AEQ的面积最大时,D、E、F都是中点,分两种情形讨论即可解决问题;【详解】(1)如图①中,∵C(6,0),∴BC=6在等边三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由题意知,当0<t<6时,AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等边三角形,∴不论t如何变化,△DEF始终为等边三角形;(2)如图②中,作AH⊥BC于H,则3,∴S △AEC =12×33×(6﹣t )=33(6)t -, ∵EQ ∥AB ,∴△CEQ ∽△ABC ,∴CEQABC S S V V =(CE CB )2=2(6)36t -,即S △CEQ =2(6)36t -S △ABC =2(6)36t -×93=23(6)t -, ∴S △AEQ =S △AEC ﹣S △CEQ =33(6)2t -﹣23(6)4t -=﹣34(t ﹣3)2+93, ∵a=﹣34<0, ∴抛物线开口向下,有最大值,∴当t=3时,△AEQ 的面积最大为93cm 2, (3)如图③中,由(2)知,E 点为BC 的中点,线段EQ 为△ABC 的中位线,当AD 为菱形的边时,可得P 1(3,0),P 3(6,3,当AD 为对角线时,P 2(0,3,综上所述,满足条件的点P 坐标为(3,0)或(6,3)或(0,3).【点睛】本题考查四边形综合题、等边三角形的性质和判定、菱形的判定和性质、二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.23.(1)袋子中白球有2个;(2)见解析,59.【解析】【分析】(1)首先设袋子中白球有x个,利用概率公式求即可得方程:213xx=+,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.【详解】解:(1)设袋子中白球有x个,根据题意得:213xx=+,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:59.【点睛】此题考查了列表法或树状图法求概率.注意掌握方程思想的应用.注意概率=所求情况数与总情况数之比.24.(1)证明见解析;(2) 4.8.【解析】【分析】(1)连结OE,根据等腰三角形的性质可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,两直线平行即可判定OE∥AB,又因EF是⊙O的切线,根据切线的性质可得EF⊥OE,由此即可证得EF⊥AB;(2)连结BE,根据直径所对的圆周角为直角可得,∠BEC=90°,再由等腰三角形三线合一的性质求得AE=EC =8,在Rt△BEC中,根据勾股定理求的BE=6,再由△ABE的面积=△BEC的面积,根据直角三角形面积的两种表示法可得8×6=10×EF,由此即可求得EF=4.8.【详解】(1)证明:连结OE.∵OE=OC,∴∠OEC=∠OCA,∵AB=CB,∴∠A=∠OCA,∴∠A=∠OEC,∴OE∥AB,∵EF是⊙O的切线,∴EF⊥OE,∴EF⊥AB.(2)连结BE.∵BC是⊙O的直径,∴∠BEC=90°,又AB=CB,AC=16,∴AE=EC=AC=8,∵AB=CB=2BO=10,∴BE=,又△ABE的面积=△BEC的面积,即8×6=10×EF,∴EF=4.8.【点睛】本题考查了切线的性质定理、圆周角定理、等腰三角形的性质与判定、勾股定理及直角三角形的两种面积求法等知识点,熟练运算这些知识是解决问题的关键.25.(1)见解析;(2)2.【解析】【分析】(1)作AC的垂直平分线与BC相交于P;(2)根据勾股定理求解.【详解】(1)如图所示,点P即为所求.(2)设BP=x,则CP=1﹣x,由(1)中作图知AP=CP=1﹣x,在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(1﹣x)2,解得:x=2,所以BP=2.【点睛】考核知识点:勾股定理和线段垂直平分线.26.AD的长约为225m,大楼AB的高约为226m【解析】【分析】首先设大楼AB的高度为xm,在Rt△ABC中利用正切函数的定义可求得3AB=3x,然后根据∠ADB的正切表示出AD的长,又由CD=96m,x3x961.11-=,解此方程即可求得答案.【详解】解:设大楼AB的高度为xm,在Rt△ABC中,∵∠C=32°,∠BAC=92°,∴ABAC=3AB3x tan30==o,在Rt△ABD中,ABtan ADB tan48AD ∠=︒=,∴AB xAD=tan48 1.11=︒,∵CD=AC-AD,CD=96m,x3x961.11-=,解得:x≈226,∴x116AD1051.11 1.11=≈≈答:大楼AB的高度约为226m,AD的长约为225m.【点睛】本题考查解直角三角形的应用.要求学生能借助仰角构造直角三角形并解直角三角形,注意数形结合思想与方程思想的应用.27.(1)证明见解析;(2)25 3.【解析】(2)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到BP ABCD CP=,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BP AB CD CP=,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴BA BP BC BA=.∵AB=10,BC=12,∴101210BP=,∴BP=253.“点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP转化为证明AB•CD=CP•BP是解决第(1)小题的关键,证到∠BAP=∠C 进而得到△BAP∽△BCA是解决第(2)小题的关键.。
江苏省淮安市2019-2020学年中考数学仿真第五次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ).A .3229x x -=+B .3(2)29x x -=+C .2932x x +=-D .3(2)2(9)x x -=+ 2.估计10﹣1的值在( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间3.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A .30x ﹣361.5x=10 B .36x ﹣301.5x =10 C .361.5x ﹣30x =10 D .30x +361.5x =10 4.如图,长度为10m 的木条,从两边各截取长度为xm 的木条,若得到的三根木条能组成三角形,则x 可以取的值为( )A .2mB .52 mC .3mD .6m52(3)-( )A .3B .3-C .3±D .96.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a 一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限7.如图,在矩形ABCD 中,2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC﹣CF=2HE ;⑤AB=HF ,其中正确的有( )A .2个B .3个C .4个D .5个8.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .249.设点()11A ,x y 和()22B ,x y 是反比例函数k y x =图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限10.若点M (﹣3,y 1),N (﹣4,y 2)都在正比例函数y=﹣k 2x (k≠0)的图象上,则y 1与y 2的大小关系是( )A .y 1<y 2B .y 1>y 2C .y 1=y 2D .不能确定11.二次函数y=ax 2+bx+c (a≠0)的图象如图,下列四个结论:①4a+c <0;②m (am+b )+b >a (m≠﹣1);③关于x 的一元二次方程ax 2+(b ﹣1)x+c=0没有实数根;④ak 4+bk 2<a (k 2+1)2+b (k 2+1)(k 为常数).其中正确结论的个数是( )A .4个B .3个C .2个D .1个12.若二次函数()20y ax bx c a =++≠的图象与x 轴有两个交点,坐标分别是(x 1,0),(x 2,0),且12x x <.图象上有一点()00M x y ,在x 轴下方,则下列判断正确的是( )A .0a >B .240b ac -≥C .102x x x <<D .()()01020a x x x x --<二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知21xy=⎧⎨=⎩是二元一次方程组14{13mx nynx my+=-=的解,则m+3n的立方根为__.14.计算:2(3)--+(|﹣3|)0=_____.15.一个圆锥的高为33,侧面展开图是半圆,则圆锥的侧面积是_________16.在直角坐标系平面内,抛物线y=3x2+2x在对称轴的左侧部分是_____的(填“上升”或“下降”)17.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是_________.18.如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC.(2)若∠BEC=∠ABE,试证明四边形ABCD是菱形.20.(6分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式.(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标.21.(6分)如图,∠AOB=90°,反比例函数y=﹣2x(x<0)的图象过点A(﹣1,a),反比例函数y=kx(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=kx于另一点C,求△OBC的面积.22.(8分)在平面直角坐标系xOy中,一次函数y kx b=+的图象与y轴交于点()B0,1,与反比例函数myx=的图象交于点()A3,2-.()1求反比例函数的表达式和一次函数表达式;()2若点C是y轴上一点,且BC BA=,直接写出点C的坐标.23.(8分)某花卉基地种植了郁金香和玫瑰两种花卉共30 亩,有关数据如表:成本(单位:万元/亩)销售额(单位:万元/亩)郁金香 2.4 3玫瑰 2 2.5(1)设种植郁金香x 亩,两种花卉总收益为y 万元,求y 关于x 的函数关系式.(收益=销售额﹣成本)(2)若计划投入的成本的总额不超过70 万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?24.(10分)已知,关于 x 的一元二次方程(k ﹣1)x 2+2k x+3=0 有实数根,求k 的取值范围. 25.(10分)如图,在△ABC 中,AB=AC ,CD 是∠ACB 的平分线,DE ∥BC ,交AC 于点 E .求证:DE=CE . 若∠CDE=35°,求∠A 的度数.26.(12分)小强想知道湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道I 上某一观测点M 处,测得亭A 在点M 的北偏东30°,亭B 在点M的北偏东60°,当小明由点M 沿小道I 向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小强计算湖中两个小亭A 、B 之间的距离.27.(12分)如图,在平行四边形ABCD 中,24BC AB ==,点E 、F 分别是BC 、AD 的中点. (1)求证:ABE ∆≌CDF ∆;(2)当AE CE =时,求四边形AECF 的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可. 2.B【解析】【分析】<<.【详解】<∴34<,∴213<<﹣1的值在2和3之间.故选B.【点睛】的大小,在确定答案的范围.3.A【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数=10亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:3036101.5x x-=.故选:A.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.4.C【解析】【分析】依据题意,三根木条的长度分别为x m,x m,(10-2x) m,在根据三角形的三边关系即可判断. 【详解】解:由题意可知,三根木条的长度分别为x m,x m,(10-2x) m,∵三根木条要组成三角形,∴x-x<10-2x<x+x,解得:55 2x<<.故选择C.【点睛】本题主要考察了三角形三边的关系,关键是掌握三角形两边之和大于第三边,两边之差的绝对值小于第三边.5.A【解析】3==.故选A.考点:二次根式的化简6.D【解析】【分析】根据直线y=ax+b(a≠0)经过第一,二,四象限,可以判断a、b的正负,从而可以判断直线y=bx-a经过哪几个象限,不经过哪个象限,本题得以解决.【详解】∵直线y=ax+b(a≠0)经过第一,二,四象限,∴a<0,b>0,∴直线y=bx-a经过第一、二、三象限,不经过第四象限,故选D.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.7.C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AB,∵AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C .【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质 8.B【解析】∵四边形ABCD 是平行四边形,∴DC=AB ,AD=BC ,∵AC 的垂直平分线交AD 于点E ,∴AE=CE ,∴△CDE 的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD 的周长=2×6=12,故选B .9.A【解析】∵点()11A ,x y 和()22B ,x y 是反比例函数k y x =图象上的两个点,当1x <2x <1时,1y <2y ,即y 随x 增大而增大, ∴根据反比例函数k y x=图象与系数的关系:当0k >时函数图象的每一支上,y 随x 的增大而减小;当0k <时,函数图象的每一支上,y 随x 的增大而增大.故k <1.∴根据一次函数图象与系数的关系:一次函数1y=k x+b 的图象有四种情况:①当1k 0>,b 0>时,函数1y=k x+b 的图象经过第一、二、三象限;②当1k 0>,b 0<时,函数1y=k x+b 的图象经过第一、三、四象限;③当1k 0<,b 0>时,函数1y=k x+b 的图象经过第一、二、四象限;④当1k 0<,b 0<时,函数1y=k x+b 的图象经过第二、三、四象限.因此,一次函数2y x k =-+的1k 20=-<,b=k 0<,故它的图象经过第二、三、四象限,不经过第一象限.故选A .10.A【解析】【分析】根据正比例函数的增减性解答即可.【详解】∵正比例函数y=﹣k 2x (k≠0),﹣k 2<0,∴该函数的图象中y 随x 的增大而减小,∵点M (﹣3,y 1),N (﹣4,y 2)在正比例函数y=﹣k 2x (k≠0)图象上,﹣4<﹣3,∴y 2>y 1,故选:A .【点睛】本题考查了正比例函数图象与系数的关系:对于y=kx (k 为常数,k≠0),当k >0时, y=kx 的图象经过一、三象限,y 随x 的增大而增大;当k <0时, y=kx 的图象经过二、四象限,y 随x 的增大而减小. 11.D【解析】①因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2, 所以﹣2b a=﹣1,可得b=2a , 当x=﹣3时,y <0,即9a ﹣3b+c <0,9a ﹣6a+c <0,3a+c <0,∵a <0,∴4a+c <0,所以①选项结论正确;②∵抛物线的对称轴是直线x=﹣1,∴y=a ﹣b+c 的值最大,即把x=m (m≠﹣1)代入得:y=am 2+bm+c <a ﹣b+c ,∴am 2+bm <a ﹣b ,m (am+b )+b <a ,所以此选项结论不正确;③ax 2+(b ﹣1)x+c=0,△=(b ﹣1)2﹣4ac ,∵a <0,c >0,∴ac <0,∴﹣4ac >0,∵(b ﹣1)2≥0,∴△>0,∴关于x 的一元二次方程ax 2+(b ﹣1)x+c=0有实数根;④由图象得:当x >﹣1时,y 随x 的增大而减小,∵当k 为常数时,0≤k 2≤k 2+1,∴当x=k2的值大于x=k2+1的函数值,即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,ak4+bk2>a(k2+1)2+b(k2+1),所以此选项结论不正确;所以正确结论的个数是1个,故选D.12.D【解析】【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.【详解】A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2-4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,则(x0-x1)与(x0-x2)同号,∴a(x0-x1)(x0-x2)<0,综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】【分析】把x与y的值代入方程组求出m与n的值,即可确定出所求.【详解】解:把21xy=⎧⎨=⎩代入方程组得:214,213m nn m+=⎧⎨-=⎩相加得:m+3n=27,则27的立方根为3,故答案为3此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值. 14.43【解析】原式141133=+= . 15.18π【解析】解:设圆锥的半径为r ,母线长为l .则222{27r l l r ππ=-= 解得3{6r l == =3618S rl πππ∴=⨯⨯=侧16.下降【解析】【分析】根据抛物线y=3x 2+2x 图像性质可得,在对称轴的左侧部分是下降的.【详解】解:∵在232y x x =+中,30a =>,∴抛物线开口向上,∴在对称轴左侧部分y 随x 的增大而减小,即图象是下降的,故答案为下降.【点睛】本题考查二次函数的图像及性质.根据抛物线开口方向和对称轴的位置即可得出结论.17.136°.【解析】【详解】由圆周角定理得,∠A=12∠BOD=44°, 由圆内接四边形的性质得,∠BCD=180°-∠A=136° 【点睛】本题考查了1.圆周角定理;2. 圆内接四边形的性质.18.1:4∵两个相似三角形对应边上的高的比为1∶4,∴这两个相似三角形的相似比是1:4∵相似三角形的周长比等于相似比,∴它们的周长比1:4,故答案为:1:4.【点睛】本题考查了相似三角形的性质,相似三角形对应边上的高、相似三角形的周长比都等于相似比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.证明见解析【解析】试题分析:由AB=AD,CB=CD结合AC=AC可得△ABC≌△ADC,由此可得∠BAC=∠DAC,再证△ABF≌△ADF即可得到∠AFB=∠AFD,结合∠AFB=∠CFE即可得到∠AFD=∠CFE;(2)由AB∥CD可得∠DCA=∠BAC结合∠BAC=∠DAC可得∠DCA=∠DAC,由此可得AD=CD结合AB=AD,CB=CD可得AB=BC=CD=AD,即可得到四边形ABCD是菱形.试题解析:(1)在△ABC和△ADC中,∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∵AB=AD,∠BAC=∠DAC,AF=AF,∴△ABF≌△ADF,∴∠AFB=∠AFD.(2)证明:∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠ACD=∠CAD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形.20.(1)y=﹣x2﹣2x+1;(2)(﹣32,154)【解析】(1)将A(-1,0),B(0,1),C(1,0)三点的坐标代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;(2)先证明△AOB是等腰直角三角形,得出∠BAO=45°,再证明△PDE是等腰直角三角形,则PE越大,△PDE的周长越大,再运用待定系数法求出直线AB的解析式为y=x+1,则可设P点的坐标为(x,-x2-2x+1),E点的坐标为(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+32)2+94,根据二次函数的性质可知当x=-32时,PE最大,△PDE的周长也最大.将x=-32代入-x2-2x+1,进而得到P点的坐标.【详解】解:(1)∵抛物线y=ax2+bx+c经过点A(﹣1,0),B(0,1),C(1,0),∴9a-3b+c=0 {c=3a+b+c=0,解得a=-1 {b=-2 c=3,∴抛物线的解析式为y=﹣x2﹣2x+1;(2)∵A(﹣1,0),B(0,1),∴OA=OB=1,∴△AOB是等腰直角三角形,∴∠BAO=45°.∵PF⊥x轴,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PE越大,△PDE的周长越大.设直线AB的解析式为y=kx+b,则-3k+b=0 {b=3,解得k=1{b=3,即直线AB的解析式为y=x+1.设P点的坐标为(x,﹣x2﹣2x+1),E点的坐标为(x,x+1),则PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+32)2+94,所以当x=﹣32时,PE最大,△PDE的周长也最大.当x=﹣32时,﹣x 2﹣2x+1=﹣(﹣32)2﹣2×(﹣32)+1=154, 即点P 坐标为(﹣32,154)时,△PDE 的周长最大.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中.21.(1)a=2,k=8(2)OBC S V =1.【解析】分析:(1)把A (-1,a )代入反比例函数2x得到A (-1,2),过A 作AE ⊥x 轴于E ,BF ⊥x 轴于F ,根据相似三角形的性质得到B (4,2),于是得到k=4×2=8; (2)求的直线AO 的解析式为y=-2x ,设直线MN 的解析式为y=-2x+b ,得到直线MN 的解析式为y=-2x+10,解方程组得到C (1,8),于是得到结论.详解:(1)∵反比例函数y=﹣2x (x <0)的图象过点A (﹣1,a ), ∴a=﹣21-=2, ∴A (﹣1,2),过A 作AE ⊥x 轴于E ,BF ⊥⊥x 轴于F ,∴AE=2,OE=1,∵AB ∥x 轴,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF ,∴△AEO ∽△OFB ,∴AE OE OF BF=, ∴OF=4,∴B (4,2),∴k=4×2=8;(2)∵直线OA过A(﹣1,2),∴直线AO的解析式为y=﹣2x,∵MN∥OA,∴设直线MN的解析式为y=﹣2x+b,∴2=﹣2×4+b,∴b=10,∴直线MN的解析式为y=﹣2x+10,∵直线MN交x轴于点M,交y轴于点N,∴M(5,0),N(0,10),解2108y xyx=-+⎧⎪⎨=⎪⎩得,1482x xy y=-=⎧⎧⎨⎨==⎩⎩或,∴C(1,8),∴△OBC的面积=S△OMN﹣S△OCN﹣S△OBM=12⨯5×10﹣12×10×1﹣12×5×2=1.点睛:本题考查了一次函数图象上点的坐标特征,反比例函数与一次函数交点问题,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键.22.(1)y=6x-,y=-x+1;(2)C(0,2+1 )或C(0,2【解析】【分析】(1)依据一次函数y kx b=+的图象与y轴交于点(0,1)B,与反比例函数myx=的图象交于点(3,2)A-,即可得到反比例函数的表达式和一次函数表达式;(2)由(3,2)A-,(0,1)B可得:223(12)32AB=++=32BC=,再根据1BO=,可得321CO=或321,即可得出点C的坐标.【详解】(1)∵双曲线myx=过(3,2)A-,将(3,2)A-代入myx=,解得:6m=-.∴所求反比例函数表达式为:6y x=-. ∵点(3,2)A -,点(0,1)B 在直线y kx b =+上,∴23k b -=+,1b =,∴1k =-,∴所求一次函数表达式为1y x =-+.(2)由(3,2)A -,(0,1)B 可得:AB ==BC =又∵1BO =,∴1CO =或1,∴(0C ,1)或(0C ,1-).【点睛】本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题.此题难度适中,注意掌握数形结合思想的应用.23.(1)y = 0.1x + 15,(2)郁金香 25 亩,玫瑰 5 亩【解析】【分析】(1)根据题意和表格中的数据可得到y 关于x 的函数;(2)根据题意可列出相应的不等式,再根据(1)中的函数关系式即可求解.【详解】(1)由题意得y=(3-2.4)x-(2.5-2)(30-x )=0.1x+15即y 关于x 的函数关系式为y=0.1x+15(2)由题意得2.4x+2(30-x )≤70解得x≤25,∵y=0.1x+15∴当x=25时,y 最大=17.530-x=5,∴要使获得的收益最大,基地应种植郁金香25亩和玫瑰5亩.【点睛】此题主要考查一次函数的应用,解题的关键是根据题意进行列出关系式与不等式进行求解.24.0≤k≤65且 k≠1. 【解析】【分析】根据二次项系数非零、被开方数非负及根的判别式△≥0,即可得出关于 k 的一元一次不等式组,解之即可求出 k 的取值范围.【详解】解:∵关于x 的一元二次方程(k﹣1)x2+x+3=0 有实数根,∴2k≥0,k-1≠0,2k2-4 3(k-1)≥0,解得:0≤k≤65且k≠1.∴k 的取值范围为0≤k≤65且k≠1.【点睛】本题考查了根的判别式、二次根式以及一元二次方程的定义,根据二次项系数非零、被开方数非负及根的判别式△≥0,列出关于k 的一元一次不等式组是解题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 25.(1)见解析;(2) 40°.【解析】【分析】(1)根据角平分线的性质可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,进而可得出∠EDC=∠ECD,再利用等角对等边即可证出DE=CE;(2)由(1)可得出∠ECD=∠EDC=35°,进而可得出∠ACB=2∠ECD=70°,再根据等腰三角形的性质结合三角形内角和定理即可求出∠A的度数.【详解】(1)∵CD是∠ACB的平分线,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.【点睛】本题考查了等腰三角形的判定与性质、平行线的性质以及角平分线.解题的关键是:(1)根据平行线的性质结合角平分线的性质找出∠EDC=∠ECD;(2)利用角平分线的性质结合等腰三角形的性质求出∠ACB=∠ABC=70°.26.1m【解析】【分析】连接AN、BQ,过B作BE⊥AN于点E.在Rt△AMN和在Rt△BMQ中,根据三角函数就可以求得AN,BQ,求得NQ,AE的长,在直角△ABE中,依据勾股定理即可求得AB的长.【详解】连接AN、BQ,∵点A 在点N 的正北方向,点B 在点Q 的正北方向,∴AN ⊥l ,BQ ⊥l ,在Rt △AMN 中:tan ∠AMN=AN MN, ∴3 在Rt △BMQ 中:tan ∠BMQ=BQ MQ, ∴3,过B 作BE ⊥AN 于点E ,则BE=NQ=30,∴3,在Rt △ABE 中,AB 2=AE 2+BE 2,AB 2=32+302,∴AB=1.答:湖中两个小亭A 、B 之间的距离为1米.【点睛】本题考查勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.27.(1)见解析;(2)3【解析】【分析】(1)根据平行四边形的性质得出AB=CD ,BC=AD ,∠B=∠D ,求出BE=DF ,根据全等三角形的判定推出即可;(2)求出△ABE 是等边三角形,求出高AH 的长,再求出面积即可.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB CD =,BC AD =,B D ∠∠=,∵点E、F分别是BC、AD的中点,∴1 BEBC2=,1DF AD2=,∴BE DF=,在ΔABE和ΔCDF中AB CDB DBE DF=⎧⎪∠=∠⎨⎪=⎩,∴ΔABE≌ΔCDF(SAS);(2)作AH BC⊥于H,∵四边形ABCD是平行四边形,∴AD//BC,AD BC=,∵点E、F分别是BC、AD的中点,BC2AB4==,∴1BE CE BC22===,1DF AF AD22===,∴AF//CE,AF CE=,∴四边形AECF是平行四边形,∵AE CE=,∴四边形AECF是菱形,∴AE AF2==,∵AB2=,∴AB AE BE2===,即ΔABE是等边三角形,BH HE1==,由勾股定理得:22AH213=-=∴四边形AECF的面积是2323=.【点睛】本题考查了等边三角形的性质和判定,全等三角形的判定,平行四边形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.。
江苏省淮安市涟水实验中学2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列叙述,错误的是( )A .对角线互相垂直且相等的平行四边形是正方形B .对角线互相垂直平分的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线相等的四边形是矩形2.下列说法中,错误的是( )A .两个全等三角形一定是相似形B .两个等腰三角形一定相似C .两个等边三角形一定相似D .两个等腰直角三角形一定相似3.已知5a =,27b =,且a b a b +=+,则-a b 的值为( )A .2或12B .2或12-C .2-或12D .2-或12-4.如图,在矩形AOBC 中,O 为坐标原点,OA 、OB 分别在x 轴、y 轴上,点B 的坐标为(0,33),∠ABO =30°,将△ABC 沿AB 所在直线对折后,点C 落在点D 处,则点D 的坐标为( )A .(32,332)B .(2,332)C .(332,32)D .(32,3﹣332) 5.下列计算正确的是( )A .(a+2)(a ﹣2)=a 2﹣2B .(a+1)(a ﹣2)=a 2+a ﹣2C .(a+b )2=a 2+b 2D .(a ﹣b )2=a 2﹣2ab+b 26.若a=10,则实数a 在数轴上对应的点的大致位置是( )A .点EB .点FC .点GD .点H7.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为( ) A .26×105 B .2.6×102 C .2.6×106 D .260×1048.下列运算正确的是( )A .a 3•a 2=a 6B .a ﹣2=﹣21aC .33﹣23=3D .(a+2)(a ﹣2)=a 2+49.如图,直线a ∥b ,一块含60°角的直角三角板ABC (∠A =60°)按如图所示放置.若∠1=55°,则∠2的度数为( )A .105°B .110°C .115°D .120°10.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .3311.如图,在⊙O 中,弦BC =1,点A 是圆上一点,且∠BAC =30°,则»BC的长是( )A .πB .13π C .12π D .16π 12.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )A .12B .13C .14D .16二、填空题:(本大题共6个小题,每小题4分,共24分.)13.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6= .14.若正六边形的内切圆半径为2,则其外接圆半径为__________.15.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是___________.16.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米精确到1米17.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=62,点D,E分别是边BC,AC上的动点,则DA+DE 的最小值为_____.18.抛物线y=(x+1)2 - 2的顶点坐标是______ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.请画出平移后的△DEF .连接AD 、CF ,则这两条线段之间的关系是________.20.(6分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?21.(6分)已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处,如图1,已知折痕与边BC 交于点O ,连接AP 、OP 、OA .若△OCP 与△PDA 的面积比为1:4,求边CD 的长.如图2,在(Ⅰ)的条件下,擦去折痕AO 、线段OP ,连接BP .动点M 在线段AP 上(点M 与点P 、A 不重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问当动点M 、N 在移动的过程中,线段EF 的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF 的长度.22.(8分)先化简,再求值:(x+2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =1. 23.(8分)如图,Rt ABP V 的直角顶点P 在第四象限,顶点A 、B 分别落在反比例函数k y x=图象的两支上,且PB x ⊥轴于点C ,PA y ⊥轴于点D ,AB 分别与x 轴,y 轴相交于点F 和.E 已知点B 的坐标为()1,3.()1填空:k =______;()2证明://CD AB ;()3当四边形ABCD的面积和PCDV的面积相等时,求点P的坐标.24.(10分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;在图2中画出线段AB的垂直平分线.25.(10分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:△ACE≌△BCD;若AD=5,BD=12,求DE的长.26.(12分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:a=%,并补全条形图.在本次抽样调查中,众数和中位数分别是多少?如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?27.(12分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:()1这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______;()2将条形统计图补充完整;()3该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据正方形的判定、平行四边形的判定、菱形的判定和矩形的判定定理对选项逐一进行分析,即可判断出答案.【详解】A. 对角线互相垂直且相等的平行四边形是正方形,正确,不符合题意;B. 对角线互相垂直平分的四边形是菱形,正确,不符合题意;C. 对角线互相平分的四边形是平行四边形,正确,不符合题意;D. 对角线相等的平行四边形是矩形,故D选项错误,符合题意,故选D.【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定和矩形的判定等,熟练掌握相关判定定理是解答此类问题的关键.2.B【解析】【分析】根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案.【详解】解:A 、两个全等的三角形一定相似,正确;B 、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;C 、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;D 、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.故选B .【点睛】本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.特别注意,本题是选择错误的,一定要看清楚题.3.D【解析】【详解】 根据a =5,2b =7,得a 5,b 7=±=±,因为a b a b +=+,则a 5,b 7=±=,则-a b =5-7=-2或-5-7=-12. 故选D.4.A【解析】解:∵四边形AOBC 是矩形,∠ABO=10°,点B 的坐标为(0,33),∴AC=OB=33,∠CAB=10°,∴BC=AC•tan10°=33×3=1.∵将△ABC 沿AB 所在直线对折后,点C 落在点D 处,∴∠BAD=10°,AD=33.过点D 作DM ⊥x 轴于点M ,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=12AD=33,∴AM=33×cos10°=92,∴MO=92﹣1=32,∴点D 的坐标为(32,33).故选A .5.D【解析】A 、原式=a 2﹣4,不符合题意;B 、原式=a 2﹣a ﹣2,不符合题意;C 、原式=a 2+b 2+2ab ,不符合题意;D 、原式=a 2﹣2ab+b 2,符合题意,故选D6.C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】∴3<4,∵,∴3<a <4,故选:C .【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<4是解题关键.7.C【解析】【分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】260万=2600000=62.610⨯.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.C【解析】【分析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案.【详解】A 、a 3•a 2=a 5,故A 选项错误;B 、a ﹣2=21a ,故B 选项错误;C 、33﹣23=3,故C 选项正确;D 、(a+2)(a ﹣2)=a 2﹣4,故D 选项错误,故选C .【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.9.C【解析】【分析】如图,首先证明∠AMO=∠2,然后运用对顶角的性质求出∠ANM=55°;借助三角形外角的性质求出∠AMO 即可解决问题.【详解】如图,对图形进行点标注.∵直线a ∥b ,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.10.D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE =33,故选D.【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.11.B【解析】【分析】连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.【详解】解:连接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=1,∴»BC的长=6011803ππ⋅⋅=,故选B.考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.12.D【解析】【分析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.【解析】【分析】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.【详解】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.14.3 3【解析】根据题意画出草图,可得OG=2,60OAB ∠=︒,因此利用三角函数便可计算的外接圆半径OA.【详解】解:如图,连接OA 、OB ,作OG AB ⊥于G ;则2OG =,∵六边形ABCDEF 正六边形,∴OAB V 是等边三角形,∴60OAB ∠=︒, ∴43sin 603OG OA ===︒, ∴正六边形的内切圆半径为2,则其外接圆半径为433. 故答案为433. 【点睛】 本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.15.2?m >且3m ≠.【解析】【分析】方程两边同乘以x-1,化为整数方程,求得x ,再列不等式得出m 的取值范围.【详解】方程两边同乘以x-1,得,m-1=x-1,解得x=m-2, ∵分式方程3111m x x+=--的解为正数, ∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m >2且m≠1,故答案为m >2且m≠1.16.【解析】由于两盏E 、F 距离水面都是8m ,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值. 故有, 即,,. 所以两盏警示灯之间的水平距离为:17.163【解析】【分析】如图,作A 关于BC 的对称点A',连接AA',交BC 于F ,过A'作AE ⊥AC 于E ,交BC 于D ,则AD=A'D ,此时AD+DE 的值最小,就是A'E 的长,根据相似三角形对应边的比可得结论.【详解】如图,作A 关于BC 的对称点A',连接AA',交BC 于F ,过A'作AE ⊥AC 于E ,交BC 于D ,则AD=A'D ,此时AD+DE 的值最小,就是A'E 的长;Rt △ABC 中,∠BAC=90°,AB=3,2,∴()22362+, S △ABC =12AB•AC=12BC•AF , ∴3×2=9AF ,2,∴2,∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE ,∴∠A'=∠C ,∵∠AEA'=∠BAC=90°, ∴△AEA'∽△BAC ,∴''AA BC A E AC=, ∴42'62A E =, ∴A'E=163,即AD+DE的最小值是163,故答案为163.【点睛】本题考查轴对称﹣最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题.18.(-1,-2)【解析】试题分析:因为y=(x+1)2﹣2是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣2),故答案为(﹣1,﹣2).考点:二次函数的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.见解析【解析】(1)如图:(2)连接AD、CF,则这两条线段之间的关系是AD=CF,且AD∥CF.20.(1)二月份每辆车售价是900元;(2)每辆山地自行车的进价是600元.【解析】【分析】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每辆山地自行车的进价为y元,根据利润=售价﹣进价,即可得出关于y的一元一次方程,解之即可得出结论.【详解】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据题意得:3000027000100x x=+,解得:x=900,经检验,x=900是原分式方程的解,答:二月份每辆车售价是900元;(2)设每辆山地自行车的进价为y元,根据题意得:900×(1﹣10%)﹣y=35%y,解得:y=600,答:每辆山地自行车的进价是600元.【点睛】本题考查了分式方程的应用、一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 21.(1)10;(2)25.【解析】【分析】(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=12AD=4,设OP=x,则CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=12 PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=12QB,再求出EF=12PB,由(1)中的结论求出PB=228445+=,最后代入EF=12PB即可得出线段EF的长度不变【详解】(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴,∴ CP=12AD=4设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,∴△MFQ≌△NFB.∴QF=FB,∴EF=EQ+QF=12(PQ+QB)=12PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴228445+=EF=125∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为5【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形22.(x﹣y)2;2.【解析】【分析】首先利用多项式的乘法法则以及多项式与单项式的除法法则计算,然后合并同类项即可化简,然后代入数值计算即可.【详解】原式= x2﹣4y2+4xy(5y2-2xy)÷4xy=x 2﹣4y 2+5y 2﹣2xy=x 2﹣2xy+y 2,=(x ﹣y)2,当x =2028,y =2时,原式=(2028﹣2)2=(﹣2)2=2.【点睛】本题考查的是整式的混合运算,正确利用多项式的乘法法则以及合并同类项法则是解题的关键.23.(1)1;(2)证明见解析;(1)P点坐标为()13-,. 【解析】【分析】 ()1由点B 的坐标,利用反比例函数图象上点的坐标特征可求出k 值;()2设A 点坐标为3a,a ⎛⎫ ⎪⎝⎭,则D 点坐标为30,a ⎛⎫ ⎪⎝⎭,P 点坐标为31,a ⎛⎫ ⎪⎝⎭,C 点坐标为()1,0,进而可得出PB ,PC ,PA ,PD 的长度,由四条线段的长度可得出PC PD PB PA=,结合P P ∠∠=可得出PDC V ∽PAB V ,由相似三角形的性质可得出CDP A ∠∠=,再利用“同位角相等,两直线平行”可证出CD//AB ; ()3由四边形ABCD 的面积和PCD V 的面积相等可得出PAB PCD S 2S =V V ,利用三角形的面积公式可得出关于a 的方程,解之取其负值,再将其代入P 点的坐标中即可求出结论.【详解】()1解:B Q 点()1,3在反比例函数k y x=的图象, k 133∴=⨯=.故答案为:1.()2证明:Q 反比例函数解析式为3y x=, ∴设A 点坐标为3a,.a ⎛⎫ ⎪⎝⎭PB x ⊥Q 轴于点C ,PA y ⊥轴于点D ,D ∴点坐标为30,a ⎛⎫ ⎪⎝⎭,P 点坐标为31,a ⎛⎫ ⎪⎝⎭,C 点坐标为()1,0,3PB 3a ∴=-,3PC a=-,PA 1a =-,PD 1=, 3PC 1a 3PB 1a 3a -∴==--,PD 1PA 1a=-,PC PD PB PA ∴=. 又P P Q ∠∠=,PDC V ∴∽PAB V ,CDP A ∠∠∴=,CD//AB ∴.()3解:Q 四边形ABCD 的面积和PCD V 的面积相等,PAB PCD S 2S ∴=V V ,()131331a 212a 2a ⎛⎫⎛⎫∴⨯-⨯-=⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭, 整理得:2(a 1)2-=,解得:1a 12=-,2a 12(=+舍去), P ∴点坐标为()1,323--.【点睛】本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题关键是:()1根据点的坐标,利用反比例函数图象上点的坐标特征求出k 值;()2利用相似三角形的判定定理找出PDC V ∽PAB V ;()3由三角形的面积公式,找出关于a 的方程.24.(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)根据等腰直角三角形的性质即可解决问题.(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.试题解析:(1)如图所示,∠ABC=45°.(AB 、AC 是小长方形的对角线).(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.考点:作图—应用与设计作图.25.(1)证明见解析(2)13【解析】【分析】(1)先根据同角的余角相等得到∠ACE=∠BCD,再结合等腰直角三角形的性质即可证得结论;(2)根据全等三角形的性质可得AE=BD,∠EAC=∠B=45°,即可证得△AED是直角三角形,再利用勾股定理即可求出DE的长.【详解】(1)∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA∴∠ACE=∠BCD∴△ACE≌△BCD(SAS);(2)∵△ACB和△ECD都是等腰直角三角形∴∠BAC=∠B=45°∵△ACE≌△BCD∴AE=BD=12,∠EAC=∠B=45°∴∠EAD=∠EAC+∠BAC=90°,∴△EAD是直角三角形2222∴=+=+=12513DE AE AD【点睛】解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.26.(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.【解析】【分析】(1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.【详解】解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,该扇形所对圆心角的度数为310°×10%=31°,参加社会实践活动的天数为8天的人数是:2020%×10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1.(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.(1)100,108°;(2)答案见解析;(3)600人.【解析】【分析】(1)先利用QQ计算出宗人数,再用百分比计算度数;(2)按照扇形图补充条形图;(3)利用微信沟通所占百分比计算总人数.【详解】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,∴此次共抽查了:20÷20%=100人.喜欢用QQ沟通所占比例为:303 10010,∴QQ的扇形圆心角的度数为:360°×310=108°. (2)喜欢用短信的人数为:100×5%=5人喜欢用微信的人数为:100-20-5-30-5=40补充图形,如图所示:(3)喜欢用微信沟通所占百分比为:40100×100%=40%.∴该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.中考模拟数学试卷参考公式:二次函数y=ax 2+bx+c (a ≠0)的顶点坐标是)44,2(2ab ac a b --. 试 卷 Ⅰ一、选择题(本题有10小题,每小题4分,共40分)1.在数2-,0,12,2中,其中最小的数是( ▲ ) A .2-B .0C .12D .22.在平面直角坐标系中,点P (-1,4)所在的象限是(▲ ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.一次函数23y x =+的图象交y 轴于点A ,则点A 的坐标为(▲ ). A .(0,3) B .(3,0) C .(1,5) D .(-1.5,0) 4.如图所示,该几何体的左视图是( ▲ )A. B. C. D.5.不等式52x +<的解在数轴上表示为( ▲ )A . B. C. D.6.在Rt △ABC 中,∠C=90°,AC=3,AB=4,那么cos A 的值是( ▲ ) A .54B .43 C .53 D .34 7. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=15°,则∠2的度数是( ▲ )A. 25°B. 30°C. 60°D. 65°(第4题)主视方向21(第7题)O P(第9题)ABC(第10题)E PABCF8.我市某一周的最高气温(单位:℃)分别为25,27,27,26,28,28,28.则这组数据的中位数是(▲ )A .28B .27C .26D .259.如图,⊙O 的半径为5,若OP=3,,则经过点P 的弦长可能是 ( ▲ )A .3B .6C .9D .1210.如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE⊥AB 于E ,PF⊥AC 于F ,则EF的最小值为( ▲ )A . 2B .2.2C .2.4D .2.5卷Ⅱ二、填空题(本题有6小题,每小题5分,共30分)11.计算:23()a = ▲ .12.如图,AB ∥CD ,∠A=∠B=90°,AB=3,BC=2,则AB 与CD 之间的距离为 ▲ . 13.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB= ▲ . 14.在“感恩一日捐”捐赠活动中,某班40位同学捐款金额统计如下,则在这次活动中,该班同学捐款金额的平均数是 ▲ 元.金额(元) 20 30 36 50 100 学生数(人)375151015.某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为▲ 元.(用含,a b 的代数式表示)16.如图,5AB =,线段AB 的两端点在函数10(0)y x x=>的图象上,AC ⊥x 轴于点C ,BD ⊥y 轴于点D,线段AC ,BD 相交于点E.当DO=2CO 时,图中阴影部分的面积等于 ▲ .三、解答题(本题有8小题,共80分)17.(本题10分)(1)计算:2(5)(2)418-+-⨯- (2)解方程组: 21,3211x y x y +=⎧⎨-=⋅⎩.D C AB(第12题)(第16题)yxAD CBOEBADE(第13题)求证:四边形ABCD 是平行四边形.19.(本题8分)不透明的布袋里装有红、蓝、黄三种颜色小球共40个,它们除颜色外其余都相同,其中红色球20个,蓝色球比黄色球多8个. (1)求袋中蓝色球的个数.(2)求摸出1个球是黄色球的概率.(3)现再将2个黄色球放入布袋,搅匀后,求摸出1个球是黄色球的概率.20.(本题8分)如图,某河堤的横断面是梯形ABCD ,BC ∥AD ,B E ⊥AD 于点E ,AB =50米,BC=30米,∠A=60°,∠D=30°.求AD 的长度.21.(本题10分)如图,AB 是⊙O 的直径,BC 是⊙O 的切线, D 是⊙O 上一点,且AD ∥OC . (1)求证:△AD B ∽△OBC .(2)若AB=6,BC=4.求AD 的长度 .(结果保留根号)22.(本题10分)如图,正比例函数(0)y kx k =≠经过点A (2,4), A B ⊥x 轴于点B. (1)求该正比例函数的解析式.(2)将△ABO 绕点A 逆时针旋转90︒得到△ADC ,写出点C 的坐标,试判断点C 是否在直线113y x =+的图象上,并说明理由.23.(本小题12分)今年小芳家添置了新电器份的用电量是240千瓦时. (第20题)D OBACyx(第22题)(第21题)补全下列表格内容(用含x 代数式表示)月份6月份7月份月增长率x用电量 (单位:千瓦时)(2)在(1)的条件下份的用电量将达到480千瓦份用电量增长率x 的值.(精确到1%)(份用电量增长率是7月份用电量增长率的n 倍,6月份用电量为360千瓦时份的用电量将不低于500千瓦时.则n 的最大值为 .(直接写出答案)24.(本题14分) 如图,经过原点的抛物线22y x mx =-与x 轴的另一个交点为A .过点1(1,)2P m +作直线PH y ⊥轴于点H ,直线AP 交y 轴于点C .(点C 不与点H 重合) (1)当2m =时,求点A 的坐标及CO 的长. (2)当1m >时,问m 为何值时32CO =? (3)是否存在m ,使 2.5CO HC =?若存在,求出所有满足要求的m 的值,并定出相对应的点C 坐标;若不存在,请说明理由.HOPACxy(第24题)初中数学答卷纸一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分)三、解答题(本题有8小题,共80分)18.(本题8分)证明: EFABCD(第18题)19. (本题8分)(1)(2)(3)20.(本题8分)(第20题)21. (本题10分)(1)(2)22.(本题10分)(1)(2)(第21题)DOBACyx (第22题)24.(本题14分) (1)(2)(3) 23.(本题12分) (1)月份6月份7月份增长率x用电量(单位:千瓦时)(2)(3)n 的最大值为 .(直接写出答案) HOPACxy(第24题)初中数学 参考答案及评分标准一、选择题(本题共10小题,每小题4分,共40分) 1.A 2.B3.A4.B5.D6.B 7.C 8.B 9.C 10.C二、填空题(本题有6小题,每小题5分,共30分) 11.6a 12.2 13.15° 14.55 15.54+ab ()16.174三、解答题(本题有8小题,共80分) 17.(本题10分)(1)原式=258-- (3分) 21(1)(2)x y +=⎧=1732- (2分) 解:(1)+(2)得412,3x x =∴= (2分) 把3x =代如(1)得321,1y y +=∴=-(2分)3,1x y =⎧∴⎨=-⋅⎩ (1分)18.(本题8分)证明:∵BE ∥FD∴∠BEF =∠DFE∴∠BEA =∠DFC (2分) ∵AE=CF ,BE=FD∴△ABE ≌△CDF(SAS) (2分) ∴∠BAE =∠DCF, AB=CD (2分) ∴AB ∥CD∴四边形ABCD 是平行四边形. (2分)19.(本题8分)(1)14 (3分)(2)320(3分) (3)421(2分)20.(本题8分)解:画CF ⊥AD 于点F . ∵B E ⊥AD∴3sin 50253BE AB A ==⨯= (2分) ∴222250(253)25AE AB BE =-=-=∵BC ∥AD ,CF ⊥AD∴CF=BE 253=, (2分)25375tan 3CF FD D ===, EF=BC=30 (2分) ∴253075130AD AE EF FD =++=++=米 (2分) 21.(本题10分)EFABCD(第18题)(第20题)F证明:(1)∵AB 是⊙O 的直径,BC 是⊙O 的切线, ∴∠D =∠OBC =90° (2分) ∵AD ∥OC∴∠A =∠COB (2分) ∴△AD B ∽△OBC (1分) (2)∵AB=6, ∴OB=3, ∵BC=4,2222345OC OB BC ∴=+=+= (2分)∵△AD B ∽△OBC∴6,,35AD AB AD OB OC =∴= (2分) 185AD ∴= (1分)22.(本题10分)解:(1)∵正比例函数(0)y kx k =≠经过点A (2,4)∴42k = (2分)2k ∴=2y x ∴= (2分)(2) ∵A (2,4),A B ⊥x 轴于点B∴2,4OB AB ==∵△ABO 绕点A 逆时针旋转90︒得到△ADC∴2,4DC OB AD AB ==== (2分) ∴C (6,2) (2分)∵当6x =时,161323y =⨯+=≠ ∴点C 不在直线113y x =+的图象上 (2分)23.(本题12分)(1) (每空格2分)月份6月份7月份增长率 1.5x用电量 (单位:千瓦时)240(1 1.5)x +240(1)(1 1.5)x x ++(2)480240(1)(1 1.5)x x =++, (2分)(第21题)D OBACyx(第22题)。