胶体与表面化学-第五章 常用吸附剂的结构、性能和改性
- 格式:ppt
- 大小:6.90 MB
- 文档页数:75
胶体与表面化学〔第四版〕1.绪论分散系统:一种物质以细分散状态分散在另一种物质中构成的系统。
分散相:分散系统中被分散的不连续相。
分散介质:分散系统中的连续相。
比表面:单位质量分散相物质所具有的面积。
缔合胶体:多个分子的缔合体构成胶体分散相。
胶体体系:分散相粒子至少在一个尺度上的大小处在1-100nmX 围内的分散系统。
溶胶:把分散介质是液体的胶体系统称为液溶胶,介质是水为水溶胶;介质是固体为固溶胶。
2.胶体与纳米粒子的制备胶体制备:分散法〔机械、电分散、超声波、胶溶〕、凝聚法〔还原、氧化、水解、复分解〕晶核-晶体成长条件:1〕分散相在介质中的溶解度必须极小;2〕必须有稳定剂的存在净化:1〕渗析:利用羊皮纸或火棉胶制成的半透膜,将溶胶与纯分散介质隔开。
2〕超过滤:利用半透膜代替普通滤纸在压差下过滤溶胶的方法。
3〕渗透:借半透膜将溶液和溶剂隔开,此膜只允许溶剂分子通过,胶粒和溶质不能通过。
反渗透:渗透平衡时在浓相一侧施加外压,则浓相中的溶剂分子向稀相迁移。
单分散溶胶:特定条件下制取的胶粒尺寸、形状和组成皆相同的溶胶。
胶体晶体:由一种或多种单分散胶体粒子组装并规整排列的二维或三维类似于晶体的有序结构。
光子晶体:在各个方向能阻止一定频率X 围的光传播。
纳米粒子特性:比表面积大;易形成聚团;熔点低;磁性强;光吸收强;热导性能好制备:气相、液相、固相纳米气泡:在液体中或固液界面上存在的纳米尺度的气泡。
3.胶体系统的基本性质(N A =6.5*1023mol -1,R=8.314,T=273K)运动扩散:扩散系数:爱因斯坦第一扩散公式:r 61πη⋅=A N RT D 爱因斯坦布朗运动:r3t t 2πη⋅==A N RT D X 沉降:大气压随高度分布:RTM gh -p p ln 0h =光学散射现象:当质点大小在胶体X 围内时。
反射:质点直径远大于入射光波长。
丁道尔现象:以一束强烈的光线射入溶胶后,在入射光的垂直方向可以看到一道明亮的光带。
胶体与表面化学第一章绪论(2学时)1.1胶体的概念什么是胶体,胶体的分类1.2胶体化学发展简史1.3胶体化学的研究对象表面现象,疏液胶体,缔合胶体,高分子溶液。
重点:胶体、分散系统、分散相、分散介质的概念。
难点:胶体与表面化学在矿物加工工程中的作用及意义。
教学方法建议:启发式教学,引导学生对胶体及表面化学的兴趣。
第二章胶体与纳米材料制备(4学时)2.1胶体的制备胶体制备的条件和方法,凝聚法原理。
2.2胶体的净化渗析、渗透和反渗透。
2.3单分散溶胶单分散溶胶的定义及制备方法。
2.4胶体晶体胶体晶体的定义及制备方法2.5纳米粒子的制备什么是纳米材料,纳米粒子的特性及制备方法重点:胶体的制备、溶胶的净化、胶体晶体的制备。
难点:胶体制备机理。
教学方法建议:用多媒体教学,注重理论联系实际。
第三章胶体系统的基本性质(8学时)3.1溶胶的运动性质扩散、布朗运动、沉降、渗透压和Donnan平衡。
3.2溶胶的光学性质丁道尔效应和溶胶的颜色。
3.3溶胶的电学性质电动现象、双电层结构模型和电动电势(ζ电势)3.4溶胶系统的流变性质剪切速度越切应力,牛顿公式,层流与湍流,稀胶体溶液的黏度。
3.5胶体的稳定性溶胶的稳定性、DLVO理论、溶胶的聚沉、高聚物稳定胶体体系理论。
3.6显微镜及其对胶体粒子大小和形状的测定显微镜的类型及基本作用重点:沉降、渗透压、电泳、电渗、ζ电势的计算、双电层结构模型、DLVO理论、溶胶的聚沉。
难点:双电层结构模型。
教学方法建议:多媒体教学和板书教学相结合。
第四章表面张力、毛细作用与润湿作用(6学时)4.1表面张力和表面能净吸力和表面张力的概念、影响表面张力的因素、液体表面张力和固体表面张力的测定方法。
4.2液-液界面张力Anntonff规则、Good-Girifalco公式、Fowkes理论和液-液界面张力的测定。
4.3毛细作用与Laplace公式和Kelvin公式毛细作用,Laplace公式和Kelvin公式的应用,曲界面两侧的压力差及与曲率半径的关系,毛细管上升或下降现象,弯曲液面上的饱和蒸气压。
胶体与表面化学(第二版)沈钟王果庭编著化学工业出版社目录—————————————第一章绪论第一节什么是胶体第二节胶体化学发展简史第三节胶体化学的研究对象和意义第四节胶体与表面化学的发展第二章胶体的制备和性质第一节胶体的制备和净化一、胶体制备的一般条件二、胶体制备的方法三、凝聚法原理四、溶胶的净化五、单分散溶胶六、超细颗粒第二节溶胶的运动性质一、扩散二、布朗运动三、沉降第三节溶胶的光学性质一、光散射二、显微镜及其对粒子大小和形状的测定第四节溶胶的电学性质和胶团结构一、电动现象及其应用二、质点表面电荷的来源三、胶团结构四、双电层结构模型和电动电位(ζ电位)五、扩散双电层的数学计算六、ζ电位的计算第五节胶体稳定性一、溶胶的稳定性二、溶胶的聚沉三、高聚物稳定胶体体系的理论第六节流变性质一、基本概念和术语二、稀胶体溶液的粘度三、浓分散体系的流变性质第七节胶体的形貌一、胶粒的形状二、胶粒的平均大小与多分散度三、分形(Fractal)理论第三章凝胶第一节概述一、凝胶及其通性二、凝胶的分类第二节凝胶的形成一、凝胶形成的条件二、凝胶形成的方法第三节凝胶的结构第四节胶凝作用及其影响因素一、溶胶凝胶转变时的现象二、影响胶凝作用的因素第五节凝胶的性质一、触变作用二、离浆作用三、膨胀作用四、吸附第六节凝胶中的扩散和化学反应一、扩散作用二、化学反应第七节几种重要的凝胶一、硅酸铝凝胶的制备和结构特性二、高吸水性聚合物的合成和性能三、凝胶色谱用凝胶四、凝胶薄膜第四章界面现象和吸附第一节表面张力和表面能一、净吸力和表面张力的概念二、影响表面张力的因素三、测定液体表面张力的方法四、测定固体表面张力的方法第二节弯曲界面的一些现象一、曲界面两侧压力差二、曲界面两侧压力差与曲率半径的关系三、毛细管上升和下降现象四、弯曲液面上的饱和蒸气压第三节润湿和铺展一、润湿现象和润湿角二、铺展三、润湿热第四节固体表面的吸附作用一、固体表面的特点二、吸附作用和吸附热三、吸附曲线四、吸附量测定的实验方法第五节吸附等温方程式一、Freundlich吸附等温式二、Langmuir吸附等温式——单分子层吸附理论三、BET吸附等温式——多分子层吸附理论第六节固体—气体界面吸附的影响因素一、温度二、压力三、吸附剂和吸附质性质第七节固体—溶液界面吸附一、吸附剂、溶质和溶剂的极性及其他性质对吸附量的影响二、混合(物)吸附三、多分子层吸附四、对高分子的吸附五、对表面活性剂的吸附六、对电解质的吸附七、二元液体混合物中的吸附第五章常用吸附剂的结构、性能和改性第一节多孔性物质物理结构的测定方法一、密度二、比表面积三、孔体积四、平均孔半径五、孔径分布六、粒度第二节常用吸附剂的结构和性能一、硅胶二、活性氧化铝三、活性炭四、吸附树脂五、粘土六、硅藻土七、分子筛第三节固体的表面改性及其应用一、表面改性效果的评定二、表面改性方法和机理三、表面改性的应用第六章表面活性剂第一节表面活性剂概述一、表面活性剂定义二、表面活性剂的结构特点第二节表面活性剂的分类和结构特点一、表面活性剂的分类方法二、表面活性剂的结构特点及应用第三节表面活性剂在界面上的吸附一、Gibbs吸附公式二、Gibbs公式的物理意义和有关注意事项三、吸附层结构四、表面吸附层的状态方程式及单分子层表面膜的应用五、LB膜第四节表面活性剂的体相性质一、各种性质对浓度的转折点二、表面活性剂的溶度第五节胶束理论一、胶束与临界胶束浓度二、胶束的结构三、临界胶束浓度及其影响因素第六节表面活性剂的亲水亲油平衡(HLB)问题一、概述二、求算HLB值的方法三、关于HLB值的几个问题第七节表面活性剂的作用及应用一、增溶作用二、润湿和渗透三、分散和絮凝四、起泡和消泡五、去污作用六、胶束催化第七章乳状液第一节概述第二节乳状液的制备和物理性质一、混合方式二、乳化剂的加入方式三、影响分散度的因素四、乳状液的物理性质第三节乳状液类型的鉴别一、稀释法二、染色法三、导电法第四节影响乳状液稳定性的因素一、乳状液是热力学不稳定体系二、油—水间界面的形成三、界面电荷四、乳状液的粘度五、液滴大小及其分布六、粉末乳化剂的稳定作用第五节乳化剂的选择一、乳化剂的分类二、乳化剂的HLB值及其应用三、转相温度(PIT)第六节乳状液的变型和破乳一、乳状液的变型二、影响乳状液变型的因素三、乳状液的破坏第七节微乳状液一、微乳状液的微观结构二、助表面活性剂的作用三、微乳状液的形成机理四、微乳状液的制备五、微乳状液相图六、微乳状液的性质七、微乳状液的应用前景第八节乳状液的应用一、控制反应二、农药乳剂三、沥青乳状液四、稠油的乳化降粘五、纺织工业六、制革工业七、乳化食品和医药用乳剂第九节液膜分离一、基本情况二、液膜分离机理三、液膜分离实例第八章高分子溶液第一节聚合物的分子量和分子量分布第二节高聚物的溶解、溶胀及其在溶液中的形态第三节溶液中高分子的大小一、均方根末端距二、均方回转半径第四节高分子溶液的运动性质一、扩散与超离心力场下的高分子沉降速度二、高分子溶液的粘度第五节高分子溶液的平衡性质一、高分子溶液的渗透压二、Donnan平衡三、聚电解质的渗透压第六节高分子溶液的光散射一、静态光散射——弹性光散射二、动态光散射——准弹性光散射(QELS)第七节聚电解质一、解离平衡二、粘度三、聚电解质应用举例——絮凝剂参考文献第一章绪论胶体化学(colloid chemistry)是胶体体系的科学。
名词解释胶体系统:一种物质以细分状态分散在另一种物质中构成的系统成为胶体系统分散相:在分散系统中被分散的不连续的相称为分散相分散介质:分散系统中连续的相称为分散介质胶体:分散相粒子至少在一个尺度上的大小处在1~100nm范围内的分散系统称为胶体分散系统,或胶体系统,或胶体。
纳米材料;:在三维空间内至少有一维处于规定的纳米尺度范围内(1~100nm),则该种材料称为纳米材料纳米污染:由纳米微粒对环境和人类健康所带来污染和危害渗透:借半透膜将溶液(浓相)和溶剂(如水)隔开,此膜只允许溶剂分子通过,二胶粒或溶质不能通过单分散溶胶:特定条件下制取的胶粒尺寸、形状和组成皆相同的溶胶渗析:利用羊皮纸或由火棉胶制成的半透膜,将溶胶与纯分散介质隔开,这是因为这种膜的空隙很小,它不仅能让小分子或离子通过,而胶粒不能通过纳米粒子(或纳米粉体),它们在空间的三维尺度均在纳米尺度内(均小于100nm),因此称为零维纳米材料。
胶体晶体:由一种或多种单分子分散胶体粒子组装并规整排列的二维或三维类似于晶体的有序结构成为胶体晶体聚沉:溶胶中的分散相微粒互相聚结,颗粒变大,进而发生沉淀的现象。
毛细现象:由于液体表面张力的存在而引起的液体表面形态、性质变化的各种现象。
CMC:表面活性剂溶液性质发生突变的浓度反胶束:表面活性剂在非水溶剂(主要是非极性和弱极性溶剂)中形成的聚集体;囊泡也称为泡囊,两亲分子形成的封闭双层结构称为囊泡或脂质体表面活性剂的亲水亲油平衡值(HLB值)乳状液:由两种(或两种以上)不互溶或部分互溶的液体形成的分散系统,称乳状液。
气体分离:用物理或化学的方法将混合气体分离成单一组分的气体。
吸附(adsorption):在不相混溶的两相接触时,两体相中的某种或几种组分浓度与它们在界面相中浓度不同的现象称为吸附。
吸附质(adsorbate):发生吸附作用时已被吸附的物质称为吸附质。
吸附剂(adsorbent):能有效在其表面上发生吸附作用的固体物质称为吸附剂吸附量:吸附平衡时单位质量或单位表面积吸附剂上吸附吸附质的量吸附热:在吸附过程中的热效应称为吸附热积分吸附热:等温条件下,一定量的固体吸附一定量的气体所放出的热,用Q表示。