(完整版)二元一次方程组教案
- 格式:doc
- 大小:95.01 KB
- 文档页数:8
七年级数学二元一次方程组解法教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!七年级数学二元一次方程组解法教案(优秀6篇)《二元一次方程与一次函数》教学设计这次漂亮的本店铺为亲带来了6篇《七年级数学二元一次方程组解法教案》,希望能够满足亲的需求。
二元一次方程组教学设计第一篇:二元一次方程组教学设计3.3二元一次方程组(1课时)教学设计【教学重点与难点】教学重点:二元一次方程、二元一次方程组、二元一次方程组的定义及解的意义,以及检验一对数值是不是某个二元一次方程组的解教学难点:求二元一次方程的特殊解【教学目标】1.能说出二元一次方程、二元一次方程组和它的解的概念,会检验所给的一组未知数的值是否是二元一次方程、二元一次方程组的解2.通过实例认识二元一次方程和二元一次方程组都是反映数量关系的重要数学模型,能设两个未知数并列方程组表示实际问题中的两种相关的等量关系3通过对本课知识的探究与应用,提高学生的逻辑思维能力和分析、解决问题的能力。
【教学过程】一、创设情境提出问题(设计说明:从学生亲身体验中提出问题,引导学生思考,自然进入新课)问题:星期天,我们8个人去合肥动物园玩,买门票花了34元.每张成人票5元,每张儿童票3元。
他们到底去了几个成人、几个儿童呢?若设他们中有x个成人,y个儿童.由此你能得到怎样的方程? 先放开让学生说,接着提出下面的问题:你得到的两个方程是一元一次方程吗?与一元一次方程比较有什么不同?如果让你给它起名字,你认为应该叫它什么合适?二、探索新知解决问题1.二元一次方程的概念(设计说明:由实际问题引导学生开始对二元一次方程概念的探索。
学生自己归纳总结出方程的特点之后给出二元一次方程的概念,比直接定义印象会更深刻,有助于学生对概念的理解)学生给方程x+y=8,5x+3y=34命名之后,类比一元一次方程进一步讨论下面的问题:问题1:请你写出几个二元一次方程,和同桌交流,判断写出的方程是否符合要求问题2:请找出二元一次方程的特点①含有两个未知数②含未知数项的次数是一次③是整式方程问题3:二元一次方程的定义(类比一元一次方程的定义由学生归纳得出)含有两个未知数且含未知数项的最高次数都是1的方程叫二元一次方程练一练:请判断下列各方程中,哪些是二元一次方程,哪些不是?并说明理由⑴2x+5y=10 ⑵ 2x+y+z=1 ⑶⑹2x+10xy =0+y=20(4)x2+2x+1=0 ⑸2a+3b=5 解析:(2)中含有三个未知数,(3)中含有分式,(4)中 x2的次数是2,(5)中10xy 的次数是2,所以,(2)、(3)、(4)、(6)都不是二元一次方程,(1)、(5)是二元一次方程(教学说明:本环节设计的问题引导学生用类比法分析二元一次方程的特征,逐步得出二元一次方程的定义,并在应用中进一步巩固对定义的理解)2.二元一次方程的解(设计说明:用类比的方法学习二元一次方程解的意义,在求解的过程中体会二元一次方程解的不唯一性,在正确理解的基础上归纳出解决问题的一般方法)问题1 :满足方程x+y=22且符合问题实际意义的x,y的值有哪些? 问题2:二元一次方程的解结合问题1,类比一元一次方程解的意义归纳出二元一次方程的解的意义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.同时指出:(1)一元一次方程只有一个解,而二元一次方程有无限多解(本题中需要考虑x,y的实际意义),其中一个未知数(x或y)每取一个值,另一个未知数(x或y)就有惟一的值与它相对应.(2)二元一次方程的每一个解是一对数值(教学说明:用填表的方式学生容易找到x,y的值,然后结合表格数据得出二元一次方程解的意义,并进一步体会二元一次方程解的不唯一性)3.二元一次方程组方程X+Y=8和5X+3Y=34中,X的含义相同吗?Y呢?,x、y的含义分别相同.因而x,y必须同时满足方程X+Y=8和5X+3Y=34.把它们联立起来,得:像这样,把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.说明:方程组各方程中,同一字母必须代表同一数量,才能合在一起练习已知x、y都是未知数,判别下列方程组是否为二元一次方程组? ①②③④ 解析:①④是二元一次方程组,②中第一个方程是二元二次方程,③中的两个方程共含有3个未知数,所以②③不是二元一次方程组4.二元一次方程组的解问题1: 请找出同时满足方程X+Y=8和5X+3Y=34的x,y的值.指导学生找出x,y的值,并进一步说明这一组数值就是方程组的解问题2:二元一次方程组的解二元一次方程组的两个方程的公共解,叫做二元一次方程组的解三、巩固训练熟练技能(设计说明:通过形式不同的练习,从不同的角度帮助学生进一步加深对相关观念的理解,形成初步技能。
七年级数学二元一次方程组教案七年级数学二元一次方程组教案范文一:应用二元一次方程组教学目标:知识与技能目标:通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题.初步体会解二元一次方程组的基本思想“消元”。
培养学生列方程组解决实际问题的意识,增强学生的数学应用能力。
过程与方法目标:经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型。
情感态度与价值观目标:1.进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.2.通过"鸡兔同笼",把同学们带入古代的数学问题情景,学生体会到数学中的"趣";进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神。
重点:经历和体验列方程组解决实际问题的过程;增强学生的数学应用能力。
难点:确立等量关系,列出正确的二元一次方程组。
教学流程:课前回顾复习:列一元一次方程解应用题的一般步骤情境引入探究1:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?“雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94足,问雉兔各几何?(1)画图法用表示头,先画35个头将所有头都看作鸡的,用表示腿,画出了70只腿还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿四条腿的是兔子(12只),两条腿的是鸡(23只)(2)一元一次方程法:鸡头+兔头=35鸡脚+兔脚=94设鸡有x只,则兔有(35-x)只,据题意得:2x+4(35-x)=94比算术法容易理解想一想:那我们能不能用更简单的方法来解决这些问题呢?回顾上节课学习过的二元一次方程,能不能解决这一问题?(3)二元一次方程法今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?(1)上有三十五头的意思是鸡、兔共有头35个,下有九十四足的意思是鸡、兔共有脚94只.(2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只;鸡足有2x只;兔足有4y只.解:设笼中有鸡x只,有兔y只,由题意可得:鸡兔合计头xy35足2x4y94解此方程组得:练习1:1.设甲数为x,乙数为y,则“甲数的二倍与乙数的一半的和是15”,列出方程为_2x+05y=152.小刚有5角硬币和1元硬币各若干枚,币值共有六元五角,设5角有x枚,1元有y枚,列出方程为05x+y=65.三、合作探究探究2:以绳测井。
二元一次方程组教案3 篇一、学习内容分析:执教者钱嘉颖时间XXXX年6月12日1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)2、教材内容简要分析教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。
每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。
以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。
之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。
另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。
3、学习内容分析表:知识点重点难点编号内容1二元一次方程组定义及特点二元一次方程组的两个特点二元一次方程组成立的条件(未知数要同时满足两个条件)2二元一次方程组代入消元法代入消元法的具体解法消元法与一元一次方程解法间的联系3二元一次方程组实际运用以实际例题列出方程并解答未知数的假设以及运用已知条件列出正确方程。
二、学习者分析:本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。
初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。
初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。
而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。
此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。
初二数学上册第七章《二元一次方程组》教案设计【4篇】初中二元一次方程数学教案范文一:二元一次方程组——鸡兔同笼下面是小编精心为大家整理的初二数学上册第七章《二元一次方程组》教案设计【4篇】,希望能够帮助到大家。
元一次方程公开课教案篇一【教学目标】【知识目标】了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
【能力目标】通过讨论和练习,进一步培养学生的观察、比较、分析的能力。
【情感目标】通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
【重点】二元一次方程组的含义【难点】判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。
【教学过程】一、引入、实物投影1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?2、请每个学习小组讨论(讨论2分钟,然后发言)这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y 个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:x+1=2(y-1)师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少?(含有两个未知数,并且所含未知数项的次数是1)师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程注意:这个定义有两个地方要注意①、含有两个未知数,②、含未知数的次数是一次练习(投影)下列方程有哪些是二元一次方程+2y=1xy+x=13x-=5x2-2=3xxy=12x(y+1)=c2x-y=1x+y=0二、议一议、师:上面的方程中x-y=2,x+1=2(y-1)的x含义相同吗?y呢?师:由于x、y的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成x-y=2x+1=2(y-1)像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
二元一次方程组教学设计(通用12篇)二元一次方程组教学设计(通用12篇)作为一名教职工,时常要开展教学设计的准备工作,借助教学设计可以提高教学质量,收到预期的教学效果。
教学设计应该怎么写呢?以下是小编收集整理的二元一次方程组教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
二元一次方程组教学设计篇1一、说教材分析1、教材的地位和作用二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。
本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。
通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。
2、教学目标知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。
能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。
会在实际问题中列二元一次方程组。
情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3、重点、难点重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际生活中二元一次方程组的应用。
二、教法现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。
根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
二元一次方程组教学设计(共7篇)第1篇:二元一次方程组教学设计《二元一次方程组》(自主课堂教学设计)学习内容:义务教育课程人教板七年级数学下册88—89页。
教学目标知识与技能:1、使学生了解二元一次方程的概念,能举例说明二元一次方程及其中的已知数和未知数;2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。
过程与方法:学会用类比的方法迁移知识,体验二元一次方程组在处理实际问题中的优越性。
情感、态度与价值观:通过对二元一次方程(组)的概念的学习,感受数学与生活的联系,感受数学的乐趣教学重点:二元一次方程(组)的概念及检验一对数是否是某个二元一次方程(组)的解。
教学难点:二元一次方程组的解的含义。
教学步骤:一、知识回顾1.什么叫做一元一次方程?解方程2X+3=5,X=2.2X+3Y=5是几元几次方程?二、指导自学—问题引领自学指导请认真看P.92—94的内容.思考:1、在P.92引例(篮球赛)中,你能用一元一次方程解吗?对于引例中的这两种解法:一种是设一个未知数,另一种是设两个未知数,哪种解法更好理解呢?:2.把两个二元一次方程合在一起,就形成一个二元一次方程组,是通过什么符号实现的?归纳二元一次方程(组)的概念。
3.如何检验一对数是否是某个二元一次方程(组)的解。
6分钟后,比谁能说出以上问题答案.三.学生自学学生按照自学指导看书,教师巡视,确保人人学得紧张高效.四.老师点拔:1.涉及二元一次方程(组)的概念问题时,要注意二元、一次,整式三方面;2.二元一次方程组的相同的字母它们所表示的意义一样。
并不是任意两个二元一次方程都能组成二元一次方程组。
(举例分析)3、二元一次方程组的解与一元一次方程的解它们有什么异同点?不同点:二元一次方程组的解是满足每一个二元一次的,并且是成对出现的解相同点:都是方程的解,代入方程都会使方程左右两边成立)五.检查自学效果自学检测题1、3x+2y=6,它有______个未知数,且未知数是___次,因此是_____元______次方程2、3x=6是____元____次方程,其解x=_____,有______个解,3x+2y=6,当x=0时,y=_____;当x=2时,y=_____;当y=5时,x=____(因此,使二元一次方程左右两边相等的______个未知数的值,叫作二元一次方程的解。