分治法之选择问题 (1)
- 格式:ppt
- 大小:252.00 KB
- 文档页数:13
分治法解决问题的步骤一、基础概念类题目(1 - 5题)题目1:简述分治法解决问题的基本步骤。
解析:分治法解决问题主要有三个步骤:1. 分解(Divide):将原问题分解为若干个规模较小、相互独立且与原问题形式相同的子问题。
例如,对于排序问题,可将一个大的数组分成两个较小的子数组。
2. 求解(Conquer):递归地求解这些子问题。
如果子问题规模足够小,则直接求解(通常是一些简单的基础情况)。
对于小到只有一个元素的子数组,它本身就是有序的。
3. 合并(Combine):将各个子问题的解合并为原问题的解。
在排序中,将两个已排序的子数组合并成一个大的有序数组。
题目2:在分治法中,分解原问题时需要遵循哪些原则?解析:1. 子问题规模更小:分解后的子问题规模要比原问题小,这样才能逐步简化问题。
例如在归并排序中,不断将数组对半分,子数组的长度不断减小。
2. 子问题相互独立:子问题之间应该尽量没有相互依赖关系。
以矩阵乘法的分治算法为例,划分后的子矩阵乘法之间相互独立进行计算。
3. 子问题与原问题形式相同:方便递归求解。
如二分查找中,每次查找的子区间仍然是一个有序区间,和原始的有序区间查找问题形式相同。
题目3:分治法中的“求解”步骤,如果子问题规模小到什么程度可以直接求解?解析:当子问题规模小到可以用简单的、直接的方法(如常量时间或线性时间复杂度的方法)解决时,就可以直接求解。
例如,在求数组中的最大最小值问题中,当子数组只有一个元素时,这个元素既是最大值也是最小值,可以直接得出结果。
题目4:分治法的“合并”步骤有什么重要性?解析:1. 构建完整解:它将各个子问题的解组合起来形成原问题的解。
例如在归并排序中,单独的两个子数组排序好后,只有通过合并操作才能得到整个数组的有序排列。
2. 保证算法正确性:如果合并步骤不正确,即使子问题求解正确,也无法得到原问题的正确答案。
例如在分治算法计算斐波那契数列时,合并不同子问题的结果来得到正确的斐波那契数是很关键的。
算法分析与设计实验报告第 1 次实验附录:完整代码#include <time.h>#include <iostream>#include <iomanip>#include <stdlib.h>using namespace std;void min_max(int a[],int i,int j,int &min,int &max) {int mid,max1,max2,min1,min2;if(i==j){max=a[i];min=a[i];return;}if(j==i+1){if(a[i]>a[j]){min=a[j];max=a[i];}else{min=a[i];max=a[j];}}else{mid=(i+j)/2;min_max(a,i,mid,min1,max1);min_max(a,mid+1,j,min2,max2);if(min1>min2)min=min2;elsemin=min1;if(max1>max2)max=max1;elsemax=max2;}}int main (){int m,a[100],min,max;while(1){int f;cout<<"随机数组的规模:";cin>>m;cout<<"随机数的范围:";cin>>f;//计时开始clock_t start,end,over;start=clock();end=clock();over=end-start;start=clock();srand((unsigned)time(NULL));for(int i=1;i<=m;i++){a[i]=(rand()%(f)+0);cout<<a[i]<<' ';}cout<<endl;min_max(a,1,m,min,max);cout<<"最小值:"<<min<<endl;cout<<"最大值:"<<max<<endl;end=clock();printf("The time is %6.3f",(double)(end-start-over)/CLK_TCK);cout<<endl;cout<<endl;}}。
分治法练习题分治法是一种常见的算法设计方法,其核心思想是将问题划分成若干个规模较小且结构相似的子问题,然后分别解决这些子问题,最后将子问题的结果合并得到原问题的解。
在实际应用中,选取合适的问题划分方式以及合并子问题的结果是非常关键的。
下面,我将为您介绍两个分治法的练习题。
题目一:寻找最大子数组和给定一个整数数组,找到其连续子数组中的最大和。
例如,输入数组[-2, 1, -3, 4, -1, 2, 1, -5, 4],其最大子数组和为6,对应的子数组为[4, -1, 2, 1]。
解题思路:1. 将原问题划分成规模较小的子问题:将数组分为两部分,分别求解左子数组和右子数组的最大子数组和,以及跨越中点的最大子数组和。
2. 递归求解子问题:对于左右子数组,可以再次使用分治法求解;对于跨越中点的最大子数组和,可以通过以中点为中心,向左右扩展来得到。
3. 合并子问题的结果:对于左右子数组的最大子数组和,取较大值作为整个数组的最大子数组和;对于跨越中点的最大子数组和,取两边相加的最大值。
题目二:求解逆序对个数给定一个数组,逆序对是指数组中两个元素a[i]和a[j],满足i < j且a[i] > a[j]。
请设计一个算法,求解给定数组中逆序对的个数。
解题思路:1. 将原问题划分成规模较小的子问题:将数组平均分为两部分,分别求解左子数组和右子数组中逆序对的个数,以及两个子数组之间的逆序对个数。
2. 递归求解子问题:对于左右子数组,可以再次使用分治法求解;对于两个子数组之间的逆序对个数,可以通过归并排序的思想来求解。
3. 合并子问题的结果:将左右子数组合并为一个有序数组,并统计两个子数组之间的逆序对个数。
同时,递归返回的结果也需要累加进逆序对的总数。
通过以上两个练习题,我们可以更加深入地理解和应用分治法这一算法设计思想,同时也能提升对问题分解和结果合并的能力。
当然,在实际应用中,我们需要灵活运用分治法以及结合具体问题来设计合适的算法,并注意算法的效率和性能。
算法分析作业 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】算法分析练习题(一)一、选择题1、二分搜索算法是利用(A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是(A )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3.下列算法中通常以自底向上的方式求解最优解的是(B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法4、衡量一个算法好坏的标准是(C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短5、以下不可以使用分治法求解的是(D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题6. 实现循环赛日程表利用的算法是(A )。
A、分治策略B、动态规划法C、贪心法D、回溯法7.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法8.最长公共子序列算法利用的算法是(B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法9.实现棋盘覆盖算法利用的算法是(A )。
A、分治法B、动态规划法C、贪心法D、回溯法10. 矩阵连乘问题的算法可由(B)设计实现。
A、分支界限算法B、动态规划算法C、贪心算法D、回溯算法11、Strassen矩阵乘法是利用(A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法12、使用分治法求解不需要满足的条件是(A )。
A 子问题必须是一样的B 子问题不能够重复C 子问题的解可以合并D 原问题和子问题使用相同的方法解13、下列算法中不能解决0/1背包问题的是(A )A 贪心法B 动态规划C 回溯法D 分支限界法14.实现合并排序利用的算法是(A )。
A、分治策略B、动态规划法C、贪心法D、回溯法15.下列是动态规划算法基本要素的是(D )。
A、定义最优解B、构造最优解C、算出最优解D、子问题重叠性质16.下列算法中通常以自底向下的方式求解最优解的是(B )。
算法练习题-分章节-带答案一、选择题1、下面关于算法的描述,正确的是()A、一个算法只能有一个输入B、算法只能用框图来表示C、一个算法的执行步骤可以是无限的D、一个完整的算法,不管用什么方法来表示,都至少有一个输出结果2、一位爱好程序设计的同学,想通过程序设计解决“韩信点兵”的问题,他制定的如下工作过程中,更恰当的是()A、设计算法,编写程序,提出问题,运行程序,得到答案B、分析问题,编写程序,设计算法,运行程序,得到答案C、分析问题,设计算法,编写程序,运行程序,得到答案D、设计算法,提出问题,编写程序,运行程序,得到答案3、下面说法正确的是()A、算法+数据结构=程序B、算法就是程序C、数据结构就是程序D、算法包括数据结构4、衡量一个算法好坏的标准是()。
A、运行速度快B、占用空间少C、时间复杂度低D、代码短5、解决一个问题通常有多种方法。
若说一个算法“有效”是指()。
A、这个算法能在一定的时间和空间资源限制内将问题解决B、这个算法能在人的反应时间内将问题解决C、这个算法比其他已知算法都更快地将问题解决D、A和C6、算法分析中,记号O表示(),记号表示()。
A.渐进下界B.渐进上界C.非紧上界D.非紧下界7、以下关于渐进记号的性质是正确的有:()A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))B.f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))C.O(f(n))+O(g(n))=O(min{f(n),g(n)})D.f(n)O(g(n))g(n)O(f(n))8、记号O的定义正确的是()。
A.O(g(n))={f(n)|存在正常数c和n0使得对所有nn0有:0f(n)cg(n)};B.O(g(n))={f(n)|存在正常数c和n0使得对所有nn0有:0cg(n)f(n)};C.O(g(n))={f(n)|对于任何正常数c>0,存在正数和n0>0使得对所有nn0有0f(n)D.O(g(n))={f(n)|对于任何正常数c>0,存在正数和n0>0使得对所有nn0有:0cg(n)<f(n)};9、记号的定义正确的是()。
选择题
下列哪个问题适合使用分治法解决?
A. 求解一元二次方程
B. 求解线性方程组
C. 归并排序(正确答案)
D. 求解最短路径问题(如Dijkstra算法)
分治法在解决问题时,通常会将问题划分为:
A. 一个更小的问题和一个辅助问题
B. 两个或更多个相似的子问题(正确答案)
C. 多个完全不相关的问题
D. 一个更大的问题和一个简化的问题
使用分治法求解时,递归的终止条件通常是:
A. 问题规模达到预设的阈值(正确答案)
B. 问题变得无法再分解
C. 找到问题的精确解
D. 递归深度达到某一值
在分治法中,将问题划分为子问题后,通常需要对子问题的解进行:
A. 丢弃
B. 合并(正确答案)
C. 忽略
D. 重新排序
下列哪个问题可以通过分治法递归地求解?
A. 计算数组的平均值
B. 查找数组中的最大值
C. 计算斐波那契数列的第n项(正确答案)
D. 判断一个数是否为质数
分治法的时间复杂度通常可以通过什么来分析?
A. 递归树(正确答案)
B. 动态规划表
C. 贪心策略
D. 暴力枚举
下列哪个步骤不是分治法的一般过程?
A. 分解
B. 解决
C. 跳过(正确答案)
D. 合并
使用分治法解决最大子序和问题时,通常会将数组划分为:
A. 左右两个子数组(正确答案)
B. 前半部分和后半部分
C. 奇数索引和偶数索引部分
D. 任意两个不相交的子数组。
分治算法详解及经典例题⼀、基本概念在计算机科学中,分治法是⼀种很重要的算法。
字⾯上的解释是“分⽽治之”,就是把⼀个复杂的问题分成两个或更多的相同或相似的⼦问题,再把⼦问题分成更⼩的⼦问题……直到最后⼦问题可以简单的直接求解,原问题的解即⼦问题的解的合并。
这个技巧是很多⾼效算法的基础,如排序算法(快速排序,归并排序),傅⽴叶变换(快速傅⽴叶变换)……任何⼀个可以⽤计算机求解的问题所需的计算时间都与其规模有关。
问题的规模越⼩,越容易直接求解,解题所需的计算时间也越少。
例如,对于n个元素的排序问题,当n=1时,不需任何计算。
n=2时,只要作⼀次⽐较即可排好序。
n=3时只要作3次⽐较即可,…。
⽽当n较⼤时,问题就不那么容易处理了。
要想直接解决⼀个规模较⼤的问题,有时是相当困难的。
⼆、基本思想及策略分治法的设计思想是:将⼀个难以直接解决的⼤问题,分割成⼀些规模较⼩的相同问题,以便各个击破,分⽽治之。
分治策略是:对于⼀个规模为n的问题,若该问题可以容易地解决(⽐如说规模n较⼩)则直接解决,否则将其分解为k个规模较⼩的⼦问题,这些⼦问题互相独⽴且与原问题形式相同,递归地解这些⼦问题,然后将各⼦问题的解合并得到原问题的解。
这种算法设计策略叫做分治法。
如果原问题可分割成k个⼦问题,1<k≤n,且这些⼦问题都可解并可利⽤这些⼦问题的解求出原问题的解,那么这种分治法就是可⾏的。
由分治法产⽣的⼦问题往往是原问题的较⼩模式,这就为使⽤递归技术提供了⽅便。
在这种情况下,反复应⽤分治⼿段,可以使⼦问题与原问题类型⼀致⽽其规模却不断缩⼩,最终使⼦问题缩⼩到很容易直接求出其解。
这⾃然导致递归过程的产⽣。
分治与递归像⼀对孪⽣兄弟,经常同时应⽤在算法设计之中,并由此产⽣许多⾼效算法。
三、分治法适⽤的情况分治法所能解决的问题⼀般具有以下⼏个特征:1) 该问题的规模缩⼩到⼀定的程度就可以容易地解决2) 该问题可以分解为若⼲个规模较⼩的相同问题,即该问题具有最优⼦结构性质。
分治算法选择题
关于分治算法的选择题较多,比如:
1. 求众数:
问题描述:给定一个大小为n的数组,找到其中的众数。
众数是指在数组中出现次数大于⌊ n/2 ⌋的元素。
你可以假设数组是非空的,并且给定的数组总是存在众数。
示例1:输入:[3,2,3],输出:3
示例2:输入:[2,2,1,1,1,2,2],输出:2
题解:对数组排序,由于众数大于n/2,则n/2+1处一定是该众数。
又由于索引从0开始,即索引n/2为众数。
算法时间复杂度O(nlogn)。
2. 分治法的适用条件是什么?
答案:A.问题可以分解为规模较小的子问题;B.小规模子问题可解;C.子问题可合并为问题的解;D.子问题相互独立。
3. 分治法的设计思想是什么?
答案:A.大事化小,各个击破,分而治之。
4. 每次都将问题分解为原问题规模的一半进行求解,称为什么法?
答案:A.二分法。
5. 分治法一般在每一层递归上有哪三个步骤?
答案:A.分解、解决、合并。
6. 减治法是什么?
答案:A.把一个问题转化成一个子问题来解决,从子问题的解得到原问题的解。
7. 分治法将原问题分解为若干个什么规模的子问题?
答案:A.规模较小、相互独立、完全相同。
如需更多关于分治算法的选择题及答案,可以咨询专业算法人士获取更多资源。
《算法设计与分析》课程实验报告实验序号:04实验项目名称:实验4 分治法(三)一、实验题目1.邮局选址问题问题描述:在一个按照东西和南北方向划分成规整街区的城市里,n个居民点散乱地分布在不同的街区中。
用x 坐标表示东西向,用y坐标表示南北向。
各居民点的位置可以由坐标(x,y)表示。
街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。
居民们希望在城市中选择建立邮局的最佳位置,使n个居民点到邮局的距离总和最小。
编程任务:给定n 个居民点的位置,编程计算邮局的最佳位置。
2.最大子数组问题问题描述:对给定数组A,寻找A的和最大的非空连续子数组。
3.寻找近似中值问题描述:设A是n个数的序列,如果A中的元素x满足以下条件:小于x的数的个数≥n/4,且大于x的数的个数≥n/4 ,则称x为A的近似中值。
设计算法求出A的一个近似中值。
如果A中不存在近似中值,输出false,否则输出找到的一个近似中值4.循环赛日程表问题描述:设有n=2^k个运动员要进行网球循环赛。
现要设计一个满足以下要求的比赛日程表:每个选手必须与其他n-1个选手各赛一次,每个选手一天只能赛一次,循环赛一共进行n-1天。
二、实验目的(1)进一步理解分治法解决问题的思想及步骤(2)体会分治法解决问题时递归及迭代两种不同程序实现的应用情况之差异(3)熟练掌握分治法的自底向上填表实现(4)将分治法灵活于具体实际问题的解决过程中,重点体会大问题如何分解为子问题及每一个大问题涉及哪些子问题及子问题的表示。
三、实验要求(1)写清算法的设计思想。
(2)用递归或者迭代方法实现你的算法,并分析两种实现的优缺点。
(3)根据你的数据结构设计测试数据,并记录实验结果。
(4)请给出你所设计算法的时间复杂度的分析,如果是递归算法,请写清楚算法执行时间的递推式。
四、实验过程(算法设计思想、源码)1.邮局选址问题(1)算法设计思想根据题目要求,街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。