北京大学电子自旋共振
- 格式:ppt
- 大小:2.85 MB
- 文档页数:40
电子自旋共振【实验目的】1、了解电子自旋共振理论。
2、掌握电子自旋共振的实验方法。
3、测定DPPH 自由基中电子的g 因子和共振线宽。
【实验原理】原子中的电子在沿轨道运动的同时具有自旋,其自旋角动量为() 1+=S S p S其中S 是电子自旋量子数,2/1=S 。
电子的自旋角动量S p 与自旋磁矩S μ 间的关系为()⎪⎩⎪⎨⎧+=-=12S S g p m e g B SSe Sμμμ其中:e m 为电子质量;eB m e 2=μ,称为玻尔磁子;g 为电子的朗德因子,具体表示为 )1(2)1()1()1(1++++-++=J J S S L L J J g (7-2-3)设g m ee2=γ为电子的旋磁比,S Sp γμ=。
电子自旋磁矩在恒定外磁场B 0(z 轴方向)的作用下,会发生进动,进动角频率 00B γω= 由于电子的自旋角动量S p 的空间取向是量子化的,在z 方向上只能取 m p z S = (S S S S m -+--=,1,,1, )m 表示电子的磁量子数,由于S=1/2,所以m 可取±1/2。
电子的磁矩与外磁场B 0的相互作用能为00021B B B E z S S γμμ±==⋅=相邻塞曼能级间的能量差为000B g B E B μγω===∆显然,如果在垂直于B 0平面内施加一个角频率等于ω0的旋转磁场B 1,则电子将吸收此旋转磁场的能量,实现能级间的跃迁,即发生电子自旋共振。
B 1可以在射频段由射频线圈产生,也可以在微波段由谐振腔产生,由此对应两种实验方法,即射频段电子自旋共振和微波段电子自旋共振。
【实验方法 —— 微波段的电子自旋共振】1、实验装置及原理本实验采用的微波段电子自旋共振实验装置如图7-2-6所示,由永磁铁、X 波段(8.5~10.7GHz )3㎝ 固态微波源、3㎝ 微波波导元件、样品谐振腔、微波电子自旋共振仪和示波器等六分组成。
近代物理实验讲义电子顺磁共振南京理工大学物理实验中心2009.1.20电子顺磁共振实验电子自旋共振(Electron Spin Resonance, ESR)又称电子顺磁共振(Electron Paramagnetic Resonance, EPR)。
由于这种共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是电子自旋磁矩的贡献所以又被称为电子自旋共振。
1924 年,泡利( Pauli)首先提出了电子自旋的概念。
1944 年,前苏联的柴伏依斯基首次观察到了电子顺磁共振现象。
1954 年开始,电子自旋共振逐渐发展成为一项新技术。
电子自旋共振研究的对象是具有未偶电子的物质,如具有奇数个电子的原子、分子以及内电子壳层未被充满的离子,受辐射作用产生的自由基及半导体、金属等。
通过共振谱线的研究,可以获得有关分子、原子及离子中未偶电子的状态及其周围环境方面的信息,从而得到有关物质结构和化学键的信息,故电子自旋共振是一种重要的近代物理实验技术,在物理、化学、生物、医学等领域有广泛的应用。
一 . 实验目的1.了解电子顺磁共振的原理。
2.掌握 FD-TX-ESR-II 型电子顺磁共振谱仪的调节和使用方法。
3.利用电子顺磁共振谱仪测量DPPH 的 g 因子。
二 . 实验原理A、测量原理原子的磁性来源于原子磁矩,由于原子核的磁矩很小,可以略去不计,所以原子的总磁矩由原子中各电子的轨道磁矩和自旋磁矩所决定。
原子的总磁矩μJ与总角动量 P J之间满足如下关系:g B P J P J(1)J式中μB 为玻尔磁子,为约化普朗克常量。
由上式可知,回磁比g B(2)其中 g 为朗德因子。
对于原子序数较小(满足L-S 耦合)的原子的朗德因子可用下式计算,J(J 1) S(S1) L(L 1)g 1(3)2J(J1)由此可见,若原子的磁矩完全由电子自旋磁矩贡献(L=0,J=S),则 g=2。
胺存在下自由基聚合与活性自由基聚合3冯新德,丘坤元(北京大学化学与分子工程学院高分子科学与工程系,北京 100871)谨以此文庆贺中国化学会高分子科学委员会成立50周年! 摘要:综述了胺存在下自由基聚合,包括含胺的过氧化二酰与芳叔胺氧化还原体系、有机过氧化氢物与芳叔胺或脂肪叔胺氧化还原体系、过硫酸盐与脂肪胺氧化还原体系和极性单体的胺光诱导电荷转移引发自由基聚合,以及活性Π控制自由基聚合,主要为原子转移自由基研究的成果。
关键词:含胺氧化还原体系;胺光诱导电荷转移自由基聚合;活性自由基聚合;原子转移自由基聚合;引发聚合机理烯类自由基聚合是通过引发剂分解产生自由基来引发单体的链(式)聚合反应,因所用的单体的多样性、聚合方法简便、重复性好,因而不仅成为实验室制备高分子最常用的方法,同时也成为工业生产高分子产品的重要技术。
自由基聚合的特点,一是慢引发快增长,二是自由基的活性高很容易进行双分子终止,因而得到无活性聚合物。
上世纪50~80年代,在自由基聚合研究中,为了提高引发速率而发展了单一组分的高活性自由基引发剂外,更重要的是使用两组分的氧化还原引发体系。
氧化还原引发体系由于具有快速、低温、低活化能的特点甚受瞩目,已广泛用于乳液、溶液和本体聚合。
在自由基聚合机理研究方面采用自由基捕获和电子自旋共振谱(ESR)方法测定初级自由基的精细结构研究也取得了重要进展。
上世纪80年代,出现了引发转移终止剂聚合和金属络合自由基聚合“活性”自由基聚合的报道,而到90年代出现了氮氧中间体聚合,也称稳定自由基聚合;原子转移自由基聚合,也称为过渡金属催化自由基聚合;可逆加成断裂链转移聚合等活性Π控制自由基聚合。
本文主要介绍作者研究室在胺存在下自由基聚合的研究工作,包括含胺氧化还原引发体系[1~3],主要有过氧化二酰与芳叔胺体系、有机过氧化氢物与芳或脂肪叔胺体系、过硫酸盐与脂肪胺体系,和极性单体的胺光诱导电荷转移引发自由基聚合[3,4],以及活性自由基聚合研究的成果。
近代物理实验讲义电子顺磁共振南京理工大学物理实验中心2009.1.20电子顺磁共振实验电子自旋共振(Electron Spin Resonance, ESR)又称电子顺磁共振(Electron Paramagnetic Resonance, EPR)。
由于这种共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是电子自旋磁矩的贡献所以又被称为电子自旋共振。
1924 年,泡利(Pauli)首先提出了电子自旋的概念。
1944年,前苏联的柴伏依斯基首次观察到了电子顺磁共振现象。
1954 年开始,电子自旋共振逐渐发展成为一项新技术。
电子自旋共振研究的对象是具有未偶电子的物质,如具有奇数个电子的原子、分子以及内电子壳层未被充满的离子,受辐射作用产生的自由基及半导体、金属等。
通过共振谱线的研究,可以获得有关分子、原子及离子中未偶电子的状态及其周围环境方面的信息,从而得到有关物质结构和化学键的信息,故电子自旋共振是一种重要的近代物理实验技术,在物理、化学、生物、医学等领域有广泛的应用。
一.实验目的1.了解电子顺磁共振的原理。
2.掌握FD-TX-ESR-II型电子顺磁共振谱仪的调节和使用方法。
3.利用电子顺磁共振谱仪测量DPPH的g因子。
二.实验原理A 、测量原理原子的磁性来源于原子磁矩,由于原子核的磁矩很小,可以略去不计,所以原子的总磁矩由原子中各电子的轨道磁矩和自旋磁矩所决定。
原子的总磁矩μJ 与总角动量P J 之间满足如下关系:B J J J gP P μμγ=-= (1)式中μB 为玻尔磁子,为约化普朗克常量。
由上式可知,回磁比B gμγ=- (2)其中g 为朗德因子。
对于原子序数较小(满足L -S 耦合)的原子的朗德因子可用下式计算,(1)(1)(1)12(1)J J S S L L g J J +++-+=++ (3) 由此可见,若原子的磁矩完全由电子自旋磁矩贡献(L=0,J=S ),则g=2。
电子自旋共振摘要:电子自旋共振是近代物理学的一个重要发现,该现象目前已经被广泛的应用。
本文主要介绍基于FD-ESR-C型微波电子自旋共振实验仪的实验原理、实验装置、实验方法、实验步骤等。
关键词:近代物理实验;微波;电子自旋共振;g因子;【1】引言电子顺磁共振(电子自旋共振)是1944年由前联的扎伏伊斯基首先观察到的。
它是指电子自旋磁矩在磁场中受到响应频率的电磁波作用时,在它们的磁能级之间发生的共振跃迁现象。
这种现象在具有未成对自旋磁矩的顺磁物质(即含有未耦电子的化合物)中能够观察到,因此,电子顺磁共振是探测物质中未耦电子以及它们与周围原子相互作用,从而获得有关物质微观结构信息的重要方法。
这种方法具有有很高的灵敏度和分辨率,能深入物质部进行细致分析而不破坏样品结构以及对化学反应无干扰等优点。
本实验要求观察电子自旋共振现象,测量DPPH中电子的g因子。
【2】实验原理本实验采用含有自由基的有机物“DPPH ”,其分子式为3226256)()NO H NC N H C - ,称为“二苯基苦酸基联氨”,其结构式如图所示:在第二个氮原子上存在一个未成对电子——自由基,ESR 就是观测该电子的自旋共振现象。
对于这种“自由电子”没有轨道磁矩,只有自旋磁矩,因此实验中观察到的共振现象为ESR ,也就是电子自旋共振。
这里需要指出这种“自由电子”也并不是完全自由的,它的 e g 值为(2.0023±0.0002),DPPH 的ESR 信号很强,其e g 值常用作测量其值接近2.00的样品的一个标准信号,通过对各种顺磁物质的共振吸收谱线e g 因子的测量,可以精确测量电子能级的差异,从而获得原子结构的信息。
自由电子的自旋磁矩和外加恒定磁场 B 0相互作用将使基态能级发生分裂 , 2 个能级之间的能量差ΔE 与外加磁场 B 0 的大小成正比:0B B μ g = E Δ (1)式中g 的值是Lande 因子或劈裂因子。
電子自旋共振實驗(Electron Spin Resonance Experiment)胡裕民 編寫一. 實驗目的:1. 決定共振磁場B 0與共振頻率ν之間的函數關係。
2. 決定DPPH 的電子自旋g-factor 。
3. 決定共振訊號的線寬度δB 0。
二. 原理介紹:自從1945年E.K. Zavoisky 發現電子自旋共振(Electron Spin Resonance)的現象之後,ESR 在物理、化學、生物以及醫藥方面已成為研究分子與晶體結構、化學反應等性質一個相當重要的量測方法。
它的原理是利用順磁(paramagnetic)物質在外加磁場下出現電子自旋狀態的分離,而有高頻輻射(high-frequency radiation)的吸收(absorption)現象。
ESR 現象僅出現於順磁物質,是因為在此類物質中,電子的軌道角動量(orbital angular momentum)以及自旋(spin)的耦合(coupling)作用,使得總角動量(total angular momentum)不為零。
已知的順磁物質計有:化合物中含有內層未填滿之原子(例如:過渡金屬(transition metals)、稀土(rare earths)元素)、含有個別未成對電子的有機分子(organic molecules)或是含有晶格空位(lattice vacancies)的順磁態晶體等。
伴隨著總角動量J 的磁矩(magnetic moment ,μJ )可表示為:J g B J Jμμ-= (1) 其中μB 為波爾磁子(Bohr magneton)、g J 為Land é splitting factor :eB m 2e =μ (2) 在外加磁場B 0下,磁矩μJ 的位能為0J B E ⋅-=μ (3)因為磁矩以及總角動量在外加磁場下只能存在某些特定的指向(orientation ,此即空間量子化Space Quantization),因此eq.3的位能是量子化的。
电子自旋共振的实验观察与分析电子自旋共振(ESR)是一种通过电磁波与物质中的未偶极共振的电子发生相互作用的方法,从而观察和分析样品中未偶极共振电子的性质。
ESR技术在化学、物理、生物等领域有着广泛的应用,特别在研究自由基和有机稳定自由基反应机理、固态物质表征、生物分子结构以及电子传输过程方面起到了重要的作用。
ESR实验主要需要使用一台ESR仪器,仪器的核心是一个集成了磁场产生系统、微波源、探测器和数据处理装置的系统。
实验中,我们通常使用一种叫做共振腔的装置来放置样品,并在样品周围产生一个均匀的磁场。
同时,微波源会产生一定频率的微波信号,通过腔体与样品中的未偶极共振电子发生共振相互作用。
当微波信号的频率与样品中未偶极共振电子的共振频率相等时,会观察到ESR信号。
这个信号的特征可以通过探测器接收到,并由数据处理装置进行处理和分析。
实验中通常需要对样品进行一系列的操作和处理。
首先,我们需要将样品放置在共振腔中,使其暴露在均匀的磁场当中。
然后,我们会调节磁场的强度,通过观察磁场与ESR信号的关系,可以确定样品中未偶极共振电子的g值。
在磁场强度达到一定范围之后,我们开始调节微波信号的频率,通过记录信号的强度和频率的关系,可以得到未偶极共振电子的超精细结构参数。
这些参数包括g因子、超精细结构常数和哈弗逊参数等,对于研究样品中电子的自旋态和电子与周围原子核之间的相互作用具有重要意义。
通过ESR实验观察和分析,我们可以获得样品中未偶极共振电子的性质和行为。
未偶极共振电子是指电子自旋与轨道角动量之间没有明显的关联性,也不受电磁辐射耦合作用的电子。
在研究自由基反应机理时,ESR可以提供自由基浓度、自由基的热力学参数和自由基反应速率常数等重要信息。
在固态物质研究领域,ESR可以用来表征样品的磁性、电子态密度和局域电子结构等信息。
在生物领域中,ESR可以对蛋白质、酶和细胞膜等生物分子的结构和功能进行研究。
总之,电子自旋共振实验是一种重要的实验方法,可以用来观察和分析样品中未偶极共振电子的性质和行为。
电子自旋共振摘要:本实验通过对射频段电子自旋共振方法的使用,测量出DPPH 样品的朗德因子以及得出磁场与励磁电源电压的关系。
使我们对共振跃迁现象有了更为深刻的理解。
关键词:ESR 朗德因子波导波长半高宽1、引言电子自旋共振(ESR)研究电子自旋磁矩与磁场相互作用。
从“塞曼效应”实验已经了解到,根据量子力学原理电子自旋磁矩在外磁场中使原子能级消除简并,即分裂为若干塞曼能级,故电子自旋共振是研究光子在这些塞满能级之间的直接跃迁。
这种共振跃迁现象只能发生在原子的固有磁矩不为零的顺磁性材料中,从而也称为电子顺磁共振。
2、实验原理原子的磁性来源于原子磁矩,由于原子核的磁矩很小,可以略去不计,所以原子的总磁矩由原子中各电子的轨道磁矩和自旋磁矩所决定。
在本单元的基础知识中已经谈到,原子的总磁矩μJ与PJ总角动量之间满足如下关系:式中μB为玻尔磁子,h为约化普朗克常量,由上式得知,回磁比按照量子理论,电子的L-S耦合结果,朗德因子由此可见,若原子的磁矩完全由电子自旋磁矩贡献(L=0,J=S),则g=2。
反之,若磁矩完全由电子的轨道磁矩所贡献(S=0,J=L),则g=1。
若自旋和轨道磁矩两者都有贡献,则g的值介乎1与2之间。
因此,精确测定g的数值便可判断电子运动的影响,从而有助于了解原子的结构。
将原子磁矩不为零的顺磁物质置于外磁场B0中,那么,相邻磁能级之间的能量差△E=γhB0如果垂直于外磁场B0的方向上施加一幅值很小的交变磁场2 B1cosωt,当交变磁场的角频率ω满足共振条件hω=△E=γhB0 时,则原子在相邻磁能级之间发生共振跃迁。
这种现象称为电子自旋共振,又叫顺磁共振。
在顺磁物质中,由于电子受到原子外部电荷的作用,使电子轨道平面发生旋进,电子的轨道角动量量子数L的平均值为0,当作一级近似时,可以认为电子轨道角动量近似为零,因此顺磁物质中的磁矩主要是电子自旋磁矩的贡献。
由上述式子可解出g因子:g=hf0/μBB0(式中f0为共振频率,h为普朗克常数)本实验的样品为DPPH(Di-Phehcryl Picryl Hydrazal),化学名称是二苯基苦酸基联氨,其分子结构式为(C6H5)2N-NC6H2·(NO2)2,如下图所示。