增量式和绝对式编码器(绝对值编码器)的比较
- 格式:docx
- 大小:12.26 KB
- 文档页数:1
分别说明绝对式和增量式光电编码器的工作原理光电编码器的工作原理1. 引言光电编码器是一种精密测量仪器,广泛应用于工业自动化、机械加工、机器人等领域。
它可以将旋转或线性运动转换为数字信号,实现位置、角度等参数的准确测量和控制。
2. 绝对式光电编码器的工作原理绝对式光电编码器可以直接获取运动目标的位置信息,而无需复位操作。
它主要由光源、光栅、光电元件和信号处理电路组成。
光源光源发出光线,照射到光栅上。
光栅光栅是由透明和不透明的条纹交替组成的,有着特定的周期和形状。
光栅可以将光线分成多个光斑,并将其传递到光电元件上。
光电元件光电元件是一种将光信号转换为电信号的器件。
光电编码器中常用的光电元件包括光电二极管和光电三极管。
当光线照射到光电元件上时,光电元件会产生相应的电信号。
信号处理电路信号处理电路将光电元件产生的电信号进行放大、滤波等处理,得到数字信号。
这些数字信号可以表示光栅上光斑的位置信息。
工作原理在绝对式光电编码器中,光栅上的每个光斑都被赋予了一个唯一的编号。
当光栅和光电元件相对运动时,光电元件会感知到每个光斑的位置,并将其转换为数字信号。
通过解读这些数字信号,可以准确获取运动目标的位置信息。
3. 增量式光电编码器的工作原理增量式光电编码器可以实时监测对象的运动方向和速度,但无法直接获取位置信息。
它由光源、光栅、光电元件和信号处理电路组成,与绝对式光电编码器类似。
光源、光栅、光电元件和信号处理电路增量式光电编码器的光源、光栅、光电元件和信号处理电路的原理与绝对式光电编码器相同,不再赘述。
工作原理在增量式光电编码器中,光栅上的光斑被分为A相和B相两组,每组中的光斑数量相同但错位。
光电元件检测到光栅上的光斑变化,并产生相应的电信号。
通过检测A相和B相两组信号的相位变化和周期,可以确定对象的运动方向和速度。
由于无法直接获得位置信息,增量式光电编码器通常需要结合其他传感器或复位机构来实现位置的准确测量。
结论绝对式光电编码器和增量式光电编码器都是常用的位置测量和控制装置。
光电编码器分类及作用光电编码器是一种通过光电转换将输出轴的机械几何位移量转换为脉冲或数字量的传感器,主要由光源、码盘、光学系统及电路4部分组成,光电编码器主要有增量式编码器、绝对式编码器、混合式绝对值编码器、旋转变压器、正余弦伺服电机编码器等,其中增量式编码器、绝对式编码器、混合式绝对值编码器属于数字量编码器,旋转变压器、正余弦伺服电机编码器属于模拟量编码器.一、增量式编码器增量式编码器可以将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,通过计数设备来知道其位置.增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量。
它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。
一般来说,增量式光电编码器输出A、B 两相互差90°电度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。
同时还有用作参考零位的Z 相标志(指示)脉冲信号,码盘每旋转一周,只发出一个标志信号。
标志脉冲通常用来指示机械位置或对积累量清零。
二、绝对式编码器绝对式编码器每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
其位置是由输出代码的读数确定的。
当电源断开时,绝对型编码器并不与实际的位置分离。
重新上电时,位置读数仍是当前的。
绝对编码器能够直接进行数字量大的输出,在码盘上会有若干的码道,码道数就是二进制位数。
在每条码道上都会由透光与不透光的扇形区域组成,通过采用光电传感器对信号进行采集。
在码盘两侧分别设置有光源和光敏元件,这样光敏元件则能够根据是否接受到光信号进行电平的转换,输出二进制数。
并且在不同位置输出不同的数字码。
从而可以检测绝对位置。
但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数。
绝对值编码器和增量编码器的工作原理一、引言编码器是将机械运动转换为数字信号的设备,广泛应用于自动化控制系统中。
其中,绝对值编码器和增量编码器是两种常见的编码器类型。
本文将详细介绍它们的工作原理。
二、绝对值编码器1. 原理绝对值编码器通过在旋转轴上安装一组光电传感器和光源,检测旋转轴上的刻度盘上的标记来确定角度位置。
刻度盘通常由磁性或光学条纹组成,每个条纹代表一个特定的角度位置,并且与传感器相对应。
当旋转轴旋转时,光电传感器会读取刻度盘上的标记,并将其转换为数字信号输出。
2. 类型根据不同的检测方式和输出类型,绝对值编码器可以分为以下几种类型:(1)单圈型:只能检测单圈角度范围内的位置。
(2)多圈型:可以检测多圈角度范围内的位置。
(3)线性型:可以检测线性位移范围内的位置。
3. 优缺点优点:(1)精度高:由于采用了高精度刻度盘和光电传感器,因此具有很高的精度。
(2)不受干扰:由于输出的是绝对位置信息,所以不受外界干扰影响。
(3)快速响应:由于无需进行复位操作,因此具有快速响应的特点。
缺点:(1)成本高:由于采用了高精度刻度盘和光电传感器,因此成本较高。
(2)复杂结构:由于需要安装刻度盘和光电传感器,因此结构较为复杂。
三、增量编码器1. 原理增量编码器通过在旋转轴上安装一组光电传感器和光源,检测旋转轴上的齿轮或条纹运动来确定角度位置。
齿轮或条纹通常由磁性或光学条纹组成,每个条纹代表一个特定的角度位置,并且与传感器相对应。
当旋转轴旋转时,光电传感器会读取齿轮或条纹上的标记,并将其转换为数字信号输出。
2. 类型根据不同的检测方式和输出类型,增量编码器可以分为以下几种类型:(1)单路型:只能检测正转方向或反转方向的角度变化。
(2)双路型:可以同时检测正转方向和反转方向的角度变化。
(3)三路型:可以同时检测正转方向、反转方向和速度信息。
3. 优缺点优点:(1)成本低:由于采用了简单的齿轮或条纹结构,因此成本较低。
增量式编码器和绝对式编码器的特点及应用范围深圳职业技术学院刘遥生1、什么是编码器――编码器是把角位移或直线位移转换成电信号的一种装置。
2、编码器分类及原理按照工作原理编码器可分为增量式(SPC)和绝对式(APC)两类。
增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。
绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
两者一般都应用于转速控制或位置控制系统的检测元件。
3、特点及应用范围增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相,A、B两组脉冲相位差90º,从而可方便地判断出旋转方向,而Z相为每转一圈输出一个脉冲,用于基准点定位。
编码器转动时输出脉冲,通过计数设备来知道其位置和转速。
当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。
这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。
优点是构造简单,平均寿命长,抗干扰能力强,可靠性高,适合于连续运转高精度定位控制。
其缺点是无法输出轴转动的绝对位置信息。
绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数。
绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。
这样,编码器的抗干扰特性、数据的可靠性大大提高了。
增量型和绝对值编码器常见问题(FAQ)编码器业务部目录1增量式编码器 (4)1.1如何选择单圈脉冲数PPR (4)1.2编码器的最大允许单圈脉冲数如何计算编码器的最大允许单圈脉冲数如何计算?? (4)1.3编码器的最大允许转速为? (4)1.4编码器的接口通信距离可达? (5)1.5是否必须使用屏蔽线缆是否必须使用屏蔽线缆?? (5)如何有效降低编码器应用时的噪声影响?? (5)1.6如何有效降低编码器应用时的噪声影响为何要使用柔性联轴器?? (5)1.7为何要使用柔性联轴器编码器输出的信号是什么意思?? (5)1.8编码器输出的信号是什么意思什么是门参考脉冲?? (6)1.9什么是门参考脉冲增量式编码器可兼容何种串行通信方式?? (7)1.10增量式编码器可兼容何种串行通信方式1.11倍加福RS422编码器的信号电平为编码器的信号电平为?? (7)输出接口有?? (7)1.12倍加福编码器的供电-输出接口有1.13什么是差分线驱动输出什么是差分线驱动输出?? (7)什么是集电极开路输出?? (8)1.14什么是集电极开路输出什么是图腾柱输出?? (8)1.15什么是图腾柱输出什么是推挽式输出?? (8)1.16什么是推挽式输出什么是吸收型输入和源型输入?? (8)1.17什么是吸收型输入和源型输入什么是正交信号输出?? (9)1.18什么是正交信号输出1.19正交输出和4倍频什么关系倍频什么关系?? (9)有何用处?? (9)1.20反向通道和有何用处什么是参考脉冲?? (9)1.21什么是参考脉冲为何需要使用上拉电阻?? (9)1.22为何需要使用上拉电阻更换编码器必须断电停机吗?? (9)1.23更换编码器必须断电停机吗成什么后果?? (10)1.24意外将24V DC连接到输出通道会造连接到输出通道会造成什么后果成什么后果编码器故障诊断需要什么检测设备?? (10)1.25编码器故障诊断需要什么检测设备等级?? (11)1.26什么是IP等级2绝对值编码器 (12)2.1什么是绝对值编码器? (12)绝对值编码器和增量式编码器的区别是什么?? (12)2.2绝对值编码器和增量式编码器的区别是什么绝对值编有哪些输出码制?? (12)2.3绝对值编有哪些输出码制什么是格雷码?? (13)2.4什么是格雷码2.5如何转换格雷码为二进制码如何转换格雷码为二进制码?? (13)什么是单圈绝对值编码器?? (13)2.6什么是单圈绝对值编码器什么是多圈编码器?? (14)2.7什么是多圈编码器3NAMUR本安型编码器 (15)为何需要它?? (15)3.1什么是NAMUR 本安型编码器本安型编码器,,为何需要它本安型编码器可以应用于石油精炼厂吗?? (15)3.2本安型编码器可以应用于石油精炼厂吗3.3什么是隔离栅什么是隔离栅?? (15)两者有什么区别?? (15)3.4电器设备分类IIB 和IIC两者有什么区别3.5什么是0区? (15)3.6如果不便使用隔离栅有其它选择方案吗?? (16)如果不便使用隔离栅,,有其它选择方案吗隔爆型编码器比较便宜吗?? (16)3.7隔爆型编码器比较便宜吗1 增量式编码器1.1 如何选择单圈脉冲数PPR选择增量式编码器的单圈分辨率PPR ,须考虑:a. 将所选择的单圈脉冲数PPR 和电机驱动编码器的最大转速综合考虑,计算工作频率,确保其不会引起在最大转速下脉冲输出频率超过编码器的脉冲输出频率和控制器的输入频率。
编码器零点旋转编码器是一种光电式旋转测量装置,它将被测的角位移直接转换成数字信号(高速脉冲信号),主要应用于机床、电梯、伺服电机配套、纺织机械、包装机械、印刷机械、起重机械等行业。
旋转编码器按照工作原理编码器可分为增量式和绝对式两类。
A增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小;B绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
二者区别:增量型的位置从零位标记开始计算的脉冲数量确定的;而绝对型的位置是由输出代码的读数确定的。
在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。
如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。
A图(结构原理)(1)注:光敏元件一般由极管组成。
(2)B图(与变频器接线)C图(增量型)D图(绝对型)我们通常用的是增量型编码器,可将旋转编码器的输出脉冲信号直接输入给PLC,利用PLC 的高速计数器对其脉冲信号进行计数,以获得测量结果。
这里所讲的确定零位指的是增量型。
1、编码器轴转动找零,编码器在安装时,旋转转轴对应零位,一般增量值与单圈绝对值会用这种方法,而轴套型的编码器也用这种方法。
缺点,零点不太好找,精度较低。
2、与上面方法相当,只是编码器外壳旋转找零,这主要是对于一些紧凑型安装的同步法兰(也有叫伺服法兰)外壳所用。
3、通电移动安装机械对零,通电将安装的机械移动到对应的编码器零位对应位置安装。
4、偏置计算,机械和编码器都不需要找零,根据编码器读数与实际位置的偏差计算,获得偏置量,以后编码器读数后减去这个偏置量。
例如编码器的读数为100,而实际位置是90,计算下在实际位置0位时,编码器的读数应该是10,而这个“10”就是偏置量,以后编码器读到的数,减去这个偏置量就是位置值。
《光电检测》题库一、填空题1.对于光电器件而言,最重要的参数是、和。
2.光电倍增管由阳极、光入射窗、电子光学输入系统、和等构成。
3.光电三极管的工作过程分为和。
4.激光产生的基本条件是受激辐射、和。
5. 非平衡载流子的复合大致可以分为和。
6.在共价键晶体中,从最内层的电子直到最外层的价电子都正好填满相应的能带,能量最高的是填满的能带,称为价带。
价带以上的能带,其中最低的能带常称为,与之间的区域称为。
7.本征半导体在绝对零度时,又不受光、电、磁等外界条件作用,此时导带中没有,价带中没有,所以不能。
8.载流子的运动有两种型式,和。
9. 发光二极管发出光的颜色是由材料的决定的。
10. 光电检测电路一般情况下由、、组成。
11. 光电效应分为内光电效应和效应,其中内光电效应包括和,光敏电阻属于效应。
12.半导体对光的吸收一般有、、、和这五种形式。
13. 光电器件作为光电开关、光电报警使用时,不考虑其线性,但要考虑。
14.半导体对光的吸收可以分为五种,其中和可以产生光电效应。
15.光电倍增管由阳极、光入射窗、电子光学输入系统、和等构成,光电倍增管的光谱响应曲线主要取决于材料的性质。
16.描述发光二极管的发光光谱的两个主要参量是和。
17.检测器件和放大电路的主要连接类型有、和等。
18..使用莫尔条纹法进行位移-数字量变换有两个优点,分别是和。
19.电荷耦合器件(CCD)的基本功能是和。
20.光电编码器可以按照其构造和数字脉冲的性质进行分类,按照信号性质可以分为和。
21.交替变化的光信号,必须使所选器件的大于输入信号的频率才能测出输入信号的变化。
22.随着光电技术的发展,可以实现前后级电路隔离的较为有效的器件是。
23.硅光电池在偏置时,其光电流与入射辐射通量有良好的线性关系,且动态范围较大。
24.发光二极管的峰值波长是由决定的。
二、名词解释1. 光亮度:2. 本征半导体:3. N型半导体:4. 载流子的扩散运动:5. 光生伏特效应:6. 内光电效应:7.光电效应8.量子效率9.分辨率10.二次调制11.二值化处理12.光电检测技术13.响应时间14.热电偶15.亮度中心检测法三、判断正误1. A/D变换量化误差不随输入电压变化而变化,是一种偶然误差。
如何选择合适的伺服电机编码器在工业自动化领域,伺服电机编码器扮演着至关重要的角色。
它能够将电机的运动状态转化为电信号,为控制系统提供精确的位置、速度和方向信息,从而实现对电机的精确控制。
然而,面对市场上琳琅满目的编码器产品,如何选择合适的伺服电机编码器却成为了一项颇具挑战性的任务。
接下来,我们将从多个方面探讨如何做出明智的选择。
首先,我们需要明确应用场景和需求。
不同的工业应用对编码器的性能要求差异巨大。
例如,在数控机床中,对位置精度的要求极高,需要选择分辨率高、精度高的编码器;而在一些一般的物料输送设备中,速度控制可能更为重要,对编码器的分辨率要求相对较低。
因此,在选择之前,必须清楚地了解设备的工作环境、运动速度、精度要求以及负载特性等因素。
编码器的分辨率是一个关键指标。
它决定了编码器能够测量的最小位置变化。
高分辨率的编码器可以提供更精确的位置信息,但同时也会增加成本和数据处理的复杂性。
通常,如果需要实现高精度的定位控制,应选择分辨率较高的编码器,如每转 10000 脉冲以上;而对于一些对精度要求不那么苛刻的应用,每转 1000 5000 脉冲的编码器可能就足够了。
精度也是不可忽视的因素。
编码器的精度包括绝对精度和重复精度。
绝对精度是指编码器测量值与实际位置之间的偏差,而重复精度则是指多次测量同一位置时的一致性。
一般来说,绝对值编码器的绝对精度较高,但价格也相对昂贵;增量式编码器的重复精度通常较好,价格相对较低。
在选择时,要根据实际应用对精度的要求和预算来权衡。
编码器的输出信号类型也有多种,常见的有正交脉冲(A/B 相)、串行通信(如 SSI、CANopen 等)和模拟量输出(如电压、电流)。
正交脉冲输出简单易用,成本低,但传输距离有限;串行通信输出具有抗干扰能力强、传输距离远的优点,但需要相应的接口和协议支持;模拟量输出则适用于一些特殊的控制系统。
因此,要根据控制系统的接口类型和通信要求来选择合适的输出信号类型。
编码器的分类、特点及其应用详解编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。
编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺。
按照读出方式编码器可以分为接触式和非接触式两种;按照工作原理编码器可分为增量式和绝对式两类。
增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。
绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
1.1 增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z 相;A、B两组脉冲相位差90度,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
1.2 绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。
显然,吗道必须N条吗道。
目前国内已有16位的绝对编码器产品。
1.3 混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。
二、光电编码器的应用增量型编码器与绝对型编码器区别1、角度测量。
增量式和绝对式编码器(绝对值编码器)的比较
增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变
成计数脉冲,用脉冲的个数表示位移的大小。
绝对式编码器的每一个位置对应
一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量
的中间过程无关。
旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,
当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。
这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不
能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的
量是无从知道的,只有错误的生产结果出现后才能知道。
解决的方法是增加参
考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。
在参考
点以前,是不能保证位置的准确性的。
为此,在工控中就有每次操作先找参考点,开机找零等方法。
这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。
绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需
找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它
的位置。
这样,编码器的抗干扰特性、数据的可靠性大大提高了。
由于绝对编码器在定位方面明显地优于增量式编码器,已经越来越多
地应用于工控定位中。
绝对型编码器因其高精度,输出位数较多,如仍用并行
输出,其每一位输出信号必须确保连接很好,对于较复杂工况还要隔离,连接
电缆芯数多,由此带来诸多不便和降低可靠性,因此,绝对编码器在多位数输
出型,一般均选用串行输出或总线型输出,德国生产的绝对型编码器串行输出
最常用的是SSI(同步串行输出)。