函数中的取值范围问题
- 格式:doc
- 大小:696.00 KB
- 文档页数:8
二次函数求x的取值范围二次函数作为数学中的一个重要概念,经常用于描述物理学、经济学和其他领域的种种现象。
而对于二次函数求x的取值范围,则是一道基本的数学应用题,需要从各个角度考虑解题思路。
首先,我们来看一个常见的二次函数公式:$y=ax^2+bx+c$。
针对这个方程,我们需要先确定它的开口方向。
当系数a为正数时,二次函数开口向上;当系数a为负数时,二次函数开口向下。
接下来,我们需要利用函数的图像来帮助我们求解x的取值范围。
我们可以通过以下方法来画出二次函数的图像:1. 找出二次函数的顶点,也就是y的最小值或最大值点,计算出x的值和对应的y值。
2. 找出二次函数的x轴截距,也就是当y=0时,x的值。
3. 利用根轴划分函数的图象,这个根轴是垂直于对称轴的一条直线,即$x=-\frac{b}{2a}$。
计算出图像的形状后,我们需要根据题目要求找出x的取值范围。
一般而言,我们可以通过以下几种方式来确定二次函数的x取值范围:1. 利用顶点确定函数的最值,从而推算出x的取值。
2. 根据x轴截距确定函数在x轴上的跨度,从而得出x的取值。
3. 运用函数与x轴交点的对称性,推算出x的取值范围。
例如,有以下问题:对于二次函数$y=2x^2-4x+1$,求解x的取值范围使得函数的值大于等于3。
首先,利用求最大值的方法,我们可以推算出二次函数的顶点坐标为$(1, -1)$,并且函数最小值为-1。
那么该函数在y轴上的截距为1,因此我们可以推断出,当函数的值为3时,对应的x值为$\pm\sqrt{\frac{4}{2}}=2$。
因此,函数在$x=-1$到$x=3$的区间内,取值都大于等于3。
另一个例子:对于二次函数$y=-4x^2+8x+7$,求解x的取值范围使得函数的值小于等于0。
可以看出,系数a是负数,因此这是一个开口向下的二次函数。
我们可以先求出顶点坐标$(1,3)$,并且可以推算出函数在x轴上的截距为$\frac{7}{4}$。
函数自变量的取值范围问题二、方法剖析与提炼例1.在下列函数关系式中,自变量x 的取值范围分别是什么? ⑴23-=x y ; ⑵121-=x y ; ⑶43-=x y ; ⑷xx y 32+=; ⑸0)3(-=x y【解答】⑴x 的取值范围为任意实数;⑵分母012≠-x ∴21≠x ∴x 的取值范围为21≠x ;⑶043≥-x ∴34≥x ∴x 的取值范围为34≥x ;⑷⎩⎨⎧≠≥+0302x x ∴2-≥x 且0≠x ∴x 的取值范围为:2-≥x 且0≠x ⑸x -3≠0 ∴x ≠3,x 的取值范围为x ≠3.【解析】⑴为整式形式:函数关系式是一个含有自变量的整式时,自变量的取值范围是全体实数.⑵分式型:当函数关系式是分式时,自变量的取值范围是使分母不为零的实数.⑶偶次根式:当函数关系式是偶次根式时,自变量取值范围是使被开方数为非负数的实数.含算术平方根:被开方数043≥-x . ⑷复合型:当函数关系式中,自变量同时含在分式、二次根式中时,函数自变量的取值范围是它们的公共解,即建立不等式组,取它们的公共解.⑸0指数型:当函数关系式中,自变量同时含在0指数下的底数中时,自变量取值范围是使底数为非零的实数.即底数x -3≠0 .【解法】解这类题目,首先搞清楚函数式属于“整式型”、“分式型”、“偶次根式”、“0指数型”、“复合型”当中哪一个类型,自变量的取值必须使含有自变量的代数式有意义即可.【解释】这种解题策略可以推广到其他问题,如: 求31+x 中x 的取值范围.解:右边的代数式属于奇次根式型,自变量的取值范围是全体实数. 例2.某学校在2300元的限额内,租用汽车接送234名学生和6名教师集体外出活动,每量汽车上至少有一名教师.甲、乙两车载客量和租金如下表:设租用甲种车x 辆,租车费用为y 元,求y 与x 的函数关系式,并写出自变量x 的取值范围.【解答】⑴由题设条件可知共需租车6辆,租用甲种车x 辆,则租用乙种车辆(6-x )辆.y =400x +280(6-x )=120x +1680∴y 与x 的函数关系式为:y =120x +1680⑵∵⎩⎨⎧≤+≥-+23001680120240)6(3045x x x , ∴⎩⎨⎧≤≥54x x , ∴自变量x 的取值范围是:4≤x ≤5【解析】(1)租车费用y =甲种车辆总费用+乙种车辆总费用.(2)函数关系式同时也表示实际问题时,自变量的取值范围要同时使实际问题有意义.自变量x 需满足以下两个条件: 一是,甲、乙两车的座位总数≥师生总数240名;二是,费用≤2300元,还要考虑到实际背景下的x 为整数.【解法】关注问题中所有的限制条件,多用不等式或不等式组来确定自变量的取值范围.【解释】做此题前首先要先从乘车人数的角度考虑应总共租多少辆汽车.因为题目已知总共6名教师,而且要求每辆车上至少有一名教师.所以,最多租用6辆车.同时,也不能少于6辆车否则座位数少于师生总数,不能接送所有的师生.由此可知共租用6辆车子. 例3.一个正方形的边长为5cm ,它的边长减少x cm 后得到的新正方形的周长为y cm ,写了y 与x 的关系式,并指出自变量的取值范围.【解答】解:由题意得,y 与x 的函数关系式为y =4(5-x )=20-4x ;自变量x 应满足⎩⎨⎧≥>-005x x 解得0≤x <5,所以自变量的取值范围是0≤x <5.【解析】正方形的周长=边长×4,即y =4(5-x );自变量的范围同时满足两个条件:一是,正方形的边长是正数;二是,边长减少的x 应取非负数.【解法】关注问题中所有的限制条件,多用不等式或不等式组来确定自变量的取值范围.【解释】函数关系式表示实际问题时,自变量的取值范围要同时使实图1际问题有意义.例4.若等腰三角形的周长为20cm ,请写出底边长y 与腰长x 的函数关系式,并求自变量x 的取值范围.【解答】y =20-2x∵⎪⎩⎪⎨⎧>+>≥y x x y x 00,∴⎪⎩⎪⎨⎧->>-≥x x x x 220202200,∴⎪⎩⎪⎨⎧><≥5100x x x ,∴自变量x 的取值范围是5<x <10.【解析】自变量的范围同时满足两个条件:一是,x 表示等腰三角形腰长,要求x ≥0;二是,等腰三角形底边长y >0;三是,三角形中“两边之和大于第三边”,即2x >y .最后综合自变量x 的取值范围.【解法】自变量x 的取值要满足多个条件,根据条件列出不等式得到不同情况和答案,之后取交集.【解释】别忘记解答的最后要写出各个情况的交集. 例5.如图1,在边长为2的正方形ABCD 的一边BC 上,一点P 从B 点运动到C 点,设BP =x ,四边形APCD 的面积为y .(1)写出y 与x 的函数关系式及x 的取值范围;(2)说明是否存在点P ,使四边形APCD 的面积为1.5.【解答】(1)x y -=4,x 的取值范围是40≤≤x .(2)令5.1=y ,得x -=45.1, ∴5.2=x∴存在点P 使四边形APCD 的面积为1.5.【解析】(1)ABP ABCD APCD S S S ∆-=正方形四边形,其中取值范围要考虑让P 从B 点运动到C 点过程中,x 由小变大.特别的,当P 在B 处,0=x .(2)求出的x 的值要符合x 的取值范围.【解法】几何问题中的函数关系式,除使函数式有意义外,还需考虑几何图形的构成条件及运动范围.【解释】求实际问题中的自变量取值范围时,如果用运动观点研究,动点必须在一定的轨道上运动,而且要时刻兼顾到图形其它的部分的变化.三、能力训练与拓展1.函数y =15-x 21的自变量取值范围是 .2.函数34x y x -=-的自变量x 的取值范围是 . 3.在函数1-=x y 中,自变量x 的取值范围是( ).A 、x ≥-1B 、x ≠1C 、x ≥1D 、x ≤14.函数3y x =-中自变量x 的取值范围是( ) A .x ≥1- B .x ≠3 C .x ≥1-且x ≠3 D . 1x <-5.已知等腰三角形的面积为20cm 2,设它的底边长为x (cm ),则底边上的高y (cm )关于x 的函数关系式为 ,自变量的取值范围是: .6.汽车由北京驶往相距850千米的沈阳.它的平均速度为80千米/时.求汽车距沈阳的路程S (千米)与行驶时间t(小时)的函数关系式,写出自变量的取值范围.7.如图2,在矩形ABCD中,边CD上有一动点P(异于C、D),设DP=x,AD=a,AB=b,△APD和△QCP面积之和为y,写出y与x的函数关系式及自变量x的取值范围.8.如图3,OM⊥ON,AB=a,点A、B分别在ON、OM上滑动.设OB=x,△OAB面积为y,写出y与x的函数关系及x的取值范围.9.如图4,△ABC中,AC=4,AB=5,D是AC边上点,E是AB边上点,∠ADE=∠B,设AD=x,AE=y,写出y与x之间函数关系式及x的取值范围.10.用长6米铝合金条制成如图形状的矩形窗框, 问长和高各是多少米时,窗户的透光面积最大?最大面积是多少?1.全体实数【解析】由于15-x 21是整式,所以x 的取值范围是全体实数. 2.x ≠4【解析】43--x x 是分式,由分母x -4≠0得x ≠4,所以x 的取值范围是x ≠4. 3.C【解析】此函数关系式是二次根式,由被开方数为非负数可知,x -1≥0,所以x ≥1.故选C .4.C。
微专题341.答案:偶.解析:设f (x )=|x -1|+|x +1|,则f (-x )=|-x -1|+|-x +1|=|x -1|+|x +1|=f (x ),所以,原函数是偶函数.2.答案:12. 解析:因为|ln a |=|ln4a |,所以,ln a =ln4a 或ln a =-ln4a ,解得a =12. 3.答案:(4,+∞).解析:由于函数f (x )=|lg(x -1)|的图象如图所示.由f (a )=f (b )可得-lg(a -1)=lg(b -1),解得ab =a +b > 2ab (由于a <b ),所以ab 的取值范围是(4,+∞).4.答案:7.解析:由题意作出y =f (x )在区间[-2,4]上的图象,与直线y =1的交点共有7个,故函数y =f (x )-1在区间[-2,4]上的零点个数为7.5.答案:(-∞,2-1].解析:设f (x )=t ,则f (t )≤3,由函数f (x )=x |x +2|图象可得t ≤1,即f (x )≤1,所以,x ≤2-1,不等式f [f (x )]≤3的解集为(-∞,2-1].6.答案:(2,3].解析:由题意,当y =f (x )-g (x )=2[f (x )-1]=0时,即方程f (x )=1有4个解.又由函数y =a -|x +1|与函数y =(x -a )2的大致形状可知,直线y =1与函数f (x )= ⎩⎨⎧a -|x +1|,x ≤1,(x -a )2,x >1的左右两支曲线都有两个交点,如图所示.那么,有⎩⎨⎧(1-a )2>1,f (-1)>1,f (1)≤1,即⎩⎨⎧a >2或a <0,a >1,a -2≤1,所以,实数a 的取值范围是(2,3]. 7.答案:(1)函数f (x )在(-∞,1)上递减,在(1,2)上递增,在(2,3)上递减,在(-3,+∞)上递增;(2)M ={m |0<m <1};(3)[-23,23];(4)( -∞,0].解析:(1)当a =4时,f (x )=|x 2-4x +3|,函数f (x )在(-∞,1)上递减,在(1,2)上递增,在(2,3)上递减,在(-3,+∞)上递增.(2)当a =4时,f (x )=|x 2-4x +3|,画出函数f (x )=|x 2-4x +3|的图象,可得集合M ={m |0<m <1}.(3)若函数f (x )只有两个单调区间,则Δ≤0,所以,a 的取值范围是[-23,23].(4)若函数g (x )=x 2-a |x |+3只有两个单调区间,则a 2≤0,所以,a 的取值范围是 (-∞,0].8.答案:⎝⎛⎭⎫1,98. 解析:f (x )=x |x -a |+2x =⎩⎨⎧x 2-(a -2)x ,x ≥a ,-x 2+(a +2)x ,x <a , f (x )=⎩⎨⎧⎝⎛⎭⎫x -a -222-(a -2)24,x ≥a ,-⎝⎛⎭⎫x -a +222+(a +2)24,x <a , 因为0≤a ≤4,所以,a -22<a , (1)当a +22≥a 即0≤a ≤2时, f (x )在R 上递增,不合题意; (2)当a +22<a 即2<a ≤4时, f (x )在⎝⎛⎭⎫-∞,a +22上递增,在⎝⎛⎭⎫a +22,a 上递减,在(a ,+∞)上递增,若关于x 的方程f (x )=tf (a )有三个不相等的实根,则f (a )<tf (a )<f ⎝⎛⎭⎫a +22,2a <2at <⎝⎛⎭⎫a +222,所以,1<t <18⎝⎛⎭⎫a +4a +4,所以,实数t 的取值范围是⎝⎛⎭⎫1,98.。
第04讲(与分段函数有关的取值范围问题)【目标导航】1.理解含义抽象函数的求值问题、与分段函数有关的方程或不等式、分段函数的值域、分段函数的零点问题、分段函数中求参问题、分段函数奇偶性讨论等问题; 2.理解分段函数有关的取值范围等问题并能灵活运用. 【例题导读】例1、若函数f (x )=⎩⎨⎧2x , x ≤0f (x -2),x >0,则f (log 23)= .【答案】.34【解析】因为1<2log 3<2,所以f (log 23)=f (log 23-2)=22log 3log 32223224-==.例2、设函数()()cos ,011,0x x f x f x x π>⎧=⎨+-≤⎩,则103f ⎛⎫- ⎪⎝⎭的值为_________ 【答案】92-【解析】由()f x 解析式可知,只有0x >,才能得到具体的数值,0x <时只能依靠()()11f x f x =+-向0x > 正数进行靠拢。
由此可得:107412123433333f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=--=--=--=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,而 221cos 332f π⎛⎫==- ⎪⎝⎭10932f⎛⎫∴-=- ⎪⎝⎭例3、 已知函数f(x)=⎩⎪⎨⎪⎧log 2(3-x ),x≤0,2x -1,x>0,若f(a -1)=12,则实数a =________.【答案】 log 23【解析】当a -1≤0,即a≤1时,f(a -1)=log 2(4-a)=12,解得a =4-2(舍);当a -1>0,即a>1时,f(a -1)=2a -1-1=12,解得a =log 23.例4、已知函数2220()20x x x f x x x x ⎧-=⎨--<⎩,≥,,, 则不等式()()f x f x >-的解集为 .【答案】(20)(2)-+∞U ,,【解析】:若0x ≥,则22()2,()2f x x x f x x x =--=-+,由()()f x f x >-得: 22222x x x x x ->-+⇒>,故2x >.若0x <,则22()2,()2f x x x f x x x =---=+,由()()f x f x >-得: 222220x x x x x -->+⇒-<<,故20x -<<. 综上,不等式()()f x f x >-的解集为 (20)(2)-+∞U ,,.例5、函数f (x )=⎩⎪⎨⎪⎧2x, x ≤0,-x 2+1, x >0的值域为________.【答案】 (-∞,1]【解析】思路分析 先画出图像看看.分段画出f (x )的图像即可看出函数的值域为(-∞,1].例6、已知函数f(x)=⎩⎨⎧x 2+2x -1x 2,x≤-12,log 12⎝⎛⎭⎫1+x 2,x>-12,g(x)=-x 2-2x -2.若存在a ∈R ,使得f (a )+g (b )=0,则实数b 的取值范围是________. 【答案】. (-2,0)【解析】由题意,存在a ∈R ,使得f (a )=-g (b ),令h (b )=-g (b )=b 2+2b +2.当a ≤-12时,f (a )=a 2+2a -1a 2=-1a 2+2a +1=-⎝⎛⎭⎫1a -12+2,因为a ≤-12,所以-2≤1a <0,从而-7≤f (a )<1;当a >-12时,f (a )=log 12⎝⎛⎭⎫1+a 2,因为a >-12,所以1+a 2>14,从而f (a )<2.综上,函数f (a )的值域是(-∞,2). 令h (b )<2,即b 2+2b +2<2,解得-2<b <0. 例7、已知函数(2)1(1)()log (1)aa x x f x x x --≤⎧=⎨>⎩,若()f x 在(),-∞+∞单调递增,则实数a 的取值范围是_________【答案】(]2,3a ∈【解析】思路:若()f x 在(),-∞+∞单调增,则在R 上任取12x x <,均有()()12f x f x <,在任取中就包含12,x x 均在同一段取值的情况,所以可得要想在R 上单调增,起码每一段的解析式也应当是单调递增的,由此可得:201a a ->⎧⎨>⎩,但仅仅满足这个条件是不够的。
微专题30 三角函数中的ω取值与范围问题【方法技巧与总结】1、()sin()f x A x ωϕ=+在()sin()f x A x ωϕ=+区间()a b ,内没有零点⎪⎪⎩⎪⎪⎨⎧+≤+<+<+≤≤-⇒ππϕωπππϕωπk b k k a k T a b 2⎪⎪⎪⎩⎪⎪⎪⎨⎧-+≤-≥≤-⇒ωϕππωϕπk b k a T a b 2同理,()sin()f x A x ωϕ=+在区间[]a b ,内没有零点 ⎪⎪⎩⎪⎪⎨⎧+<+<+<+<≤-⇒ππϕωπππϕωπk b k k a k T a b 2⎪⎪⎪⎩⎪⎪⎪⎨⎧-+<-><-⇒ωϕππωϕπk b k a T a b 2 2、()sin()f x A x ωϕ=+在区间()a b ,内有3个零点⎪⎩⎪⎨⎧+≤+<++<+≤≤-<⇒ππϕωππππϕωπk b k k a k T a b T 432(1)(3)(24)T b a k Tk a k k b πϕπϕωωπϕπϕωω⎧⎪⎪-+-⎪⇒≤<⎨⎪⎪+<-≤-+-<≤⎪⎩同理()sin()f x A x ωϕ=+在区间[]a b ,内有2个零点⎪⎪⎩⎪⎪⎨⎧+<+≤++≤+<<-≤⇒ππϕωππππϕωπk b k k a k T a b T 32232(2))2(332k TT b k a k b a k πϕππϕωωπϕπϕωω⎧⎪⎪-+-⎪⇒<≤⎨⎪⎪+≤-<-+-≤<⎪⎩ 3、()sin()f x A x ωϕ=+在区间()a b ,内有n 个零点 ⇒(()(+1)1)(1)22n Tn T b a k k a k n k n b πϕππϕωωπϕπϕωω-+≤-⎧⎪⎪-+-⎪≤<⎨⎪⎪+-+-<≤⎩<⎪同理()sin()f x A x ωϕ=+在区间[]a b ,内有n 个零点(1)(1()()22+1)n Tn T b k k a k n k n b a πϕππϕωωπϕπϕωω-+≤-<⎧⎪⎪-+-⎪⇒<≤⎨⎪⎪+-+-≤<⎪⎩4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为214n T +,则21(21)42n n T b a πω++==-. 5、已知单调区间(,)a b ,则2T a b -≤.【题型归纳目录】题型一:三角函数的基本性质———奇偶性、单调性、周期性、对称性、最值 题型二:三角函数与零点 题型三:三角函数性质综合应用 【典型例题】题型一:三角函数的基本性质———奇偶性、单调性、周期性、对称性、最值例1.若函数()2sin()(0)3f x x πωω=+>在区间[,]44ππ-上单调递增,则ω的取值范围是( )A .10(0,]3B .2(0,]3C .210[,]33D .10[,)3+∞【解析】解:当44xππ-,时,44x ππωωω-,34343x πππππωωω-++,要使()f x 在[4π-,]4π上单调递增, 则342432πππωπππω⎧--⎪⎪⎨⎪+⎪⎩,得,得10323ωω⎧⎪⎪⎨⎪⎪⎩,又0ω>, 203ω∴<. 故选:B .例2.已知()sin 3(0)f x x x ωωω=>在区间[,]64ππ上单调递增,则ω的取值范围是( )A .(0,2]3B .(0,2][73,26]3C .[7,2650][,19]33D .(0,250][,19]33【解析】解:()sin 3cos 2sin()3f x x x x πωωω=+=+,由22232k x k ππππωπ-++,k Z ∈,得52266k x k πππωπ-+,k Z ∈,即52266k k xππππωω-+,即函数的单调递增区间为526[k ππω-,26]k ππω+,k Z ∈,()f x 在区间[,]64ππ上单调递增,∴5266264k k πππωπππω⎧-⎪⎪⎪⎨⎪+⎪⎪⎩,即125283k k ωω-⎧⎪⎨+⎪⎩,即212583k k ω-+,0ω>,∴当0k =时253ω-,此时203ω<, 当1k =时,2673ω, 当2k =时,219163ω+,此时不成立, 综上ω的范围是203ω<或2673ω, 即(0,2][73,26]3,故选:B .例3.已知函数()sin()(0)6f x x πωω=+>在区间[4π-,2]3π上单调递增,则ω的取值范围为( )A .(0,8]3B .(0,1]2C .1[2,8]3D .3[8,2]【解析】解:函数()sin()(0)6f x x πωω=+>在区间[4π-,2]3π上单调递增,∴246222362k k πωπππωππππ⎧-+-+⎪⎪⎨⎪++⎪⎩,k Z ∈解得:883132k k ωω⎧-⎪⎪⎨⎪+⎪⎩ 0ω>,当0k =时,可得:102ω<. 故选:B .变式1.若函数()sin()(0)4f x x πωω=->在区间(0,)2π上单调递增,则ω的取值范围是( )A .(0,3]2B .[1,3]2C .[1,2]D .(0,2]【解析】解:由22242k x k ππππωπ-+-+,得232,44k k x k Z ππππωωωω-++∈, 取0k =,得344xππωω-, 函数()sin()(0)4f x x πωω=->在区间(0,)2π上单调递增,∴342ππω,即32ω. 又0ω>,ω∴的取值范围是(0,3]2.故选:A .变式2.为了使sin (0)y x ωω=>在区间[0,1]上至少出现50次最大值,则ω的最小值是( ) A .98πB .1972πC .1992πD .100π【解析】解:使sin (0)y x ωω=>在区间[0,1]上至少出现50次最大值 14914T ∴⨯,即197214πω⨯,1972πω∴. 故选:B .变式3.(多选题)已知R ω∈,函数2()(3)sin()f x x x ω=-⋅,存在常数a R ∈,使得()f x a +为偶函数,则ω的值可能为( )A .6π B .4π C .3π D .2π 【解析】解:根据题意,2()(3)sin()f x x x ω=-⋅,则2()(3)sin[()]f x a x a x a ω+=+-+, 若()f x a +为偶函数,则30a -=且sin[()]sin[()]x a x a ωω+=-+, 则3a =,sin cos cos sin cos sin sin cos x a x a x a x a ωωωωωωωω+=-, 必有cos 0a ω=,则32k πωπ=+,必有36k ππω=+,()k Z ∈ 当0k =时,6πω=,当1k =时,2πω=,故选:AD .变式4.若函数sin()(0)y x ωϕω=+>的部分图象如图,则ω= 4 .【解析】解:由函数的图象可知,0(x ,0)y 与0(4x π+,0)y -,纵坐标相反,而且不是相邻的对称点,所以函数的周期002()42T x x ππ=+-=,所以22T ππω==,所以4ω=.故答案为:4.变式5.为了使函数sin (0)y x ωω=>在区间[0,1]上至少出现4次最大值,则ω的最小值是132π. 【解析】解:为了使函数sin (0)y x ωω=>在区间[0,1]上至少出现4次最大值,则ω取得最小值时,需有2233144T T ππωω+=⨯+=⨯, 解得132πω=, 故答案为132π. 变式6.已知函数sin()(0y A x A ωϕ=+≠,0)ω>在(4π,)3π上单调,其图象经过点(4π,0),且有一条对称轴为直线4x π=-,则ω的最大值是 5 .【解析】解:因为函数图象经过点(,0)4π,所以14k πωϕπ+=,1k Z ∈,①因为直线4x π=-为函数的一条对称轴,所以242k ππωϕπ-+=+,2k Z ∈,②①-②可得12()22k k ππωπ=-+-,即1212()k k ω=-+-,由12k k Z -∈,0ω>,可得1ω=,3,5,⋯, 因为函数sin()y A x ωϕ=+在(,)43ππ上单调,所以434T ππ-,即212ππω,解得6ω,所以ω的最大值是5. 故答案为:5.题型二:三角函数与零点 例4.已知函数211()sin sin (0)222xf x x ωωω=+->,x R ∈,若()f x 在区间(,2)ππ内有零点,则ω的取值范围是( )A .1(4,55)(84⋃,)+∞B .(0,15][48,1)C .1(8,15)(48⋃,5)4D .1(8,15)(48⋃,)+∞【解析】解:1cos sin 12()222x x f x ωω-=+-= ()4x πω-,由()0f x =,可得(41)()4k x k Z πω+=∈, 令2ω=得函数()f x 有一零点9(,2)8x πππ=∈,排除(B )、(C ), 令38ω=得函数()f x 在(0,)+∞上的零点从小到大为:123x π=,2103x π,⋯显然1(,2)x ππ∉,2(,2)x ππ∉,可排除(A ), 故选:D .例5.已知函数21()3sin cos cos 2f x x x x ωωω+-,(0,)x R ω>∈,若函数()f x 在区间(,)2ππ内没有零点,则ω的取值范围( )A .(0,5]12B .(0,5511][,]12612C .(0,5]8D .511(0,][,1)612【解析】解:函数21()3sin cos cos 2f x x x ωωω+-, 31cos21222x x ωω+=+-, sin(2)6x πω=+,函数()f x 在区间(,)2ππ内没有零点,所以:()()02f f ππ⋅>,即:sin()sin(2)066πππωωπ+⋅+>,所以:①sin()06sin(2)06ππωπωπ⎧+>⎪⎪⎨⎪+>⎪⎩,解得:5(0,]12ω∈, ②sin()06sin(2)06ππωπωπ⎧+<⎪⎪⎨⎪+<⎪⎩,解得:511[,]612ω∈,综上所述:(0ω∈,5511][,]12612, 故选:B .例6.已知函数()sin()f x x ωϕ=+,其中0ω>,0ϕπ<<,()()4f x f π恒成立,且()f x 在区间(0,)4π上恰有两个零点,则ω的取值范围是( ) A .(6,10)B .(6,8)C .(8,10)D .(6,12)【解析】解:依题意得()4f π为()f x 的最大值1,∴242k ππωϕπ+=+,k Z ∈,(0,)ϕπ∈,(82,82)k k k Z ω∴∈-+∈①又()f x 在区间(0,)4π上恰有两个零点,5044T π∴-,且3044T π<-,即53T ππ<,即253πππω<,解得610ω<,②∴由①②(6,10)ω∈.故选:A .变式7.已知函数231()cos (0,)22xf x x x R ωωω=+->∈,若函数()f x 在区间(,2)ππ内没有零点,则ω的取值范围是( ) A .5(0,]12B .5(0,)6C .5511(0,][,]12612D .5511(0,](,]12612⋃ 【解析】解:13()cos sin()26f x x x x πωωω==+.令6x k πωπ+=可得6k x ππωω=-+,k Z ∈. 令26k ππππωω<-+<解得11266k ωω+<<+, 函数()f x 在区间(,2)ππ内没有零点,∴区间1(6ω+,12)6ω+内不存在整数. 又2122ππππω-=,1ω∴, 又0ω>, 1(6ω∴+,12)(06ω+⊂,1)或1(6ω+,12)(16ω+⊂,2).1216ω∴+或1112266ωω+<+, 解得5012ω<或511612ω. 故选:C .变式8.已知函数()sin()f x x ωϕ=+,其中0ω>,0ϕπ<<,()()4f x f π恒成立,且()y f x =在区间3(0,)8π上恰有3个零点,则ω的取值范围是 (6,10) .【解析】解:函数()sin()f x x ωϕ=+,其中0ω>,0ϕπ<<,()()4f x f π恒成立,()14f π∴=,∴242k ωππϕπ+=+,k Z ∈,224k πωπϕπ∴=+-,k Z ∈.结合ϕ的范围,可得0k =或1k =. ①当0k =时,24πωπϕ=-,由0ω>,且(0,)ϕπ∈,可得(0ω∈,2 ). ()y f x =在区间3(0,)8π上恰有3个零点,3(,)8x ωπωϕϕϕ+∈+, 3348πωπϕπ∴<+,即334824πωππωππ<+-,即57282πωππ<,即2028ω<. 综合可得,ω∈∅. ②当1k =时,522424πωππωπϕπ=+-=-, 由0ω>,且(0,)ϕπ∈,可得(6ω∈,10 ). ()y f x =在区间3(0,)8π上恰有3个零点,3(,)8x ωϕϕωπϕ+∈+, 3348πωπϕπ∴<+,即3534824πωππωππ<+-,即412ω<.综合可得,此时,(6,10)ω∈. 综上,结合①②可得,(6,10)ω∈, 故答案为:(6,10). 变式9.已知函数1()2cos sin()(0)2262xx f x ωωπω=+->,x R ∈,若()f x 在区间(,2)ππ内没有零点,则ω的取值范围是 (0,5511][,]12612. 【解析】解:由1()2cos (sincoscossin )226262xxxf x ωωπωπ=+- 21313sincoscos sin()222226xxxcos x x x ωωωπωωω=+-=+=+. ()f x 在区间(,2)ππ内没有零点, 2ππππω∴-=,可得01ω<. 当(,2)x ππ∈时,(66x ππωπω+∈+,2)6ππω+,∴26()226k k Z k ππωπππωππ⎧+⎪⎪∈⎨⎪++⎪⎩,或26()2226k k Z k ππωππππωππ⎧++⎪⎪∈⎨⎪++⎪⎩, 解得152()612k k k Z ω-+∈,或5112()612k k k Z ω++∈, 又01ω<<,5012ω∴<或511612ω. ω∴的取值范围是(0,5511][,]12612. 故答案为:(0,5511][,]12612. 变式10.已知函数()2sin()f x x ω=,其中常数0ω>(1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象,区间[a ,](b a ,b R ∈且)a b <满足,()y g x =在[a ,]b 上恰有30个零点,求b a -的取值范围. 【解析】解:(1)对于函数()2sin f x x ω=,其中常数0ω>,若()y f x =在[4π-,2]3π上单调递增, 则()42ππω--,且232ππω,求得34ω,即ω的取值范围为(0,3]4. (2)令2ω=,将函数()2sin 2y f x x ==的图象向左平移6π个单位长度,可得函数2sin 2()2sin(2)63y x x ππ=+=+的图象;再向上平移1个单位长度,得到函数()2sin(2)13y g x x π==++的图象,令()0g x =,求得1sin(2)32x π+=-,72236x k πππ∴+=+,或112236x k πππ+=+,k z ∈, 求得512x k ππ=+或34x k ππ=+,k z ∈,故函数()g x 的零点为512x k ππ=+或34x k ππ=+,k z ∈. ()g x ∴的零点相离间隔依次为3π和23π, ()y g x =在[a ,]b 上恰有30个零点, b a ∴-的最小值为2431415333πππ⨯+⨯=,2471615333b a πππ-<⨯+⨯=, ∴434733b a ππ-<. 题型三:三角函数性质综合应用例7.已知函数()sin()(06,)22f x x ππωϕωϕ=+<<-<<的图象向右平移3π个单位长度得到函数()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则(ωϕ= )A .34π-B .23π-C .23π D .34π 【解析】解:把函数()f x 的图象向右平移3π个单位长度, 得到函数()sin()3g x x ωπωϕ=-+的图象,若()f x 和()g x 的图象都关于4x π=对称,则432k πωππωϕπ-+=+,⋯①42k ππωϕπ+=+,⋯②由①②得3n ωππ=,n Z ∈;3n ω∴=,又(0,6)ω∈,3ω∴=; ()sin(3)f x x ϕ∴=+;由342k ππϕπ+=+,解得4k πϕπ=-,又(2πϕ∈-,)2π,4πϕ∴=-,34πωϕ∴=-. 故选:A .例8.已知函数()sin()(0f x x ωϕω=+>,||)2πϕ,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在(4π,)3π单调,则ω的最大值为( ) A .12B .11C .10D .9【解析】解:函数()sin()(0f x x ωϕω=+>,||)2πϕ,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,()4k πωϕπ∴-+=,且42k ππωϕπ+='+,k 、k Z '∈,2()1k k ω∴='-+,即ω为奇数①.()f x 在(4π,)3π单调,∴12234πππω-,12ω∴②.由①②可得ω的最大值为11. 当11ω=时,由4x π=为()y f x =图象的对称轴,可得1142k ππϕπ⨯+=+,k Z ∈,故有4πϕ=-,()4k πωϕπ-+=,满足4x π=-为()f x 的零点,同时也满足满足()f x 在(4π,)3π单调, 故11ω=为ω的最大值, 故选:B .例9.已知函数()sin()(0,||),24f x x x ππωϕωϕ=+>=-为()y f x =图象的对称轴,4x π=为()f x 的零点,且()f x 在区间(,)126ππ上单调,则ω的最大值为( ) A .13B .12C .9D .5【解析】解:函数()sin()(0,||),24f x x x ππωϕωϕ=+>=-为()y f x =图象的对称轴,4x π=为()f x 的零点,()f x 在区间(,)126ππ上单调,∴周期2()6126T πππ⨯-=,即26ππω,12ω∴.4x π=-为()y f x =图象的对称轴,4x π=为()f x 的零点,∴21242n ππω+=,n Z ∈,21n ω∴=+.当11ω=时,由题意可得114k πϕπ⨯+=,4πϕ=,函数为()sin(11)4y f x x π==+,在区间(,)126ππ上,711(46x ππ+∈,25)12π,()f x 在区间(,)126ππ上不单调,11ω∴≠.当9ω=时,由题意可得94k πϕπ⨯+=,4πϕ=-,函数为()sin(9)4y f x x π==-,在区间(,)126ππ上,9(42x ππ-∈,5)4π,()f x 在区间(,)126ππ上单调,满足条件,则ω的最大值为9, 故选:C .变式11.已知函数()sin()(0f x x ωϕω=+>,||)2πϕ,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且11(36x π∀∈,17)36π,|()|1f x <,则ω的最大值为( )A .5B .4C .3D .2【解析】解:函数()sin()(0f x x ωϕω=+>,||)2πϕ,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴.4m πωϕπ∴-+=,42n ππωϕπ+=+.(,)m n Z ∈2()1n m ω∴=-+,即ω为奇数.下面验证5ω=不符合题意, 当5ω=时,可得4πϕ=,函数()sin(5)4f x x π=+,且11(36x π∈,17)36π时,64945(,)43636x πππ+∈, 而56494(,)23636πππ∈,不符合11(36x π∈,17)36π,|()|1f x <,则ω的最大值为3,故选:C .变式12.将函数()sin(2)(0f x x ωϕω=+>,[0ϕ∈,2])π图象上每点的横坐标变为原来的2倍,得到函数()g x ,函数()g x 的部分图象如图所示,且()g x 在[0,2]π上恰有一个最大值和一个最小值(其中最大值为1,最小值为1)-,则ω的取值范围是( )A .713(,]1212B .713[,)1212C .1117[,)1212D .1117(,]1212【解析】解:将函数()sin(2)(0f x x ωϕω=+>,[0ϕ∈,2])π图象上每点的横坐标变为原来的2倍, 得函数()sin()g x x ωϕ=+,由()g x 图象过点3以及点在图象上的位置, 知3sin ϕ=,23πϕ=,02x π,∴2222333x πππωπω++, 由()g x 在[0,2]π上恰有一个最大值和一个最小值,∴5272232ππππω+<,∴11171212ω<, 故选:C .变式13.已知22()sin ()cos ()(0)33f x x x ππωωω=+-+>.给出下列判断:①若1()1f x =,2()1f x =-,且12||2min x x π-=,则2ω=;②若()f x 在[0,2]π上恰有9个零点,则ω的取值范围为5359[,)2424; ③存在(0,2)ω∈,使得()f x 的图象向右平移6π个单位长度后得到的图象关于y 轴对称; ④若()f x 在[,]63ππ-上单调递增,则ω的取值范围为1(0,]3.其中,判断正确的个数为( ) A .1B .2C .3D .4【解析】解:222()sin ()cos ()cos(2)sin(2)3336f x x x x x ππππωωωω=+-+=-+=+.①由题可知,最小正周期22T ππω==,1ω∴=,即①错误; ②设函数()sin(2)6f x x πω=+在y 轴右侧与x 轴的第9个交点的横坐标为α,第10个交点的横坐标为β,则296πωαπ+=,2106πωβπ+=,解得5312παω=,5912πβω=, 若()f x 在[0,2]π上恰有9个零点,则535921212πππωω<,解得53592424ω<,即②正确;③()f x 的图象向右平移6π个单位得到函数()sin[2()]sin(2)6636g x x x ππωππωω=-+=-+, 函数()g x 的图象关于y 轴对称,∴,362k k Z ωππππ-+=+∈,13k ω∴=--,k Z ∈,若存在(0,2)ω∈,则13(0,2)k --∈,解得1(1,)3k ∈--,与k Z ∈相矛盾,即③错误;④令2[2,2]622x k k πππωππ+∈-++,得[,]36k k x ππππωωωω∈-++,k Z ∈, ()f x 在[,]63ππ-上单调递增,∴当0k =时,有3636ππωππω⎧--⎪⎪⎨⎪⎪⎩,解得12ω,0ω>,102ω∴<, 故ω的取值范围为1(0,]2,即④错误.∴正确的只有②,故选:A .变式14.已知函数()sin()(0f x x ωϕω=+>,||)2πϕ,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在(18π,5)36π单调,求ω的最大值.【解析】解:函数()sin()(0f x x ωϕω=+>,||)2πϕ,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,()4n πωϕπ∴-+=,n Z ∈,且42n ππωϕπ⋅+='+,n Z '∈,∴相减可得()222n n k πππωππ⋅='-+=+,k Z ∈,即21k ω=+,即ω为奇数.()f x 在(18π,5)36π单调,(1)若()f x 在(18π,5)36π单调递增,则2182k ππωϕπ⋅+-,且52362k ππωϕπ⋅++,k Z ∈, 即2182k ππωϕπ-⋅--+①,且52362k ππωϕπ⋅++,k Z ∈②, 把①②可得:336ωππ,12ω∴,故有奇数ω的最大值为11. 当11ω=时,114k πϕπ-+=,k Z ∈,||2πϕ,4πϕ∴=-. 此时()sin(11)4f x x π=-在(18π,5)36π上不单调,不满足题意.当9ω=时,94k πϕπ-+=,k Z ∈,||2πϕ,4πϕ∴=, 此时()sin(9)4f x x π=+在(18π,5)36π上单调递减,不满足题意;故此时ω无解.(2)若()f x 在(18π,5)36π单调递减,则2182k ππωϕπ⋅++,且532362k ππωϕπ⋅++,k Z ∈,即2182k ππωϕπ-⋅---③,且532362k ππωϕπ⋅++,k Z ∈④, 把③④可得:336ωππ,12ω∴,故有奇数ω的最大值为11. 当11ω=时,114k πϕπ-+=,k Z ∈,||2πϕ,4πϕ∴=-. 此时()sin(11)4f x x π=-在(18π,5)36π上不单调,不满足题意.当9ω=时,94k πϕπ-+=,k Z ∈,||2πϕ,4πϕ∴=, 此时()sin(9)4f x x π=+在(18π,5)36π上单调递减,满足题意;故ω的最大值为9. 故答案为:9.【过关测试】 一.选择题2.若函数()3sin (0)f x x ωω=>能够在某个长度为3的闭区间上至少三次出现最大值3,且在[,]1110ππ-上是单调函数,则整数ω的值是( ) A .4B .5C .6D .7【解析】解:函数sin y x ω=能够在某个长度为3的区间上至少三次出现最大值3, 如果起点为最高点,到下一个最高点,刚好一个周期,可两次获得最大值3, 由三角函数的图象与性质可知:即:223πω;解得:43πω; 又[11x π∈-,]10π上为单调函数,1110xωπωπω∴-,且102112ωππωππ⎧⎪⎪⎨⎪--⎪⎩, 解得5ω;综上可得,正整数5ω=. 故选:B .3.已知函数()sin()(0f x A x A ωϕ=+>,0ω>,||)2πϕ,满足()06f π-=且对于任意的x R ∈都有2()()3f x f x π=-,若()f x 在52(,)369ππ上单调,则ω的最大值为( ) A .5 B .7 C .9 D .11【解析】解:函数()sin()(0f x A x A ωϕ=+>,0ω>,||)2πϕ,满足()0sin()66f A πωπϕ-==-+,6k ωπϕπ∴-+=,k Z ∈①. 对于任意的x R ∈都有2()()3f x f x π=-,故()f x 的图象关于直线3x π=对称,∴32n ωππϕπ+=+,n Z ∈②.∴②-①可得()362n k ωπωπππ+=-+,即2()1n k ω=-+,即ω等于π的奇数倍. 若()f x 在52(,)369ππ上单调,则12252936πππω⋅-,求得12ω. 当11ω=时,由①可得116k πϕπ-+=,k Z ∈,结合||2πϕ,可得6πϕ=-,此时,()sin(11)6f x A x π=-,当52(,)369x ππ∈,4911(636x ππ-∈,41)18π, 故不满足()f x 在52(,)369ππ上单调,故11ω=不满足条件. 当9ω=时,()sin(9)f x A x ϕ=+,由①可得32k πϕπ-+=,k Z ∈,结合||2πϕ,可得2πϕ=或2πϕ=-,满足()f x 在52(,)369ππ上单调,也满足③. 故ω的最大值为9, 故选:C . 4.已知0ω>,||2πϕ,在函数()sin()f x x ωϕ=+,()cos()g x x ωϕ=+的图象的交点中,相邻两个交点的横坐标之差的绝对值为2π,当(6x π∈-,)4π时,函数()f x 的图象恒在x 轴的上方,则ϕ的取值范围是() A .(6π,)3πB .[6π,]3πC .(,)32ππD .[,]32ππ【解析】解:由()()f x g x =,得sin()cos()x x ωϕωϕ+=+, 即tan()1x ωϕ+=, 即4x k πωϕπ+=+,则4x k πωπϕ=+-,4k x ππϕω+-=,当0k =时,14x πϕω-=,当1k =时,24x ππϕω+-=,相邻两个交点的横坐标之差的绝对值为2π, 21442x x πππϕϕππωωω+--∴-=-==, 即2ω=,则()sin(2)f x x ϕ=+, 当(6x π∈-,)4π时,函数()f x 的图象恒在x 轴的上方,即此时()0f x >,恒成立, 由()0f x >,得222k x k πϕππ<+<+,k Z ∈, 得222k x k ϕϕπππ-<<-+,则26224k k ϕππϕπππ⎧--⎪⎪⎨⎪-+⎪⎩,得2624k k ϕππϕππ⎧+⎪⎪⎨⎪+⎪⎩,得2322k k πϕππϕπ⎧+⎪⎪⎨⎪+⎪⎩,当0k =时,得32πϕπϕ⎧⎪⎪⎨⎪⎪⎩,得32ππϕ, 则ϕ的取值范围是[3π,]2π,故选:D .5.已知函数()2sin 1(0)f x x ωω=+>在区间[2π-,2]3π上是增函数,则ω的取值范围是( ) A .(0,3]4B .(0,1]C .3[4,1]D .3[2,1]【解析】解:函数()2sin 1(0)f x x ωω=+>, ()f x 区间[2π-,2]3π上是增函数, 则有2222232k k πωπππωππ⎧--+⎪⎪⎨⎪+⎪⎩,k Z ∈,解得:14k ω-且334k ω+, 0ω>,(0∴,3]4.故选:A .6.已知函数()sin()(0)4f x x πωω=+>在区间[0,]π上有且仅有4条对称轴,则下列四个结论正确的是()A .()f x 在区间(0,)π上有且仅有3个不同的零点B .()f x 的最小正周期可能是4π C .ω的取值范围是1317[,)44D .()f x 在区间(0,)16π上单调递增【解析】解:函数()sin()(0)4f x x πωω=+>,令42x k ππωπ+=+,k Z ∈,得(41)4k x πω+=,k Z ∈, 函数()f x 在区间[0,]π上有且仅有4条对称轴,即有4个整数k 满足(41)04k ππω+,由(41)04k ππω+,得0144k ω+,可得0k =,1,2,3,则1434144ω+⨯<+⨯,∴131744ω<,即ω的取值范围是1317[,)44,故C 正确; (0,)x π∈,(44x ππω∴+∈,)4πωπ+,得7(42ππωπ+∈,9)2π,当[44x ππω+∈,9)2π时,()f x 在区间(0,)π上有且仅有4个不同的零点,故A 错误; 周期2T πω=,由1317[,)44ω∈,得14(17ω∈,4]13, 8(17T π∴∈,8]13π,()f x ∴的最小正周期不可能是4π,故B 错误; (0,)16x π∈,(44x ππω∴+∈,)164ωππ+,又13[4ω∈,17)4,∴29[16464ωπππ+∈,33)64π,又33642ππ>,()f x ∴在区间(0,)16π上不一定单调递增,故D 错误.故选:C .7.函数()sin()(0)6f x x πωω=+>在区间[0,]3π上恰有三个零点,则ω的取值范围是( )A .111722ω< B .111722ωC .172322ω< D .172322ω【解析】解:函数sin()(0)6y x πωω=+>在区间[0,]3π恰有3个零点,[66x ππω+∈,]36ππω+,可得3436πππωπ+<,可得172322ω<. 故选:C .8.已知函数()sin()(0)3f x x πωω=+>的图象在区间[0,1]上恰有3个最高点,则ω的取值范围为( )A .2937[,]66ππB .2937[,)66ππC .2537[,)66ππD .[4π,6)π【解析】解:因为[0x ∈,1],所以[33x ππω+∈,]3πω+,因为()f x 的图象在区间[0,1]上恰有3个最高点, 所以46232ππππωπ++<+,解得253766ππω<. 故选:C .9.若存在唯一的实数(0,)2t π∈,使得曲线sin()(0)4y x πωω=->关于直线x t =对称,则ω的取值范围是()A .3(4,7]4B .3[4,7]4C .3(2,7]2D .3[2,7]2【解析】解:函数sin()4y x πω=-,其对称方程为42x k ππωπ-=+,k Z ∈,解得34k x ππω+=,k Z ∈;对称轴(0,)2x t π=∈,∴当0k =时,可得对称性:342ππω<,,解得:32ω>; 当1k =时,可得对称性:342πππω+,解得:72ω; ω∴的取值范围是3(2,7]2.故选:C . 二.多选题10.已知函数()sin()(0f x x ωϕω=+>,)R ϕ∈在区间75(,)126ππ上单调,且满足73()()124f f ππ=-则( )A .2()03f π=B .04ω<C .关于x 的方程()1f x =在区间[0,2)π上最多有4个不相等的实数解D .若函数()f x 在区间213[,)36ππ上恰有5个零点,则ω的取值范围为8(,3]3【解析】解:函数()sin()f x x ωϕ=+满足73()()124f f ππ=-. 对于A ,因为1732()21243πππ⨯+=,所以()f x 的一个对称中心是(3π,0),即2()03f π=,选项A 正确;对于B ,因为576122Tππ-,解得2T π,即22ππω,解得4ω,所以04ω<,选项B 正确;对于C ,关于x 的方程()1f x =只有一个实数解,函数()sin()(0f x x ωϕω=+>,)R ϕ∈在区间7(12π,5)6π上单调,且满足2()03f π=, 所以5224()633T πππ⨯-=, 当23T π=时,()sin3f x x =,()1f x =在区间[0,2)π上的实数解为6π,56π,32π共有三个,选项C 错误; 对于D ,函数()f x 在区间2[3π,13)6π上恰有5个零点,所以13252632TT ππ<-, 所以2132522632ππππωω⨯<-⨯,解得81033ω<, 且满足5224()63T πππω>⨯-=,即223ππω,解得3ω,所以8(3ω∈,3],选项D 正确.故选:ABD .11.已知函数()4sin cos()1(0)6f x x x πωωω=++>在(0,)x π∈上恰有3个零点,则( )A .()f x 在(0,)π上恰有2个极大值点和2个极小值点B .()f x 在(0,)8π上的最大值是2C .()f x 在(0,)12π上是增函数D .ω的取值范围是1723(,]1212【解析】解:函数()4sin cos()16f x x x πωω=++314sin (sin )12x x x ωωω=-+ 223sin cos 2sin 1x x x ωωω=-+ 3sin 2cos2x x ωω=+2sin(2)6x πω=+,0ω>; 当(0,)x π∈时,2(66x ππω+∈,2)6πωπ+,对于D ,因为()f x 在(0,)π内恰好3个零点,所以3246ππωππ<+,解得17231212ω<,选项D 正确; 对于A ,当(0,)x π∈时,2(66x ππω+∈,2)6πωπ+,因为3246ππωππ<+,所以()2sin(2)6f x x πω=+在区间(0,)π上可能有2个或1个极小值点,选项A 错误;对于B ,当(0,)8x π∈时,2(66x ππω+∈,)46ωππ+,因为17231212ω<,所以1725464126482ωππππππ+>⨯+=>,所以()f x 在区间(0,)8π上有最大值为2,选项B 正确;对于C ,当(0,)12x π∈时,2(66x ππω+∈,)66ωππ+,因为17231212ω<,所以2335666126722ωππππππ+⨯+=<,所以()f x 在区间(0,)12π上单调递增,选项C 正确.故选:BCD .12.已知函数2()12cos ()(0)3f x x πωω=-+>,下面结论正确的是( )A .若1x ,2x 是函数()f x 的两个不同的极值点,且12||x x -的最小值为π,则1ω=B .存在(0,1)ω∈,使得()f x 往右平移6π个单位长度后得到的图象关于原点对称C .若()f x 在[0,2]π上恰有6个零点,则ω的取值范围是3541[,)2424D .若2(0,]3ω∈,则()f x 在[,]64ππ-上单调递增【解析】解:22()12cos ()cos(2)sin(2)336f x x x x πππωωω=-+=-+=+,对于A ,12||2min T x x π-==,∴2ππω=,12ω=,错误; 对于B ,平移后12()sin(2)6g x x ωωπ-=+关于原点对称,则1216()62kk k Z ωππω--=∈⇒=,k Z ∈,当0k =时,1(0,1)2ω=∈,正确;对于C ,[0x ∈,2]π,2[,4]666x πππωωπ+∈+,3541647[,)62424ππωππω+<⇒∈,正确; 对于D ,当[,]64x ππ∈-,则2(636x πωππω+∈-+,)26ωππ+,若()f x 在[,]64ππ-上单调递增,则23623262ωπππωωπππ⎧-+-⎪⎪⇒⎨⎪+⎪⎩,0ω>,∴2(0,]3ω∈,正确.故选:BCD . 三.填空题13.若函数sin y x ω=能够在某个长度为1的闭区间上至少两次获得最大值1,且在区间[,]1615ππ-上为增函数,则正整数ω的值为 .【解析】解:由题意函数sin y x ω=图象过(0,0),其周期2T πω=,要使长度为1的闭区间上至少两次获得最大值1,则有1T , 即21πω,解得2ωπ,在区间[,]1615ππ-上为增函数, ∴2216k ππωπ--且2215k πωππ+,k Z ∈,解得832k ω-且307.5k ω+,∴当0k =时,正整数ω值为7,符合条件.故答案为:7.14.已知函数22()2sin cos ()sin (0)24x f x x x ωπωωω=⋅-->在区间52[,]63ππ-上是增函数,且在区间(0,)π上恰好取得一次最大值,则ω的取值范围是 .【解析】解:22()2sin cos ()sin 24x f x x x ωπωω=⋅-- 2sin [1cos()]2x x sin x πωωω=⋅+--2sin (1sin )sin x x x ωωω=⋅+- sin x ω=,令2,2x k k Z πωπ=+∈,解得2,2k x k Z ππωω=+∈, 因为()f x 在区间(0,)π上恰好取得一次最大值, 所以02ππω<<,解得12ω>, 令22,22k xk k Z πππωπ-++∈,解得22,22k k x k Z ππππωωωω-++∈, 因为()f x 在区间52[,]63ππ-上是增函数, 所以562232ππωππω⎧--⎪⎪⎨⎪⎪⎩,解得35ω, 综上所述,1325ω<, 所以ω的取值范围为13(,]25.故答案为:13(,]25.15.设函数()sin (0)g x x ωω=>向左平移5πω个单位长度得到函数()f x ,已知()f x 在[0,2]π上有且只有5个零点,则ω的取值范围是 . 【解析】解:由题意知,()sin ()sin()55f x x x ππωωω=+=+, 因为[0x ∈,2]π,所以[55x ππω+∈,2]5πωπ+,又()f x 在[0,2]π上有且只有5个零点, 所以5265ππωππ+<,解得1229510ω<, 所以ω的取值范围是12[5,29)10.故答案为:12[5,29)10.16.若函数()2sin(2)4f x x π=+在[0,]2m和[3m ,]π上均单调递增,则实数m 的取值范围为 .【解析】解:由()2sin(2)4f x x π=+知,当[0x ∈,]π时,()f x 在[0,]8π和5[,]8ππ上单调递增,[0,]2m和[3m ,]π上均单调递增, ∴28538m m ππ⎧⎪⎪⎨⎪⎪⎩,∴5244mππ, m ∴的取值范围为:5[,]244ππ. 故答案为:5[,]244ππ. 17.已知函数5()cos()(0)6f x x πωω=->在(0,)4π上有且仅有2个零点,则实数ω的取值范围为 .【解析】解:令()0f x =,则562x k πωππ-=+,k Z ∈,43k x ππωω∴=+, 由于()f x 在(0,)4π上有且仅有2个零点,则有434ππω<,且有734ππω,则有162833ω<为所求范围. 故答案为:16(3,28]3.18.已知函数()sin()(0f x x ωϕω=+>,)R ϕ∈在区间75(,)126ππ上单调,且满足73()()124f f ππ=-.(1)若5()()6f x f x π-=,则函数()f x 的最小正周期为 π ;(2)若函数()f x 在区间213[,)36ππ上恰有5个零点,则ω的取值范围为 . 【解析】解:因为7(12π,37)(412ππ⊆,5)6π, 所以()f x 在7(12π,3)4π上单调, 又73()()124f f ππ=-,所以73212423πππ+=,可得2()03f π=, 又由于5()()6f x f x π-=, 所以函数()f x 的对称轴方程为556212x ππ==,则2531244Tπππ-==,所以函数的最小正周期为π; 因为函数()f x 在区间2[3π,13)6π上恰有5个零点, 所以13252632T T ππ<-, 所以2132522632ππππωω⋅<-⋅,解得81033ω<, 且满足5224()633T πππ>⨯-=,即223ππω,即3ω, 故8(3ω∈,3],故④正确;故答案为:π,8(,3]3.19.设()3sin()1(0)12f x x πωω=-+>,若()f x 在[,]36ππ-上为增函数,则ω的取值范围是 . 【解析】解:设()3sin()1(0)12f x x πωω=-+>,若()f x 在[,]36ππ-上为增函数, [12312x πωππω-∈--,]63ωππ-, 故有3122ωπππ---,6122ωπππ-,求得54ω, 可得ω的取值范围是5(0,]4,故答案为:(0,5]4.20.已知函数()sin()(0)3f x x πωω=->,[0x ∈,]π的值域为3[,则ω的取值范围是 .【解析】解:因为[0x ∈,]π,所以[,]333x πππωωπ-∈--,因为函数()sin()3f x x πω=-的值域为3[,所以[32ππωπ-∈,4]3π,解得55[,]63ω∈. 故答案为:55[,]63.21.已知函数2sin()(0)3y x πωω=->图象与函数2sin()(0)6y x πωω=+>图象相邻的三个交点依次为A ,B ,C ,且ABC ∆是钝角三角形,则ω的取值范围是 .【解析】解:因为2sin()2sin()326y x x πππωω=-+=+,所以函数2sin()3y x πω=-的图象向左平移2πω个单位得到函数2sin()6y x πω=+的图象,画出两函数2sin()(0)3y x πωω=->和函数2sin()(0)6y x πωω=+>的部分图象,如图所示:根据图象知,2AC πω=,取AC 的中点D ,连接BD ,由对称性知,ABC ∆是以ABC ∠为顶角的等腰三角形,因为ABC ∆是钝角三角形,所以4ABD π∠>,所以tan 1ADABD BD∠=>,所以AD BD >,由2sin()2sin()36x x ππωω-=+,整理可得()()236x x k ππωωππ-++=+,k Z ∈,可得712x k πωπ=+,k Z ∈;则72sin()2sin()23123y x k πππωπ=-=+-=±2||22B BD y ==ABC ∆为钝角三角形,只需AD BD >,即22πω>24ω<,所以ω的取值范围是2)4. 故答案为:2).。
rbf核函数g取值范围问题【主题】rbf核函数g取值范围问题【导言】在机器学习领域,支持向量机(Support Vector Machine,简称SVM)是一种常用且强大的学习算法。
SVM通过核函数将非线性问题映射到高维特征空间,并通过找到最优分割超平面来解决分类问题。
在SVM中,径向基函数核函数(Radial Basis Function Kernel,简称RBF核函数)是一种常用的核函数。
然而,在使用RBF核函数时,我们需要关注它的参数g(gamma)的取值范围,以保证模型能够正确地学习和泛化。
本文将深入探讨RBF核函数g的取值范围问题,帮助读者更好地理解和应用SVM模型。
【正文】1. RBF核函数简介RBF核函数是SVM中最常用的核函数之一。
它的定义是一个关于特征空间中的两个向量之间距离的非线性函数。
在SVM中,RBF核函数的表达式为:K(x, y) = exp(-g * ||x - y||^2)其中,x和y是输入向量,在特征空间中表示样本数据的特征,||x - y||^2表示输入向量x与y之间的欧氏距离的平方,g是RBF核函数的一个参数,也称为gamma。
2. 参数g的作用与影响参数g在RBF核函数中起着重要的作用,它决定了样本点对分类器的影响程度。
参数g越大,每个样本点对分类器的影响越小,决策边界将会更加平滑;参数g越小,每个样本点对分类器的影响越大,决策边界将会更加复杂。
选取合适的参数g对于SVM模型的性能和泛化能力至关重要。
3. 参数g的取值范围在实际应用中,选取合适的参数g并不是一件容易的事情。
通常,我们可以尝试不同的取值范围,并通过交叉验证的方法来选择最优的参数。
在具体操作时,可以考虑以下几种策略:3.1 根据数据的分布情况选取g的初始范围我们可以通过观察数据的分布情况来初步确定参数g的取值范围。
如果数据具有明显的簇状结构,可以选择较小的g值,以保证决策边界可以更好地适应数据的密度变化。
初中函数取值范围练习题函数是数学中一个重要的概念,函数的取值范围是我们在学习函数时需要掌握的重点。
下面将通过一些练习题来帮助理解函数的取值范围。
练习题一:设函数 f(x) = 2x - 1,求函数 f(x) 的取值范围。
解析:要求函数 f(x) 的取值范围,需要找到 x 的所有可能取值,然后代入函数中求出对应的函数值。
首先,设函数 f(x) 的函数值为 y。
根据函数的定义式可得:y = 2x - 1然后,我们可以通过观察发现,函数 f(x) 是一个一次函数,其图像是一条直线。
由于一次函数的图像是一条无限延伸的直线,因此函数f(x) 的取值范围也是无限的。
练习题二:设函数 g(x) = x^2 + 2x + 3,求函数 g(x) 的取值范围。
解析:要求函数 g(x) 的取值范围,同样需要找到 x 的所有可能取值,然后代入函数中求出对应的函数值。
首先,设函数 g(x) 的函数值为 y。
根据函数的定义式可得:y = x^2 + 2x + 3接下来,我们可以通过图像来观察函数 g(x) 的取值范围。
由于函数g(x) 是一个二次函数,其图像是一个开口朝上的抛物线。
我们可以看到,函数的图像在抛物线的顶点处取得最小值,然后逐渐增大。
因此,我们只需要求出函数的顶点即可确定函数的取值范围。
通过求导数可得函数的导函数为 g'(x) = 2x + 2。
当导函数等于零时,函数的斜率为零,即函数的切线为水平线。
解方程 g'(x) = 0 可得 x = -1。
将 x = -1 代入原函数 g(x) 可得 y = 3。
因此,函数 g(x) 的取值范围为大于等于 3 的所有实数。
练习题三:设函数 h(x) = 1/x,求函数 h(x) 的取值范围。
解析:要求函数 h(x) 的取值范围,同样需要找到 x 的所有可能取值,然后代入函数中求出对应的函数值。
首先,设函数 h(x) 的函数值为 y。
根据函数的定义式可得:y = 1/x函数 h(x) 的定义域为除了 x = 0 外的所有实数。
[]2012.843提问是在数学课堂教学中引导学生学习思考的重要手段之一,教学的成功与否,学生所获的丰欠与否,都与教师在教学过程中提问的质量有直接的关系。
优秀教师的教学不只在于会讲,还在于有效提问。
一、在初步时探问教师给学生讲授新课和学习新概念时,应当把教学速度适当放慢,所提的问题既要针对学生的年龄特征、知识水平和学习能力,又要针对教材的重点和难点。
在难点处,教师可运用试探提问方式来吸引学生。
如学习用画图的方法来帮助解题的一道例题:中山小学有一花坛,长8米,扩建校园时,把花坛的长增加了3米,结果花坛的面积增大了18平方米,扩建校园前花坛的面积是多少?这道例题是学生第一次用画图方法解应用题,因此,作图时要按照题目中相关数据来标定所画线段的长度,这是学生画图的重点。
怎样使学生重视这个问题呢?教师在引导画图时,应当把教学速度放慢一些,不妨试探地提问:“长增加了3米,应该画多长呢?”然后引导学生经过观察和对比,得出结论:8米的一半是4米,那么就再短一点。
如此可以培养学生先想后做、善于动脑的良好习惯。
二、在关键处提问小学数学教科书中经常会遇到一些抽象的概念,由于学生缺乏生活体验,往往不能理解这些抽象的概念。
教师要善于在这些地方进行提问,把关键问题突出出来。
例如教学“数对”这一概念时,当学生第一次学会用数对来表达点的位置以后,可以对照坐标图进行提问:“数对(4,5)和(5,4),意义一样吗?”或者引导学生观察表达同一列或同一行的几个点的位置的数对,然后提问学生从中发现的问题,从而增强其对数对概念的领会。
三、在阻塞处引问当学生的思维钻进牛角尖,思维阻塞而不能自拔时,此时教师的一句引问往往会把学生从死胡同里解救出来。
例如教学《送教下乡》一课时,教师给出两个数据:180本书,五(1)班和五(2)班的人数比是3∶2,要求学生根据这两个数据编写一道按比例分配的应用题。
结果学生们虽然编出了不少道题,但是都把180本书当做总量来编写。
函数的取值范围
在一般的函数关系中自变量的取值范围主要考虑以下四种情况:⑴函数关系式为整式形式:自变量取值范围为任意实数;⑵函数关系式为分式形式:分母≠0;⑶函数关系式含算术平方根:被开方数≥0;
⑷函数关系式含0指数:底数≠0.
实际问题中自变量的取值范围.
在实际问题中确定自变量的取值范围,主要考虑两个因素:
⑴自变量自身表示的意义.如时间、用油量等不能为负数.
⑵问题中的限制条件.此时多用不等式或不等式组来确定自变量的取值范围.
几何问题中的函数关系式,除使函数式有意义外,还需考虑几何图形的构成条件及运动范围.特别要注意的是在三角形中“两边之和大于第三边”.。
二次函数最值题分类精选---取值范围二次函数是中学数学中比较基础和重要的一章,对于二次函数最值问题的分类和解决具有重要的意义。
在许多情况下,我们需要讨论二次函数的取值范围来解决最值问题。
一、二次函数与取值范围对于标准的二次函数 $f(x)=ax^2+bx+c(a \neq 0, x \in R)$,其对称轴为 $x=-\frac{b}{2a}$,开口方向由系数 $a$ 的正负号决定。
当 $a>0$ 时,二次函数开口向上,最小值为 $\frac{4ac-b^2}{4a}$,当 $x=-\frac{b}{2a}$ 时取到。
当 $a<0$ 时,二次函数开口向下,最大值为 $\frac{4ac-b^2}{4a}$,当 $x=-\frac{b}{2a}$ 时取到。
二、二次函数最值问题分类在讨论二次函数的最值问题时,可以把问题分为以下两类:1. 二次函数最小值问题当二次函数开口向上时,函数存在最小值,最小值为$\frac{4ac-b^2}{4a}$,当 $x=-\frac{b}{2a}$ 时取到。
2. 二次函数最大值问题当二次函数开口向下时,函数存在最大值,最大值为$\frac{4ac-b^2}{4a}$,当 $x=-\frac{b}{2a}$ 时取到。
三、应用案例1. 数列问题在一个数列中,第 $n$ 项为 $a_n=n^2-2n+3(n \in N^*)$,求该数列的最大值。
分析:将 $a_n$ 化为标准的二次函数形式,得 $a_n=(n-1)^2+2$,开口向上,最小值为 $2$,当 $n=1$ 时取到。
因此,该数列的最大值为 $a_1=2$。
2. 圆外切正方形问题已知一个半径为 $r$ 的圆,内切一个边长为 $a$ 的正方形。
现在把正方形边长加倍成 $2a$,请问圆心到正方形顶点的距离 $d$ 的最小值是多少?分析:圆心到正方形顶点的长度就是圆形半径到正方形顶点的长度,最小值即为圆心到正方形的最远距离,可以证明正方形对于圆心的影响取决于正方形对角线与圆的位置关系。
1、(2014西工大模拟)已知)(x f 是R 上的偶函数,若将)(x f 的图象向右平移一个单位,则得到一个奇函数的图像,若(),12-=f 则(1)(2)(3)...(2014)f f f f ++++=(A )0 (B)1 (C )-1 ( D)-1004.5 2.(2014西工大模拟)“0m <”是“函数2()log (1)f x m x x =+≥存在零点”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件3.(2014西工大模拟)已知函数()f x 满足1()1(1)f x f x +=+,当[]0,1x ∈时,()f x x =。
若在区间(1,1]-内,函数()()g x f x mx m =--有两个零点,则实数m 的取值范围是( ) A.1[0,)2 B. 1[,)2+∞ C. 1[0,)3 D. 1(0,]24、(2011西工大模拟)设函数2(0)()2(0)x bx cx f x x ⎧++≤=⎨>⎩,若(4)(0)f f -=,(2)2f -=-,则函数()()F x f x x =-的零点个数为A. 1B. 2C. 3D. 45.(2012西工大模拟)函数2(4)|4|()(4)x x f x a x ⎧≠⎪-=⎨⎪=⎩,若函数2)(-=x f y 有3个零点,则实数a 的值为( )A .-2B .-4C .2D .不存在6.(2014·湖南)已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图像上存在关于y 轴对称的点,则a 的取值范围是( )A .(-∞,1e ) B .(-∞,e)C .⎝⎛⎭⎫-1e ,eD .⎝⎛⎭⎫-e ,1e7.(2014·山东)已知函数f (x )=|x -2|+1,g (x )=kx ,若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A. ⎝⎛⎭⎫0,12B. ⎝⎛⎭⎫12,1 C. (1,2) D. (2,+∞)8.(2014·天津)已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.9.(2012天津)已知函数112--=x x y 的图象与函数2-=kx y 的图象恰有两个交点,则实数k 的取值范围是_________.10.已知函数f (x )=4x +m ·2x +1有且仅有一个零点,求m 的取值范围,并求出该零点.11.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0).(1)若g (x )=m 有零点,求m 的取值范围; (2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.12.已知函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数的解析式; (2)若关于x 的方程f (x )=k 有三个零点,求实数k 的取值范围.13、(2013陕西模拟)设方程xx lg 2=-的两个根为21,x x ,则( )A .021<x x B .121=x x C .121>x x D .1021<<x x14.(2014西工大模拟)已知函数4()f x x=与3()g x x t =+,若()f x 与()g x 的交点在直线y x =的两侧,则实数t 的取值范围是 ( )A.(6,0]- B.(6,6)- C.(4,)+∞ D.(4,4)-15.(2014西工大模拟)已知函数)(x f 的定义域为R ,且满足1)4(=f ,)(x f ' 为)(x f 的导函数,又知)(x f y '=的图象如右图所示, 若两个正数b a ,满足,1)2(<+b a f ,则222++a b 的取值范围是( )A.]6,32[B.),6()32,(+∞-∞ C.]23,61[ D.)3,31(16.(2011西工大模拟)已知:函数()f x 的定义域为[)2-+∞,,且()()421f f =-=,()'f x 为()f x 的导函数,函数()'y f x =的图象如图所示,则()0021a b f a b ⎧≥⎪≥⎨⎪+≤⎩所围成的平面区域的面积( )A . 2B . 4C . 5D . 817.(2012西工大模拟)在R 上可导的函数3211()232f x x ax bx c =+++,当(0,1)x ∈时取得极大值,当(1,2)x ∈ 时取得极小值,则21b a --的取值范围是( ) A . 11(,)22- B .11(,)24- C . 1(,1)2 D .1(,1)418.(2011西工大模拟)已知21(),()()2x f x x g x m ==-,若对[]11,3x ∀∈-,[]20,2x ∃∈,12()()f x g x ≥,则实数m 的取值范围是 .19. (2012西工大模拟)函数()f x 定义域为D ,若满足①()f x 在D 内是单调函数②存在D b a ⊆],[使()f x 在[],a b 上的值域为,22a b ⎡⎤⎢⎥⎣⎦,那么就称)(x f y=为“成功函数”,若函数)1,0)((log )(≠>+=a a t a x f x a 是“成功函数”,则t 的取值范围为( ) (A ).()+∞,0 (B ).⎪⎭⎫ ⎝⎛∞-41, (C). ⎪⎭⎫ ⎝⎛41,0 (D). ⎥⎦⎤ ⎝⎛41,020.(2014西工大模拟)已知)(x f 是定义R 上的不恒为零的函数,且对于任意实数b a ,满足:)()()(a bf b af b a f +=⋅,2)2(=f ,)()2(+∈=N n nf a n n ,)(2)2(+∈=N n f b nnn ,考察下列四个结论: ①)1()0(f f =; ②)(x f 为偶函数; ③数列}{n a 为等比数列;④数列}{n b 为等差数列。
其中正确的结论是( )A.①③④B.①②③C.①②④D.①④21. (2014西工大模拟)定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,有(){}n a f 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在(,0)(0,)-∞+∞上的如下函数:①2()f x x =; ②()2x f x =; ③()x x f =; ④()ln f x x =,则其中是“保等比数列函数”的()f x 的序号为( )A . ①②B . ③④C . ①③D . ②④22.(2013西工大模拟理)已知函数()()2911232(2)(2)x x a x x f x x a -+-+⎧≤⎪=⎨>⎪⎩,(0a >,且1a ≠),若数列{}n a 满足()(),n a f n n N *=∈,且{}n a 是递增数列,则实数a 的取值范围是( )A .()0,1B .8,33⎡⎫⎪⎢⎣⎭C .()2,3D .()1,323.(2014五校联考)定义域为R 的函数()f x 满足(2)2()f x f x +=,当[0,2)x ∈时,23||2,[0,1),()1(),[1,2),2x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩若当[4,2)x ∈--时,函数21()42t f x t ≥-+恒成立,则实数t 的取值范围为( ) (A)23t ≤≤ (B)13t ≤≤ (C)14t ≤≤ (D)24t ≤≤24.(2013陕师大模拟理)定义在R 上的函数()y f x =是减函数,且函数()y f x =的图象关于原点成中心对称,若s ,t 满足不等式22(2)(2)f s s f t t ---≤.则当14s ≤≤时,ts 的取值范围是( )A .1,14⎡⎫-⎪⎢⎣⎭ B .1,14⎡⎤-⎢⎥⎣⎦ C .1,12⎡⎫-⎪⎢⎣⎭ D .1,12⎡⎤-⎢⎥⎣⎦25.(2014宝鸡模拟)定义函数D x x f y ∈=),(,若存在常数c ,对任意D x ∈1,存在唯一D x ∈2的,使得c x f x f =+2)()(21,则称函数)(x f 在D 上的均值为c ,已知][100,10,lg )(∈=x x x f ,则函数xx f lg )(=在][100,10∈x 上的均值为( ) A .23 B .43 C .107D .1026.(2014宝鸡模拟)右图是由所输入x 的值计算y 值的一个算法程序,若x 依次取数列)2014,(4*2≤∈⎭⎬⎫⎩⎨⎧+n N n n n 的项,则所得y 值中的最小值为( ) A .25 B .17 C .20 D .26输入xIf x<5 Then 12+=x yElsex y 5= End if 输出y27. (2014五校联考)方程1sin 222x x x π⎡⎤⎡⎤=-+⎢⎥⎢⎥⎣⎦⎣⎦在区间[]0,π内的所有实根之和为 .(符号[]x 表示不超过x 的最大整数)。
28、(2014宝鸡模拟)已知R x ∈,符号][x 表示不超过x 的最大整数,若函数)0(][)(>-=x a xx x f 有且仅有3个零点,则a 的取值范围是 ( )A.]32,21(B. ]32,21[C. ]54,43(D.]54,43[29.(2014西工大模拟)已知[]x 表示不超过实数x 的最大整数()x R ∈,如:[][][]1.32,0.80, 3.43-=-==.定义{}[]x x x =-,给出如下命题:① 使[]31=+x 成立的x 的取值范围是23x ≤<;② 函数{}y x =的定义域为R ,值域为[]0,1;③ 23201420132013201320132014201420142014⎧⎫⎧⎫⎧⎫⎧⎫++++=⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭1007; ④ 设函数(){}()010x x f x f x x ≥⎧⎪=⎨+<⎪⎩ ,则函数()1144y f x x =--的不同零点有3个.其中正确的命题有 A. 1个 B. 2个 C. 3个 D. 4个家庭作业1、(2014宝鸡模拟)不等式21x ≥+x 成立的一个必要不充分条件是( ) A ),(∞+0 B ),(10 C ),(∞+1- D.),(∞+12.已知三个函数f (x )=2x +x ,g (x )=x -2,h (x )=log 2x +x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系是__________.3.(2014西工大模拟)设函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论恒成立的是 A .()()f x g x +是偶函数 B .()()f x g x -是奇函数 C .()()f x g x +是偶函数 D .()()f x g x -是奇函数 4.(2014西工大模拟)53()y x +的二项展开式的第三项为10,则y 关于x 的函数图像大致形状为( )A B C D5、(2014西工大模拟)函数sin ()x y e x ππ=-≤≤的大致图象为(A ) (B ) (C ) (D )6.(2011西工大模拟)设a <b,函数2()()y x a x b =--的图像可能是7、(2014西工大模拟)已知函数()sin()cos()(0,||)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且满足()()f x f x -=,则(A ))(x f 在)2,0(π上单调递减 (B ))(x f 在)43,4(ππ上单调递减 (C ))(x f 在)2,0(π上单调递增 (D ))(x f 在)43,4(ππ上单调递增8、(2014宝鸡模拟)已知函数)3sin()(x x f -=π,若要得到函数)('x f y =的图像,只需将函数)(x f y =图像上所有的点( ) A.向左平移2π个单位长度 B.向右平移2π个单位长度C. 向左平移32π个单位长度D.向右平移32π个单位长度9.(2011西工大模拟)已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是( ) A .(13,23) B.[13,23) C.(12,23) D.[12,23)10.(2011西工大模拟)已知偶函数()()y f x x R =∈在区间[1,0]-上单调递增,且满足(1)(1)0f x f x -++=,给出下列判断:(1)(5)0f =;(2)()f x 在[1,2]上是减函数;(3)()f x 的图像关于直线1x =对称;(4)函数()f x 在0x =处取得最大值;(5)函数()y f x =没有最小值,其中正确..的序x yπ-π oxyπ-π oxyπ-π oxyπ-π o11.(2011西工大模拟)已知函数()f x 对任意x R ∈都有(4)()2(2)f x f x f +-=,若(1)y f x =-的图象关于直线1x =对称,且(1)2f =,则(2011)f = A .2 B .3 C .4 D .612.(2011西工大模拟)已知函数(0)()2(2)(0)3x a x f x aa x x ⎧<⎪=⎨-+≥⎪⎩满足对任意12x x ≠,都有1212()()0f x f x x x ->-成立,则a 的取值范围是 (用区间表示)13.(2011西工大模拟)下列四个命题:①在区间[]0,1内任取两个实数,x y ,则事件“221x y +>恒成立”的概率是14π-; ②从200个元素中抽取20个样本,若采用系统抽样的方法则应分为10组,每组抽取2个;③函数)(x f 关于(3,0)点对称,满足)6()6(x f x f -=+,且当[]3,0∈x 时函数为增函数,则)(x f 在[]9,6上为减函数; ④满足30A =,1BC =,3AB =的ABC ∆有两解. 其中正确命题的个数为( )A .1B .2C .3D .414.(2011西工大模拟)若函数()f x =)3(log 1ax a a -+-在(0,3)上单调递增,则a ∈ 。