函数自变量取值范围
- 格式:ppt
- 大小:318.00 KB
- 文档页数:14
函数自变量取值范围函数自变量的取值范围是使函数解析式有意义的自变量的所有可能取值,它是一个函数被确定的重要因素,一直是中考的热点问题之一,下面举例谈谈这类问题的常见类型和解法供供同学们学习时参考。
一、教法点拨:1.在一般的函数关系式中自变量的取值范围主要考虑以下四种情况:(1)函数关系式为整式形式:自变量取值范围为任意实数;(2)函数关系式为分式形式:分母≠0;(3)函数关系式含偶次方根:被开方数≥0;(4)函数关系式含0指数或负整数指数:底数≠0.(5)解析式是上述几种形式组合而成时,应首先求出式子中各部分的取值范围,然后再求出它们的公共部分;2. 实际问题中自变量的取值范围:(1)注意自变量自身表示的意义;(2)问题中的限制条件,此时多用不等式或不等式组来确定自变量的取值范围。
3. 几何图形中函数自变量的取值范围:(1)使函数式有意义;(2)考虑几何图形的构成条件及运动范围。
注意记清各种情况,判断哪一类型,准确计算即可。
二、题型分类:题型一:函数关系式中自变量取值范围1.解析式是整式时, 函数自变量取值范围是全体实数。
(原创题)①y = x2-3 ;②y = 2x -1;③ y =-3x .2.解析式是分式时,自变量的取值范围是使分母不为0的实数。
①(2018哈尔滨)函数y= 中,自变量x的取值范围是_________。
②(2018武汉)若分式在实数范围内有意义,则实数x 的取值范围是()[来源:学科网ZXXK] A.x>-2B.x<-2C.x=-2D.x≠-2③(2017哈尔滨)函数Y= 中,自变量X取值范围是____________。
④(2018•宿迁)函数y= 中,自变量x的取值范围是()A.x≠0B.x<1C.x>1D.x≠13.解析式是偶次根式,自变量的取值范围是被开方数为非负数。
①(2018北京市)若在实数范围内有意义,则实数的取值范围是。
②(2018湖北十堰)函数的自变量x的取值范围是。
初中数学_如何确定函数自变量的取值范围确定函数自变量的取值范围是数学中的一个重要问题。
在解决数学问题和应用函数时,我们需要正确地确定自变量的取值范围,以保证问题的有效性和解决方案的正确性。
本文将介绍一些常见的确定函数自变量取值范围的方法。
首先,我们需要明确函数的定义域。
函数的定义域是指可以使函数有意义的自变量的取值范围。
根据函数的性质和实际问题的限制,我们可以用以下几种方法确定函数的定义域。
1.代数方法:根据函数的代数表达式,我们可以通过排除无意义或不符合要求的值来确定函数的定义域。
常见的情况包括分母不能为零、平方根函数的被开方数不能为负数等。
例如,对于函数f(x)=1/x,在这个函数中,分母不能为零,所以我们可以排除x=0。
因此,定义域可以表示为x≠0。
2.几何方法:通过函数的几何意义,我们可以确定自变量的取值范围。
例如,对于平方根函数y=√x,我们知道平方根函数的被开方数不能为负数。
因此,自变量的取值范围是x≥0。
3.实际问题的限制:在解决实际问题时,问题本身可能对自变量的取值范围有限制。
例如,一些问题要求在一个已知的范围内解决,那么自变量的取值范围可以限定在这个已知范围内。
其次,我们需要注意函数图像的特点,以确定函数自变量的取值范围。
1.函数的增减性:考虑函数的增减性可以帮助我们确定自变量的取值范围。
例如,对于一个递增函数,在这个函数中,随着自变量的增加,函数值也会增加。
因此,自变量的取值范围可以是无穷大或有实数限制的有界范围。
2.函数的奇偶性:如果函数是奇函数,那么函数图像关于原点对称,即f(x)=-f(-x)。
如果函数是偶函数,那么函数图像关于y轴对称,即f(x)=f(-x)。
根据函数的奇偶性可以帮助我们确定函数自变量的取值范围。
例如,如果函数是奇函数,那么自变量的取值范围可以限定在非负数范围内。
最后,我们可以通过函数的应用问题来确定自变量的取值范围。
1.题目限定:在解决应用问题时,问题本身可能对自变量的取值范围有限制。
一次函数自变量的取值范围
一次函数自变量的取值范围:
1、实数取值:实数取值是指一次函数自变量x可以取任意实数值,例如,x可以取1.2,2.3,3.4……乃至无穷大,这是其中最常见的取值形式。
2、自然数取值:自然数取值指一次函数自变量x可以取自然数值,例如,x可以取1,2,3,4…..,在有的一次函数中,要求函数的取值就是自
然数,这样的取值范围也是可以的。
3、整数取值:整数取值指一次函数自变量x可以取整数值,也就是正
整数、负整数、0。
例如,x可以取-5,-4,-3……0……5等取值,也
就是所有的整数形式。
4、正整数取值:正整数取值指一次函数自变量取值仅限于大于0的整数,例如,x可以取1,2,3……,这样的取值范围是有效可行的。
5、偶数取值:偶数取值指一次函数自变量只能取偶数值,例如,x可
以取2,4,6……,该取值范围有可能在特定的一次函数中使用。
6、比特数取值:比特数取值指一次函数自变量x取值仅限于2的次幂
形式,即1,2,4,8,16……按照8位二进制来取相应的值,在数字信号处理等方面有着重要的应用。
求函数自变量的取值范围的确定方法确定函数自变量的取值范围是数学问题中的一个重要环节,它涉及到函数的定义域、排除可能的异常情况,以及满足问题背景要求的合理取值范围等。
在本文中,我将从多个角度解释如何确定函数自变量的取值范围。
1.首先,根据函数的定义来确定自变量的取值范围。
在确定函数自变量的取值范围之前,我们需要了解函数的定义。
函数可以通过数学表达式、描述或者图像来定义。
对于数学表达式来说,自变量一般不应使函数的分母为零或者函数内存在不合法值(例如负数的平方根)等情况。
对于描述和图像来说,需要根据问题背景对自变量的限制进行理解。
例如,一个描述中可能指定了自变量必须为正整数,或者一个图像中显示了自变量只能在一些特定范围内取值。
2.其次,根据问题的背景确定自变量的取值范围。
问题的背景可能涉及到实际世界的限制条件,例如物理问题中对时间、空间的限制。
在这种情况下,我们需要根据问题的具体要求来确定自变量的取值范围。
例如,如果问题要求求解一个物体在一段时间内的位移,那么时间必须在非负范围内取值。
3.然后,考虑函数所处的数学领域以及函数类型。
不同的数学领域和函数类型对自变量的取值范围有不同的要求。
例如,对于实数域上的函数,自变量的取值范围可以是整个实数集;对于复数域上的函数,自变量的取值范围可以是整个复平面。
此外,特殊类型的函数(例如三角函数、指数函数)也会有特定的自变量取值范围。
在确定函数自变量的取值范围时,需要考虑到这些领域和类型的特殊要求。
4.最后,通过排除可能的异常情况来确定自变量的取值范围。
在解决实际问题时,常常需要考虑一些异常情况,例如除零错误或其他无法计算的情形。
在这些情况下,我们需要通过排除这些异常情况来确定自变量的取值范围。
例如,如果函数在一些自变量值附近没有定义,则需要将这个值排除在自变量的取值范围之外。
总结起来,确定函数自变量的取值范围需要结合函数的定义、问题的背景、数学领域和函数类型以及异常情况等因素综合考虑。
函数自变量的取值范围
函数自变量的取值范围:
①在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;
②函数y的取值范围也是任意非零实数。
取值范围怎么求
函数的自变量x的取值范围指的就是函数的定义域,用初中的说法就是使得函数的式子有意义的x的范围。
(1)解析式为整式的,自变量可取任意实数;
(2)解析式是分式的,自变量应取母不为0的实数;
(3)解析式是二次根式或偶次根式的,自变量取被开方数不小于0的实数等;
(4)对于函数解析式复杂的复合函数,应全面考虑,使其解析式中各式都有意义。
如y=1/x+根(3x-1),其取值为x≥1/3.2,对于有实际意义的函数,应当根据实际意义确定其自变量的取值范围。
有限区间
(1)开区间例如:{x|a<x<b}=(a,b)
(2)闭区间例如:{x|a≤x≤b}=[a,b]
(3)半开半闭区间例如:{x|a<x≤b}=(a,b]
{x|a≤x<b}=[a,b)
b-a成为区间长度。
有限区间在数学几何上的意义表现为:一条有限长度的线段。
如何确定函数自变量的取值范围湖北省黄石市下陆中学宋毓彬为保证函数式有意义,或实际问题有意义,函数式中的自变量取值通常要受到一定的限制,这就是函数自变量的取值范围.函数自变量的取值范围是函数成立的先决条件,只有正确理解函数自变量的取值范围,我们才能正确地解决函数问题.初中阶段确定函数自变量的取值范围大致可分为以下三种类型:一、函数关系式中自变量的取值范围在一般的函数关系中自变量的取值范围主要考虑以下四种情况:⑴函数关系式为整式形式:自变量取值范围为任意实数;⑵函数关系式为分式形式:分母≠0;⑶函数关系式含算术平方根:被开方数≥0;⑷函数关系式含0指数:底数≠0.例1.在下列函数关系式中,自变量x的取值范围分别是什么?⑴y=2x-5;⑵y=;⑶y=;⑷y=;⑸y=(x-3)0解析:⑴为整式形式:x的取值范围为任意实数;⑵为分式形式:分母2x+1≠0∴x≠-∴x的取值范围为x≠-;⑶含算术平方根:被开方数3x-4≥0 ∴x≥∴x的取值范围为x≥;⑷既含分母、又含算术平方根,故∴x≥-2且x≠0x的取值范围为:x≥-2且x≠0⑸含0指数,底数x-3≠0 ∴x≠3,x的取值范围为x≠3.二、实际问题中自变量的取值范围.在实际问题中确定自变量的取值范围,主要考虑两个因素:⑴自变量自身表示的意义.如时间、用油量等不能为负数.⑵问题中的限制条件.此时多用不等式或不等式组来确定自变量的取值范围.例2、某学校在2300元的限额内,租用汽车接送234名学生和6名教师集体外出活动,每量汽车上至少有一名教师.甲、乙两车载客量和租金如下表:甲种车辆甲种车辆载客量(单位:人/辆)45 30租金(单位:元)400 280设租用甲种车x辆,租车费用为y元,求y与x的函数关系式,并写出自变量x的取值范围.解析:⑴由题设条件可知共需租车6辆,租用甲种车x辆,则租用乙种车辆(6-x)辆.y=400x+280(6-x)=120x+1680∴y与x的函数关系式为:y=120x+1680⑵自变量x需满足以下两个条件:240名师生有车坐:45x+30(6-x)≥240 ∴x≥4费用不超过2300元:120x+1680≤2300 ∴x≤5∴自变量x的取值范围是:4≤x≤5三、几何图形中函数自变量的取值范围几何问题中的函数关系式,除使函数式有意义外,还需考虑几何图形的构成条件及运动范围.特别要注意的是在三角形中“两边之和大于第三边”.例3.若等腰三角形的周长为20cm,请写出底边长y与腰长x的函数关系式,并求自变量x的取值范围.解析:底边长y与腰长x的函数关系式为:y=20-2x①x表示等腰三角形腰长:x≥0②三角形中“两边之和大于第三边”:2x>y 即2x>20-2x ∴x>5③等腰三角形底边长y>0,20-2x>0,∴x<10∴自变量x的取值范围是:5<x<10作者简介:宋毓彬,男,43岁,中学数学高级教师.在《中学数学教学参考》、《数哩天地》、《中学生数学》、《数理化学习》、《数理化解题研究》、《中学课程辅导》、《数学周报》、《数学辅导报》等报刊发表教学辅导类文章40多篇.主要致力于初中数学中考及解题方法、技巧等教学方面的研究.。
函数自变量取值范围的确定策略金山初级中学 庄士忠 201508函数是初中数学一个十分重要的内容,为保证函数式有意义或实际问题有意义,函数式中的自变量取值通常要受到一定的限制,这就是函数自变量的取值范围。
函数自变量的取值范围是函数成立的先决条件,初中阶段确定函数自变量的取值范围大致可分为三种类型:(1)函数关系式中函数自变量的取值范围;(2)实际问题中函数自变量的取值范围;(3)几何问题中函数自变量的取值范围。
一、 函数关系式中函数自变量的取值范围:初中阶段,在一般的函数关系中自变量的取值范围主要考虑以下四种情况:(1)函数关系式为整式形式:自变量取值范围为任意实数;(2)函数关系式为分式形式:分母≠0;(3)函数关系式含算术平方根:被开方数≥0;(4)函数关系式含0指数:底数≠0。
典型例题:例1:函数y=x 1-的自变量x 的取值范围在数轴上可表示为【 】A .B .C .D .【分析】根据二次根式有意义的条件,计算出y=x 1-的取值范围,再在数轴上表示即可,不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。
根据二次根式被开方数必须是非负数的条件,要使y=x 1-在实数范围内有意义,必须x 10-≥ x 1⇒≥。
故在数轴上表示为:。
故选D 。
例2:函数y =1x 2- 中自变量x 取值范围是【 】A .x =2 B .x ≠2 C .x >2 D .x <2 【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使1x 2-在实数范围内有意义,必须x 20x 2-≠⇒≠。
故选B 。
例3:函数2y=x+2中自变量x 的取值范围是【 】A .x >﹣2 B .x ≥2 C .x ≠﹣2 D .x ≥﹣2【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使2x+2在实数范围内有意义,必须x+20x 2x >2x+20x 2≥≥-⎧⎧⇒⇒-⎨⎨≠≠-⎩⎩。
求一次函数自变量取值的方法1 函数自变量取值范围的确定在一个变化过程中,如果有两个变量x 与y ,如果对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.在解答与函数有关的问题时,常常要求出函数的自变量x 的取值范围,下面我们来介绍这一类问题的解法.经典例题在函数32--=x x y 中,求自变量x 的取值范围. 解题策略2x -分子中的二次根式被开方数必须为非负数,而且分母不为0.即自变量x 为下面不等式组的解:20,30.x x -≥⎧⎨-≠⎩ 解这个不等式组便可求得自变量x 的取值范围是x ≥2,且x ≠3.画龙点睛求函数自变量的取值范围,要注意以下几点:1. 若函数的解析式是整式,自变量的取值范围是全体实数;2. 若函数的解析式是分式,自变量的取值范围是使分母不等于0的一切实数;3. 若函数的解析式是二次根式,自变量的取值范围是使被开方数不小于0的一切实数;4. 若函数的解析式含有以上几类式子时,则应分别求出各自的取值范围,再求出它们的公共部分.举一反三1.下列函数中,自变量x 的取值范围是x >2的函数是( ).(A )2-=x y(B )12-=x y (C )21-=x y (D )121-=x y2.求函数2||1--=x x y 中自变量x 的取值范围. 3.求函数1||y x =-x 的取值范围. 融会贯通4.若函数25(2)34kx y k x k+=++-自变量x 的取值范围是一切实数,求实数k 的取值范围.参考答案1.C .在四个选择分支A 、B 、C 、D 中,它们的自变量x 的取值范围依次是x ≥2,x ≥12,x >2,x >12.故选C .2.由不等式组10,||20,x x -≥⎧⎨-≠⎩解得x ≤1, 且x ≠-2.3.由不等式1-|x |>0,得|x |<1,于是-1<x <1.4.要使函数自变量x 的取值范围是一切实数,就必须使分母不等于0.(1)当k =0时,分母等于3;(2)当k >0时,k (x +2)2≥0,要使分母不等于0,就应有3-4k >0,k <34,于是有0<k <34;(3)当k <0时,k (x +2)2≤0,要使分母不等于0,就应有3-4k <0,于是有k >34,这与k <0矛盾.综上所述,k 的取值范围是0≤k <34.。
函数中自变量的取值范围的确定作者:严小松来源:《成才之路》 2012年第24期贵州遵义● 严小松研究函数,确定自变量的取值范围是一个重要问题。
在新课标中,这也是中考内容的一个重要知识点。
然而,怎样确定自变量的取值范围呢?很多同学对此不很明确,常常因考虑不周而出现错误。
为了使同学们学习这部分知识时不出错或少出错,现将自己多年积累的经验归纳说明如下,供大家参考。
一、整式型例1 求函数y=2x-3的自变量的取值范围。
分析:因为不论x取任意实数,2x-3都有意义,所以自变量x的取值范围是全体实数。
例2 在函数y=x2+3x+1中,自变量x的取值范围是( )。
A.全体实数B.x≤0C.x≠-1D.x≥0分析:不论x取任意实数, x2+3x+1都有意义,所以自变量x的取值范围是全体实数。
故正确答案应为A。
二、分式型当函数解析式是分式时,自变量的取值范围是使分母不为零的实数。
例3 在函数y=1/x-3中,自变量x的取值范围是()。
A.X≠3B.X≠0C.X>3D.X≠-3分析:当X=3时,1/x-3没有意义,所以自变量X的取值范围是X≠3。
故答案为A。
例4 判断函数y1=x1与y2=x是否相同?分析:两个函数是否相同,必须具备两个条件:(1)函数解析式相同(化简后);(2)自变量的取值范围相同。
函数y1=x2/x=x中,自变量x的取值范围是x≠ 0 ;而函数y2=x 中,自变量x的取值范围是全体实数。
两个函数的解析式虽然相同,但自变量x的取值范围不同,所以它们不同。
三、偶次根式型当函数解析式是偶次根式时,自变量的取值范围是使被开方式非负的实数。
四、实际问题型当遇到实际问题或几何问题时,自变量的取值还必须符合实际意义或几何意义。
例6 南京到上海的铁路长为311千米,一列火车以90千米/时的速度从南京开往上海,h 小时后火车距上海S千米,用解析式表示S与h之间的函数关系,并求自变量h的取值范围(不考虑停站时间)。
[]2012.843提问是在数学课堂教学中引导学生学习思考的重要手段之一,教学的成功与否,学生所获的丰欠与否,都与教师在教学过程中提问的质量有直接的关系。
优秀教师的教学不只在于会讲,还在于有效提问。
一、在初步时探问教师给学生讲授新课和学习新概念时,应当把教学速度适当放慢,所提的问题既要针对学生的年龄特征、知识水平和学习能力,又要针对教材的重点和难点。
在难点处,教师可运用试探提问方式来吸引学生。
如学习用画图的方法来帮助解题的一道例题:中山小学有一花坛,长8米,扩建校园时,把花坛的长增加了3米,结果花坛的面积增大了18平方米,扩建校园前花坛的面积是多少?这道例题是学生第一次用画图方法解应用题,因此,作图时要按照题目中相关数据来标定所画线段的长度,这是学生画图的重点。
怎样使学生重视这个问题呢?教师在引导画图时,应当把教学速度放慢一些,不妨试探地提问:“长增加了3米,应该画多长呢?”然后引导学生经过观察和对比,得出结论:8米的一半是4米,那么就再短一点。
如此可以培养学生先想后做、善于动脑的良好习惯。
二、在关键处提问小学数学教科书中经常会遇到一些抽象的概念,由于学生缺乏生活体验,往往不能理解这些抽象的概念。
教师要善于在这些地方进行提问,把关键问题突出出来。
例如教学“数对”这一概念时,当学生第一次学会用数对来表达点的位置以后,可以对照坐标图进行提问:“数对(4,5)和(5,4),意义一样吗?”或者引导学生观察表达同一列或同一行的几个点的位置的数对,然后提问学生从中发现的问题,从而增强其对数对概念的领会。
三、在阻塞处引问当学生的思维钻进牛角尖,思维阻塞而不能自拔时,此时教师的一句引问往往会把学生从死胡同里解救出来。
例如教学《送教下乡》一课时,教师给出两个数据:180本书,五(1)班和五(2)班的人数比是3∶2,要求学生根据这两个数据编写一道按比例分配的应用题。
结果学生们虽然编出了不少道题,但是都把180本书当做总量来编写。