2020年优化短波通信方法参照模板
- 格式:docx
- 大小:332.89 KB
- 文档页数:9
优化短波通信方法随着现代通信技术的发展,短波通信在全球范围内仍被广泛应用。
短波通信可提供高效、长距离通讯的手段,这些优点已经使得短波通信成为现在国际间通信的重要工具。
然而,短波通信的传输受制于多种因素,如天气变化、地球大气层的电离和阻抗等问题,导致短波信号损失和噪声波干扰等问题,从而影响通信效果。
因此,优化短波通信方法是现代短波通信必不可少的工作之一。
一.短波通信优化的现状目前,短波通信优化的方法包括三个层次:系统级优化、设备优化和通信优化。
系统级优化着重于整个短波通信系统的设计和性能参数设定,包括天线、射频电路和调制解调等方面。
设备优化则集中于各个设备模块的内部设计和性能参数的调整。
通信优化则着眼于语音、数据通信以及多用户共享媒体等方面的优化。
二.优化短波通信方法(一)天线天线是短波通信的核心部件,电磁波与物体相互作用的过程中,能量交换的大部分是通过天线完成的。
可以将天线作为信息传输的对称器或解调器。
尽管天线的结构和材料存在一定的受限性,但新的制作技术和材料的出现正在推动天线技术的飞速发展。
优化措施包括选择可适用的天线类型、改进电磁辐射联合发射系统,优化天线中反射率以及增加物理接地等。
(二)射频电路射频电路是短波通信的另一个核心部件,它发挥着负责发送和接收电磁波的作用。
射频电路在功能和技术两方面都需要不断优化,以满足不断变化的通信需求。
优化措施包括设计更高动态范围射频前端和基带后端、优化接收机中离散频率、采用正确的宽频带技术、增加射频扫描和调谐操作等。
(三)调制解调调制解调是短波通信的数据传递方法,它可以用于语音、数据文件和数字影像等的传输。
优化措施包括使用新的数据传输技术、对接收器和传输介质进行调整、提高调制精度、设计新的调制准备和解调器等。
(四)预报地球空间和天气变化由于传输媒介的差异以及地球空间天气等因素的干扰,短波通信的通信效果容易受到天气变化的影响。
因此,我们需要更专业的工具来预测这些变化的发展。
统一通信系统方案建议书2011.12目录Contents一,项目需求概述 (2)二、平台总体建议 (3)2.1,协作通信系统平台设计要点 (3)2.2,核心呼叫控制设备CUCM设计 (5)2.3,即时消息,在线状态呈现设计 (10)2.4,安全和QoS设计 (12)2.4.1,语音加密和安全 (12)2.4.2,QoS设计 (12)2.5,带宽,流量 (13)2.6,编号方案 (15)三,功能 (16)3.1,IP智能终端应用举例(可选) (16)3.2、IM通信终端软件 (19)3.3、分机移动服务 (21)3.4,一号通(Mobile Connect),IP电话同移动电话/PSTN电话的绑定 (22)3.5、统一消息服务(可选) (24)3.6、手机上的软IP电话--Mobile 8.0 (27)3.7、IT支持服务中心(可选) (28)3.8、系统维护和管理 (32)一,项目需求概述•为了保证现在和未来业务发展需要,建设融合语音和数据网络的全新通信平台成为通信建设的重点•新建的统一通信平台应具备支持交通系统未来三至五年业务发展的能力。
•系统将覆盖全网各个办公机构。
•新建的系统将采用纯IP交换方式,同时提供语音通信,视频通信,即时消息,状态呈现,一号通,等功能,未来可以简单地址局端增加设备就可以增加语音信箱、Web会议系统等增值应用平台。
•新建的协作通信充分满足交通系统内部的语音通信、短波电台通信、卫星通讯、视频通信、即时消息、状态呈现、一号通,与现有语音通信、短波电台通信、卫星通讯、视频通信、外线互通的需求。
•IT技术支援中心。
新协作通信系统平台•覆盖全网的IP电话终端。
•将桌面电话系统同PC进行集成,实现方便的基于PC的呼叫发起和控制。
•将桌面固定IP电话同移动终端(如手机)进行捆绑,实现一号通,实现更高效率的通信。
•提供数字中继接入(提供PSTN电话接入和传真接入)。
•在PC上的即时消息,状态呈现,IP软电话;即时消息软件对桌面硬IP电话的控制。
短波通信(HF)(5篇范文)第一篇:短波通信(HF)短波通信HF:高频,所指的就是短波波段1600千周--30000千周(180公尺--10公尺)FM:调频,是一种通信方式调频(FM),就是高频载波的频率不是一个常数,是随调制信号而在一定范围内变化的调制方式,其幅值则是一个常数。
与其对应的,调幅就是载频的频率是不变的,其幅值随调制信号而变。
一般干扰信号总是叠加在信号上,改变其幅值。
所以调频波虽然爱到干扰后幅度上也会有变化,但在接收端可以用限幅器将信号幅度上的变化削去,所以调频波的抗干扰性极好,用收音机接收调频广播,基本上听不到杂音。
使载波频率按照调制信号改变的调制方式叫调频。
已调波频率变化的大小由调制信号的大小决定,变化的周期由调制信号的频率决定。
已调波的振幅保持不变。
调频波的波形,就像是个被压缩得不均匀的弹簧,调频波用英文字母FM表示。
载波的瞬时频率按调制信号的变化而变,但振幅不变的调制方式。
载波经调频后成为调频波。
用调频波传送信号可避免幅度干扰的影响而提高通信质量。
广泛应用在通信、调频立体声广播和电视中。
我们习惯上用FM来指一般的调频广播(76-108MHz,在我国为87-108MHz、日本为76-90MHz),事实上FM也是一种调制方式,即使在短波范围内的27-30MHz之间,做为业余电台、太空、人造卫星通讯应用的波段,也有采用调频(FM)方式的。
FM radio即为调频收音机。
FM调频即收音机功能。
作为MP3的一项附加功能,从实用角度来说,现在的MP3这方面做得并不很出色,应该说还不如普通的收音机,在接收范围、精度等等方面还都有差距,只能说是一个有益的补充。
当然,如果你注重这个功能的话,也有做得不错的产品。
而在具体机型上,针对FM,不同产品还有细分,是否可以保存选定的频道、可以保存多少个频道、立体声和普通声道可以自己设定还是由机器来设定。
SSB:单边带话通信在短波(HF)段一般采用占用频带较窄的单边带话,简称SB方式(Single Side Band)。
改善短波电台通信性能的措施分析【摘要】短波电台是远距离传输的一个重要载体,它有着非常重要的作用。
但是传统短波电台的通信性能,受到固有的缺点限制。
例如,传输速率低,频带利用率不高,正交频分复用技术的各自载波之间的正交性使得频谱可重叠,从而提高了频带利用率,采用OFDM技术有效地提高了短波电台的通信性能,文章让我们对改善短波电台通信性能的措施进行深入的分析。
【关键词】改善措施短波电台通信原理技术特点在现代,短波通信,被称为高频(HF)通信。
其类型分为地波和天波两种传输方式。
地波常用于短距离通信式的传播,而在远距离通信时,信息则主要是利用了天波的传信方式。
且短波通信是军事指挥的一个重要手段,短波电台通信是利用波长为最长10千米,频率为3MHz到30MHz的无线电波做为载体,从而传递消息和数据,短波作为一个通讯手段,他在战时和日常的演练中有很多的优点,他更加的可靠更加的有效,并且广泛在日常的应用,但是该方式在天线接收技术,差错控制技术和信号的调制技术等方面还需要进一步的改善。
一、短波电台通信的原理无线电广播,无线电通信,卫星,雷达都是通过无线电波传播的。
一般的无线电波长大到米为单位,小到以毫米为单位。
但是会有许多不同的。
它的传播特性的依据是电磁波,电磁波通常是按照波长进行分类的,如超长波,长波,中波,短波,超短波等。
公式是,频率=光速/波长。
电波在媒介面和分界面的传播是通过反射,折射,散射,绕射来实现的,因为各种因媒介质不同所以他的传播方向也会发生变化,在扩散和媒介质的传播过程他的能量会被吸收。
他的场强会在这个过程中变得越来越弱,甚至会减弱到为不计,所以我们要掌握他的传播方式。
沿着大地,和空气的分界面传播的是地波,地面的电特性极大条件的决定了地波的传播途径,而超长波,长波,中长波,短波等无线电信号都是利用地波传播特性来传播的,不受环境的影响,传播性能高,可靠性强这是地波相对于其他短波的传播优点。
这个优点也让地波在应用中更为的优势,发展更为的快速,在日常生活中作用的更为的广泛。
改善短波通信盲区的方法。
改善短波通信盲区的方法
一、提高天线高度:提高发射站和接收站天线的高度可以有效改善短波信号的传输距离,同时也可以增加信号的强度和清晰度。
另外,提高天线的高度也能够减少信号受环境因素的影响,如地形,气候等。
二、改善发射站:在改善传输盲区时,应首先考虑提高发射站的发射功率,优化发射频率和采用正确的极化方向,这是改善短波通信盲区的最有效的方法。
三、提高接收站的敏感度:若接收站收到的信号强度较低,则可以考虑使用更高的天线高度和更加灵敏的接收装置,从而提高接收站的敏感度,从而使接收站能够接收到更弱的信号。
四、改善环境因素:短波信号传播受到地形,气候等环境因素的影响,因此,改善短波通信盲区也可以通过改善环境因素,如减少地形障碍,改善气候条件等。
五、使用多个发射站或接收站:使用多个发射站或接收站可以有效改善短波通信的传播距离,提高信号的强度和清晰度,同时还可以使短波信号更容易地传播到盲区的一些边缘地区。
六、使用转换器:转换器可以将低频信号转换成高频信号,从而使信号变得更强,更易于传播。
总之,要有效改善短波通信盲区,应当从提高发射站和接收站的天线高度,改善发射站,提高接收站的敏感度,改善环境因素,使用多个发射站或接收站以及使用转换器等多种方面来全面解决短波通
信盲区问题。
短波通信工作总结引言短波通信是一种基于短波频段的无线通信方式,具有广域覆盖、抗干扰能力强等特点。
本文将对短波通信工作进行总结,包括工作内容、问题与挑战以及解决方案等方面的内容。
工作内容设备调试与优化在短波通信工作中,设备调试与优化是首要任务。
本文中,我们主要围绕着短波收发机进行了调试与优化工作。
具体包括以下几个方面的内容:1.信号调节:通过调节短波收发机的频率、幅度等参数,使其能够适应不同的通信环境和需求。
2.故障排除:定期检查短波收发机的工作状态,及时发现并解决故障,确保通信系统的稳定运行。
3.通信质量优化:通过改进天线布局、调整通信频率等手段,提高通信质量,降低通信质量差异。
通信网络建设短波通信网络的建设是为了实现全球范围内的通信覆盖。
在工作中,我们参与了短波通信网络的建设工作,包括以下几个方面:1.网络规划:根据通信需求和覆盖范围,制定网络布局和拓扑等详细规划。
2.设备安装与调试:参与网络节点的设备安装和调试工作,确保设备的正常运行。
3.周期性维护:定期进行通信系统的维护工作,检查设备状态并及时更换故障设备。
预测与干扰分析为了提高短波通信的可靠性和稳定性,我们进行了预测与干扰分析的工作。
具体工作内容包括:1.预测分析:根据短波通信特点和历史数据,预测不同时间段和地点的通信质量和可用性。
2.干扰分析:通过监测和分析短波频段的干扰源,确定干扰的类型和来源,并采取相应的干扰抑制措施。
问题与挑战在进行短波通信工作的过程中,我们遇到了一些问题与挑战。
主要包括以下几个方面:1.天气影响:短波通信易受天气条件的限制,例如电离层的变化、大气层的折射等。
我们需要根据天气情况做出相应的调整和预测。
2.干扰源:短波频段上存在各种干扰源,如电力设备、雷达等。
这些干扰源会对短波通信产生干扰,影响通信质量和可靠性。
3.复杂的通信环境:在一些复杂环境下,如山区、海洋等,短波通信的信号传播受到限制。
我们需要针对不同环境做出相应的优化。
改善短波通信盲区的方法
短波通信是一种重要的国际通信手段,但在过去存在着许多通信盲区,导致通信效果不佳。
为了改善这种现象,我们可以采用以下方法:
1.建立新的短波通信基站。
在短波通信盲区周围建立新的短波通信基站,可以提高通信信号的传输质量,从而改善通信盲区的情况。
2.增加短波通信发射功率。
增加短波通信发射功率可以有效地提高信号的传输距离和质量,从而解决通信盲区的问题。
3.优化天线设备。
天线是短波通信的重要组成部分,优化天线设备可以提高信号的传输效率和穿透力,从而改善通信盲区。
4.采用数字化技术。
数字化技术可以提高短波通信的压缩率和抗干扰能力,从而提高通信质量和穿透力,改善通信盲区。
总之,改善短波通信盲区需要我们采取多种措施,包括建立新的短波通信基站、增加短波通信发射功率、优化天线设备和采用数字化技术等。
这些措施可以提高信号的传输效率和穿透力,从而解决通信盲区的问题,为短波通信提供更加高效、稳定的通信手段。
- 1 -。
浅谈提高短波通信质量的方法
李德平
【期刊名称】《通讯世界:下半月》
【年(卷),期】2015(000)001
【摘要】针对短波通信在各领域使用中由于地理位置和环境不同,通信效果也存在不尽相同,有好有差,甚至有的还会出现无法通信的情况。
根据短波通信固有的一些特性和笔者在实践中所掌握的使用经验,通过采取选用质量好的电台、电源、天线,调整天线架设方式,正确选用电台工作频率等方法来提高短波通信质量,以有效解决短波通信由于地理位置和环境不同而影响通信效果的问题,供大家借鉴。
【总页数】2页(P11-12)
【作者】李德平
【作者单位】丽水市人防指挥信息保障中心,浙江丽水323000
【正文语种】中文
【中图分类】TN925
【相关文献】
1.提高短波无线电通信质量的相应措施
2.浅谈提高短波通信质量的方法
3.关于在复杂电磁环境下提高超短波通信质量的思考
4.提高短波无线电通信质量的方法
5.解读如何提高消防短波通信网通信质量
因版权原因,仅展示原文概要,查看原文内容请购买。
短波自适应通信方案在这个信息爆炸的时代,通信技术日新月异,短波通信作为传统通信方式之一,因其独特的优势,依然在众多领域发挥着重要作用。
今天,我将结合自己十年方案写作的经验,为大家带来一份关于短波自适应通信的方案。
一、项目背景随着我国经济的快速发展,通信需求日益旺盛。
然而,在复杂的电磁环境中,短波通信面临着信号衰减、多径效应等问题,导致通信效果不佳。
为了解决这些问题,短波自适应通信技术应运而生。
本项目旨在研究并实现一种短波自适应通信方案,提高短波通信的可靠性和稳定性。
二、技术目标1.实现信号实时监测与调整,适应复杂电磁环境。
2.提高短波通信的抗干扰能力,降低误码率。
3.优化通信协议,提高通信效率。
4.实现自适应功率控制,降低发射功率,延长通信距离。
三、方案设计1.硬件设计发射端:包括短波发射机、功率放大器、调制器等;接收端:包括短波接收机、解调器、信号处理器等;传输介质:短波天线、馈线等;控制系统:包括微处理器、控制软件等。
短波发射机:选择具有高性能、低功耗的短波发射机;功率放大器:选择线性度好、效率高的功率放大器;调制器:选择具有高精度、低误码率的调制器;解调器:选择具有高灵敏度、低噪声的解调器;信号处理器:选择高性能的数字信号处理器;天线:选择适合短波通信的天线。
2.软件设计(1)通信协议设计:采用自适应调制技术,根据电磁环境实时调整调制方式;采用自适应功率控制技术,根据通信距离和信号质量实时调整发射功率;采用前向纠错编码技术,提高通信的可靠性。
(2)控制系统设计:采用实时监测技术,实时监测通信信号质量,调整通信参数;采用智能控制算法,实现通信系统的自适应调整;采用人机交互界面,方便用户操作和维护。
3.系统集成与测试(1)系统集成:将各硬件模块按照设计要求进行连接;将控制软件烧录到微处理器中;对系统进行调试,确保各部分工作正常。
在不同电磁环境下,测试通信系统的性能;对通信系统进行长时间运行测试,检验其稳定性和可靠性;针对不同场景,测试通信系统的适应能力。
1、改善短波信号质量的三大要素由于短波传输存在固有弱点,短波信号的质量不如超短波。
不过我们可以通过一些途径改善短波信号质量,使其尽可能接近超短波。
改善短波信号质量的三大要素是:正确选用工作频率;正确选择和架设天地线;选用先进优质的电台和电源等设备。
1.1 正确选用工作频率短波频率和超短波频率的使用性质完全不同。
超短波属于视距通信,距离短,可以固定使用频段内的任何频点;而短波频率则受到电离层变化、通信距离和方向、海拔高度、天线类型等多种因素的影响和限制。
用同一套电台和天线,选用不同频率,通信效果可能差异很大。
对于有经验的短波工作者来说,选频并不困难,其中有明显的规律性可循。
一般来说:日频高于夜频(相差约一半);远距离频率高于近距离;夏季频率高于冬季;南方地区使用频率高于北方;等等。
另外,在东西方向进行远距离通信时,因为受地球自转影响,最好采用异频收发才能取得良好通信效果。
如果所用的工作频率不能顺畅通信时,可按照以下经验变换频率:(1)接近日出时,若夜频通信效果不好,可改用较高的频率;(2)接近日落时,若日频通信效果不好,可改用较低的频率;(3)在日落时,信号先逐渐增强,而后突然中断,可改用较低频率;(4)工作中如信号逐渐衰弱,以致消失,可提高工作频率;(5)遇到磁暴时,可选用比平常低一些的频率。
计算机测频利用计算机测频软件预测可用频率对短波通信很有帮助,是国外经常采用的先进技术手段。
计算机测频系统能够根据太阳黑子活动规律等因素,结合不同地区的历史数据,预测两点之间在未来一段时期每天各时节的可用频段,具有较高参考价值。
美国、欧盟、澳大利亚政府的计算机测频系统数据比较准确,它们通过分布在全球的监测点采集和跟踪各种环境参数的变化提供频率依据。
其中澳大利亚的ASPAS系统面向全世界提供测频服务,安装和服务费用不高,很有使用价值。
1.2 正确选择和架设天线地线天线和地线是很多短波用户容易忽视的问题。
当通信质量不好时,很多人习惯于从电台上找原因,而实际上信号不良常常源自天线或地线。
短波和超短波使用的天线是完全不同的。
超短波通信因为使用频率高,波长短,天线可以做得很小,通常为直立鞭状天线。
而短波通信因使用的频率较低,天线必须做得足够大才能有效工作。
简单的规律是:天线的长度达到所使用频率的1/2波长时,天线的效率最高。
短波天线的理论原理比较高深。
短波天线的种类繁多,用途各异,究竟应该选购何种天线,怎样安装架设才能获得良好的通信效果?根据我们了解和掌握的情况作如下简要介绍:(1)了解天线的基本工作原理短波天线分地波天线和天波天线两大类。
地波天线包括鞭状天线、倒L形天线、T形天线等。
这类天线发射出的电磁波是全方向的,并且主要以地波的形式向四周传播,故称全向地波天线,常用于近距离通信。
典型地波天线和波瓣分布如图3.1和图3.2所示。
地波天线的效率主要看天线的高度和地网的质量。
天线越高、地网质量越好,发射效率越高,当天线高度达到1/2 波长时,发射效率最高。
图1.1 典型地波(T形)天线结构示意图图1.2 典型地波天线垂直波瓣分布图天波天线主要以天波形式发射电磁波,分为定向天线和全向天线两类。
典型的定向天波天线有:双极天线、双极笼形天线、对数周期天线、菱形天线等,它们以一个方向或两个相反方向发射电磁波,用天线的架设高度来控制发射仰角,其典型波瓣分布如图3.3、图3.4和图3.5所示。
典型的全向天波天线有:角笼形天线、倒V形天线等。
它们是以全方向发射电磁波,用天线的高度或斜度来控制发射仰角。
图1.3 典型天波天线(双极天线)结构示意图图1.4 典型天波天线水平波瓣分布图图1.5 典型天波天线垂直波瓣分布图天波天线简单的规律为:天线水平振子(一臂的)长度达到1/2波长时,水平波瓣主方向的效率最高;天线高度越高,发射仰角越低,通信距离越远;反之,天线高度越低,发射仰角越高,通信距离越近;天线高度与波长之比(H/λ)达到二分之一时,垂直波瓣主方向的效率最高。
(2)按用途选购天线随着短波通信技术的发展,短波天线出现了很多不同用途的新品种,例如用于短波跳频的高效能宽带天线;用于为了解决天线架设场地小和多部电台共用一副天线的多馈多模天线等。
选择天线基本的着眼点应该是用途。
近距离固定通信:选择地波天线或天波高仰角天线。
点对点通信或方向性通信:选择天波方向性天线等。
组网通信或全向通信:选择天波全向天线。
车载通信或个人通信:选择小型鞭状天线。
(3) 正确处理天线价格与质量的关系俗话讲一分钱一分货。
首先同种用途的天线有不同种类,其增益有高低之分。
此外同一种外形的天线,使用不同材料;不同制造工艺,其通信效果的差异是很大的。
例如以特种不锈铜钢复合绞线为振子的天线,比用塑包线为振子的天线高频电磁转换效率高得多。
又例如匹配器所用的磁性材料优劣,对电台与天线的匹配状态影响极大。
高性能磁料能够保证全频段每个频点都能良好匹配;劣质磁料可能造成很多频点甚至整段频率匹配不好,驻波比过大。
使用劣质天线,电台输出的功率可能只送出去不到三分之一甚至更少,通信效果可想而知。
在投资增加不多的前提下,尽量选用高质量高增益的天线,能够保证长期稳定和优良的通信效果和延长使用寿命,是很划算的。
(4)介绍二种性能和价格兼优的基站天线根据多年的对比实验和实际使用经验,我们认为有两种进口天线在性能上能够广泛满足我国大多数用户的通信要求,而且价格不高,性能价格比好,以下分别介绍:●用于全方位通信的三角组合型全向全角天线我国省级行政区,从省会到边缘地区的距离多数在1200公里以内。
在这个区域内组建全省或地区的通信网,中心基站选用这种天线是比较理想的。
这种天线既能照顾360°全方位,又能照顾近中远各种距离,接收效果好,对改善通信盲区特别有效,此外它能兼顾垂直极化波和水平极化波,对区域内各种台站的不同种类天线的兼容性好。
●兼顾全向和定向两种用途的高增益三线式天线三线式天线是国际上近年流行的新型多用途天线,它虽然属于偶极天线类,但其性能是普通双极天线无法相比的。
与普通双极天线相比它有以下优点:1. 增益高,全频段内驻波比小,而且均匀辐射效率高;2. 水平架设时不仅在天线宽边方向辐射强,而且在窄边方向也有较强辐射;3. 架设状态平稳,抗风抗毁能力强;4. 提供平行和倒V两种架设方式,分别支持2500公里内定向通信和2000公里半径内全向通信。
以上两种天线的振子材质都是不锈铜钢复合绞线,电磁转换效率高而且经久耐用;其高性能磁性材料保证了全频段匹配良好。
(5)正确架设天线和连接馈线选购好合适的天线后,还必须正确地安装架设,才能发挥出最佳效果。
天线的长度和架设规范是不能改变的,但对于某些天线而言,架设的方向和高度是靠用户自己掌握的,应严格按通信的方向和距离来确定方向和高度。
天线的架设位置以开扩的地面为好,没有条件的单位也可以架在两个楼房之间或楼顶。
天线高度指天线发射体与地面或楼顶的相对高度。
架在楼顶时,高度应以楼顶与天线发射体之间的距离计算,不是按楼顶与地面的高度计算。
我们提醒用户,切忌因为架设场地不理想或怕麻烦,就随便把天线架起来完事,这样做通信效果很可能是不好的。
另一个要点是馈线的选用和布设。
馈线是将电台的输出功率送到天线进行发射的唯一通道,如果馈线不畅通,再好的电台和天线,通信效果也是很差的。
馈线分为明馈线和射频电缆两类。
目前100W~150W电台一般都使用射频电缆馈电方式。
选用射频电缆时要注意两项指标:一是阻抗为50欧姆;二是对最高使用频率的衰耗值要小。
一般来讲,射频电缆直径越粗,衰耗越小,传输功率越大。
在实际使用中,100W级短波单边带电台,常选用SYV-50-5或SYV-50-7的射频电缆,必要时也可以选SYV-50-9的射频电缆。
天线在进行安装选位和布设时,应尽可能缩短馈线的长度,普通SYV-50-5馈线每1米造成信号衰减0.082dB,这意味着100W电台功率通过50米馈线送达天线时,功率剩下不到40W。
因此通常要求馈线长度控制在30米以内。
如果因为场地条件限制必须延长馈线,则应采用大直径低损耗电缆。
另外在布设电缆,应尽量减少弯曲,以降低对射频功率的损耗,如果必需弯曲,则弯曲角度不得小于120度。
(6)电台和天线的匹配天线、馈线、电台三者之间的匹配必须引起高度重视,否则,虽然电台、天线、馈线都选得很好,通信效果还是不好。
所谓“匹配”就是要求达到无损耗连接,只有电台、馈线、天线三者保证高频输入输出阻抗一致,才能实现无损耗连接。
多数短波电台的输出/输入阻抗为50欧姆,必须选用阻抗为50欧姆的射频电缆与电台匹配。
天线的特性阻抗比较高,一般为600欧姆左右,只有宽带天线的特性阻抗稍低一点,大约200~300欧姆,因此,天线不能直接与射频电缆连接,中间必须加阻抗匹配器(也叫单/双变换器)。
阻抗匹配器的输入端阻抗必须与射频电缆的阻抗一致(50欧姆),输出端阻抗必须与天线的输入阻抗一致(600欧姆或200/300欧姆)。
阻抗匹配器的最佳安装位置是与天线连为一体。
自动天线调谐器也是匹配天线和电台阻抗用的。
自动天调的输入端与电台连接,输出端与单极天线连接。
自动天调与偶极天线连接时要根据不同产品而定。
有些天调要求加单/双变换器,天调与单/双变换器之间用50欧姆射频电缆相连(芯线接天调输出端,外皮接天调的地端),单/双变换器的双输出端与天线连接;多数新型天调不用加单/双变换器,用天调的输出端和接地端分别连接偶极天线的两臂,匹配效果更好,而且效率更高。
(7)正确埋设接地体和连接地线地线是很多用户容易草率处理的问题。
短波通信台站的地线是至关重要的,地线实际上是整个天馈线系统的重要组成部分。
我们所说的地线,不是交流供电系统中的电源地或保安地。
这里所说的地线是信号地,也称高频地。
信号地一般不能接到电源地或保安地上,必须单独埋设。
埋设接地体时,必须按有关标准进行,接地电阻不应大于4欧姆。
电台的接地柱和接地体之间,必须用多股线铜、编织铜线或大截面优良导体连接,才能起到良好的高频接地作用。
而良好的高频接地是减小发射驻波和减小接收噪声的必要前提。
1.3 选用先进优质的电台和电源工作频率和天线地线搞好了,相当于铺了一条“好路”。
好路上还要跑“好车”。
好车就是先进优质的电台和电源等设备。
(1)选择电台的原则和标准怎样评价电台的先进性和优质呢?先进性体现在两个方面:一是电气特性和工艺结构,这方面先进与否决定了性能指标的优劣和设备的可靠性;二是使用功能,具有多种先进功能的电台不仅用途更广泛,而且也说明制造者的科技实力。
电气特性涉及的内容很多,这里只简述三个方面:①频率特性。
好的电台频率稳定性比差的电台高几倍、几十倍甚至几百倍。
频率稳定性高的电台,不但话音清晰,信号等级高,而且是支持高速数传的必要条件。