短波电台通信原理 (1)
- 格式:docx
- 大小:30.09 KB
- 文档页数:19
短波通信一.概念简介短波通信(Short-wave Comunication)是无线电通信的一种.波长在50米~10米之间,频率范围6MHZ~30MHZ.发射电波要经电离层的反射才能到达接收设备,通信距离较远,是远程通信的主要手段.由于电离层的高度和密度容易受昼夜、季节、气候等因素的影响,所以短波通信的稳定性较差,噪声较大.目前,它广泛应用于电报、电话、低速传真通信和广播等方面.尽管当前新型无线电通信系统不断涌现,短波这一古老和传统的通信方式仍然受到全世界普遍重视,不仅没有被淘汰,还在快速发展.1.无线电波传播无线电广播、无线电通信、卫星、雷达等都依靠无线电波的传播来实现.无线电波一般指波长由100,000米到0.75毫米的电磁波.根据电磁波传播的特性,又分为超长波、长波、中波、短波、超短波等若干波段,其中:超长波的波长为100,000米~10,000米,频率3~30千赫;长波的波长为10,000米~1,000米,频率30~300千赫;中波的波长为1,000米~100米,频率300千赫~1.6兆赫;短波的波长为100米~10米,频率为1.6~30兆赫;超短波的波长为10米~1毫米,频率为30~300,000兆赫(注:波长在1米以下的超短波又f=称为微波).频率与波长的关系为:λ/c电波在各种媒介质及其分界面上传播的过程中,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱.为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果.常见的传播方式有:(1)地波(地表面波)传播沿大地与空气的分界面传播的电波叫地表面波,简称地波,一般<2MHz.地波的传播途径主要取决于地面的电特性.地波在传播过程中,由于能量逐渐被大地吸收,很快减弱(波长越短,减弱越快),因而传播距离不远.但地波不受气候影响,信号稳定、吸收小、可靠性高.超长波、长波、中波无线电信号,都是利用地波传播的.短波近距离通信也利用地波传播.(2)天波传播天波是由天线向高空辐射的电磁波遇到大气电离层折射后返回地面的无线电波,一般2 MHz-30MHz.电离层只对短波波段的电磁波产生反射作用,因此天波传播主要用于短波远距离通信及长中波广播.(3)直射波传播直射波又称为空间波,是由发射点从空间直线传播到接收点的无线电波,一般>30MHz.直射波传播距离一般限于视距范围.在传播过程中,它的强度衰减较慢,超短波、微波中继通信、蜂窝通信、电视、雷达、卫星通信与广播就是利用直射波传播的.在地面进行直射波通信,其接收点的场强由两路组成:一路由发射天线直达接收天线,另一路由地面反射后到达接收天线,如果天线高度和方向架设不当,容易造成相互干扰(例如电视的重影).限制直射波通信距离的因素主要是地球表面弧度和山地、楼房等障碍物,因此超短波和微波天线要求尽量高架.(4)散射传播散射传播是由天线辐射出去的电磁波,投射到低空大气层或电离层中不均匀介质时,利用对流层、电离层、流星余迹等不均匀体对电磁波的散射来实现“超视距传播”,其中一部份到达接收点.散射传播用于超短波(米波)和微波的远距离通信,通信距离远,但是效率低,不易操作,使用并不广泛.2.电离层的作用电离层对短波通信起着主要作用,因此是我们研究的重点.电离层是指从距地面大约60公里到2000公里处于电离状态的高空大气层.上疏下密的高空大气层,在太阳紫外线、太阳日冕的软X射线和太阳表面喷出的微粒流作用下,大气气体分子或原子中的电子分裂出来,形成离子和自由电子,这个过程叫电离.产生电离的大气层称为电离层.电离层分为D、E、F1、F2四层.D层高度60~90公里,白天可反射2~9MHz的频率.E层高度85~150公里,这一层对短波的反射作用较小.F层对短波的反射作用最大,分为F1和F2两层.F1层高度150~200公里,只在日间起作用,F2层高度大于200公里,是F 层的主体,日间夜间都支持短波传播.电离层的浓度对工作频率的影响很大,浓度高时反射的频率高,浓度低时反射的频率低.电离的浓度以单位体积的自由电子数(即电密度)来表示.电离层的高度和浓度随地区、季节、时间、太阳黑子活动等因素的变化而变化,这决定了短波通信的频率也必须随之改变.3.短波传播途径(1)短波通信的传播方式电离层最高可反射40MHz的频率,最低可反射1.5MHz的频率.根据这一特性,短波工作频段被确定为1.6MHz - 30MHz.所以根据无线电波传播的分类可知短波的基本传播途径有两个:一个是地波,一个是天波.如前所述,地波沿地球表面传播,其传播距离取决于地表介质特性.海面介质的电导特性对于电波传播最为有利,短波地波信号可以沿海面传播1000公里左右;陆地表面介质电导特性差,对电波衰耗大,而且不同的陆地表面介质对电波的衰耗程度不一样(潮湿土壤地面衰耗小,干燥沙石地面衰耗大).短波信号沿地面最多只能传播几十公里.地波传播不需要经常改变工作频率,但要考虑障碍物的阻挡,这与天波传播是不同的.短波的主要传播途径是天波.短波信号由天线发出后,经电离层反射回地面,又由地面反射回电离层,可以反射多次,因而传播距离很远(几百至上万公里),而且不受地面障碍物阻挡.但天波是很不稳定的.在天波传播过程中,路径衰耗、时间延迟、大气噪声、多径效应、电离层衰落等因素,都会造成信号的弱化和畸变,影响短波通信的效果.(2)短波通信的调制方式在无线电通信中,传送信息的载体是特定频率的载波(也称为主频).那么信息又是如何放到载波上的呢?这就引出了“调制”的概念.调制就是将信息的动态波形通过一定形式加到载波上发送出去,接收台收到被调制的载频信后,再还原信息.调制分为幅度调制(简称“调幅”)、频率调制(简称“调频”)、相位调制(简称“调相”)三种.中波、短波一般采用调幅方式,超短波一般采用调频方式.根据国际协议,短波通信必须使用单边带调幅方式(SSB),只有短波广播节目可以使用双边带调幅方式(AM).因此,国内外使用的短波电台都是单边带电台.单边带的优点是:①提高了频谱利用率,减少信道拥挤;②节省发射功率约四分之三;③减少信道互扰;④抗选择性衰落能力强.二.短波通信优缺点及关键技术1.优点:①.短波是唯一不受网络枢钮和有源中继体制约的远程通信手段,一但发生战争或灾害,各种通信网络都可能受到破坏,卫星也可能受到攻击.无论哪种通信方式,其抗毁能力和自主通信能力与短波无可相比;②.在山区、戈壁、海洋等地区,超短波覆盖不到,主要依靠短波;③与卫星通信相比,短波通信不用支付话费,运行成本低.2.缺点:①.可供使用的频段窄,通信容量小国际规定每个短波电台占用3.7KHZ的频段宽度,而整个波段的频带宽度才28.5MHZ,为了避免相互间的干扰,全球只有7700多个可用短波信道,每个信道3.7KHZ的现有带宽大幅制约了提高信道容量和数据传输速率.②.信道差短波的基本传播途径有两个:一个是地波,一个是天波.地波沿地球表面传播,其传播距离取决于地表介质特性.海面介质的电导特性对于电波传播最为有利,短波地波信号可以沿海面传播1000公里左右;陆地表面介质电导特性差,对电波衰耗大,而且不同的陆地表面介质对电波的衰耗程度不一样(潮湿土壤地面衰耗小,干燥沙石地面衰耗大).短波信号沿地面最多只能传播几十公里.地波传播不需要经常改变工作频率,但要考虑障碍物的阻挡,这与天波传播是不同的.由于电离层的高度和密度容易受昼夜、季节、气候等因素的影响,所以短波通信的性较差,噪声较大.短波的主要传播途径是天波.短波信号由天线发出后,经电离层反射回地面,又由地面反射回电离层,可以反射多次,因而传播距离很远(几百至上万公里),而且不受地面障碍物阻挡.但天波是很不稳定的.在天波传播过程中,路径衰耗、时间延迟、大气噪声、多径效应、电离层衰落等因素,都会造成信号的弱化和畸变,影响短波通信的效果.③.大气和工业无线电噪声干扰严重工业电磁辐射的无线电噪声干扰在短波频段的平均强度很高,此外,大气无线电噪声和无线电台间的干扰,尤其是脉冲型突发噪声,使短波通信的质量深受影响,常会使数据传输发生严重错误,影响通信质量.3.关键技术:⑴短波自适应通信技术现代短波通信的重要特征之一是自适应通信技术.其由来可追溯到1979年,在美国原子弹防御研究所的主持下,对遭受原子弹袭击后果用何种通信手段能迅速地恢复通信联络的问题进行了研究,于I980年l2月提出了关于短波自适应自动无线电的报告.在报告中明确提出:最有希望的解决办法,是采用价格不高的、能自动寻找优质信道的短波自适应收发信机.这种低价格设备能提供从视距到几千公里的范围内,不需要中继的通信能力.报告中还指出:今后的短波通信将越来越多的采用自适应技术,即利用收端接收的误差信号为准则,通过某种途径,对系统结构和参数进行自动调整,使系统具有适应通信条件变化的能力,经常处于最佳工作状态.通信条件包括传播条件、大气噪声、人为干扰(有意的或无意的)和敌人的窃听、被传输信息的形式等都可归纳到通信条件中去.因此,从广义上讲,短波自适应通信技术包括:自适应实时选频、自适应调制解调、自适应零位天线、自适应均衡、自适应编码自适应功率控制、传输速率的自适应、自动重发请求、自动同步等.说到底这种短波通信的自适应,就是短波信道(属变参信道、电波在传播过程中会产生多径效应、衰落多普勒频移等,将严重影响短波通信的质量和可靠性)的自适应,其核心是各种各样的自适应技术都要能实时她、照佳地匹配于肘、频、空域都在动态变化着的短波信道的传播特性,即它们要从不同的侧面各自努力做到足够迅速地自适应于信道各种参数的动态变化.下面简单介绍一下这些技术的发展概况.①.自适应实时选频技术由于信道的主要参数都与频率密切相关,所以通信频率的选择对提高通信质量起者决定性作用.因此,自适应实时选频在所有自适应方法中是最本质也最有效.目前广泛应用的这种短波自适应选频系统分为自适应频率管理系统和频率自适应系统两种.前者能够在很的时间内对短波全频段进行快速扫描和探测,不断预报各频率的可用情况(选频),但不能使通信系统跟踪信道媒质的短期变化.后者是融探测与通信为一体的系统,包括自适应探测技术、全频段谱被占用或受干扰的监测技术、预置信道上的选频技术、线路质量分析技术(ALQA)、自动链路建立技术(ALE)和快速换频技术,使系统的自适应能力达到了一个新的水平.②.自适应调制解调技术众所周知,由于数字通信具有抗干扰能力强、易于加密和纠错、提高传输速率、增加系统容量等优点,电路结构便于集成化、又通用化,是现化通信的发展方向.语音、数据和图象等信息已经或即将使用数字化信号,而且都是相似的二进制数字信号,完全可以综台起来进行传输和交换以提高效率.因此,短波通信也将由过去传输模拟信息为主转向传输数字信息为主.这样就要求有计划、有步骤地改造现有短波通信网,并积极研制高性能的调制解调数传机.近年来,开发的并行高速调制解调器的特点,一是采用了前向误差控制(FEC)、分集多普勒频偏校正和数字信号处理等综台技术,提高了抗干扰能力;二是采用了高速数字信号处理器(如TMs320)和微处理器等,因而使并行高速调制解调器的性能有了很大的提高.从80年代以来又出现了自适应串行调制解调技术,现在技术上已基本成熟,在性能、复杂性和成本上已达到实际应用水平,如美国Harm公司的Modem5254和5254 法国TRT公司的MDM12/24等都是串行体制的短波高速调制解调器.目前,它们又分为以自适应均衡为主体的和以最大似然检测(MLSE)为核心的串行短波高速调制解调器.前者目前研究最多,产品也是最多的一种;后者以最大似然检测为核心的串行短波高速调制解调器,性能最优,但由于运算量和所需存储量都很大,目前产品较少;还有以自适应均衡和以MLSE相组合构成的串行短波高速调制解调器,目前它虽处于理论研究阶段,但很有可能成为今后串行短波高速调制解调器发展的方向.串行体制和并行体制相比具有很大的优越性,首先串行体制提高数传速率的潜力很大,使频谱利用率比并行制高;其次串行体制对选择性衰落不敏感,而且它是目前最好型式的抗多径干扰体制;再其次,串行体制峰值功率和平均功率的比值小,允许单边带发射机有一定的幅度非线性失真;最后从效果上来比,在同样误码率情况下,串行体制的调制解制器比并行的可通率高20~40%,若固定可通率,对误码率进行测试,串行调制解调器比并行体制低得多.所谓自适应调翩解调技术,就是根据信道当前的特点来改变调制解调方式;或自适应地根据/Ⅳ改变各种滤波算法,根据多径时延长短来升降数据率,根据带内的窄带干扰改变当前的调制频率等.③.自适应零位天线技术自适应零位天线技术就是对所收到的信号进行实时处理,并且实时地调节天线阵元的相位,改变天线的方向图,以强化信号、抑翩干扰.用这种方法来对抗各种各样有意或无意的干扰可得到10~20dB信噪比的改善;若对抗瞄准式干扰可得到30~60 dB信噪比的改善.目前,采用自适应零位天线阵作为接收天线,已成为抗干扰的有效手段之一④.自适应均衡技术自适应均衡技术是短波信道实现串行体制数据传输方式之一的关键技术.它包括自适应信道均衡的误差准则、各种自适应均衡算法[平方根卡尔曼算法、快速横向滤波(FTF )算法、最小平方格型算法等等,它们各具优缺点,可视实际情况予以选用,自适应均衡器结构及其实现技术等.目前技术已趋成熟,适应于短波信道的自适应均衡器,其均衡精度高、稳定性能好,收敛速度已可以达到或基本达到跟踪信道时变特性的目的.⑤.自适应编码技术自适应编码技术包含自适应信源编码技术和自适应信道编码技术.信源编码是指将任意信源有效地转换为数字信息的方法,根据不同的信道条件采用不同的信源编码法.当信道噪声大时,可采用相关编码再增加多余度保护,当信道误码率高到一定程度时,可从标准速率降速使用,信息就容易通过信道.自适应信道编码技术则足指信源数据在进人调制之前所10 量级的实用要需的全部数字处理,它必须与当前信道条件相匹配.为使信道误码率达到5求,通常采用前向纠错(FEC)及反馈应答(ARQ)两大类型的差错控制技术,其编码多为线性分组码或扩展卷积码.在FEC法中,采用依信道参数而变的编码和不同的码长,在可靠保护信码的前提下减小多余度;在ARQ法中,根据信道条件的好坏,改变数据分组的长短,使重发的数据量尽可能小.近年来又出现了分组码软判译码的方法,使纠错码的潜力得到更充分的发挥.⑥.自适应功率控制技术接收端对所收得的信号大小产生一个控制指令,并通过反馈信道传输到发送端,对发射机输出功率进行自动控制,以保证通信质量和可靠性.⑦.传输速率的自适应技术通常当工作频率选定后,在允许的误码率条件下,应选择尽可能高的传输速率.实际上这完全由信道传播特性的好坏来决定,当信道传播特性良好时,可用较高的数据速率发送信息,而当信道特性恶化时,则降低传输速率,使系统的误码率满足规定的要求.此技术的关键是解决实时信道估值和实施收发两端同步变速问题.采用自动重发请求(ARQ)技术,除可纠错外,也是属于传输速率自适应的范围,它可以根据请求重发次数来提高、减慢或保持传输速率.上述各种短波自适应通信技术,都是为着迅速适应信道参数的变化,通过有效利用高频频谱来实现高质量、高效率和高可靠的通信目的.⑵短波通信抗干扰技术由于电子对抗技术的发展,现代短波通信必须寻找新的抗干扰技术来增强抗干扰能力.目前在短波通信中,抗干扰能力较强的技术有突发数据通信技术、扩频跳频技术、分集技术和前面介绍的自适应技术等.突发数据通信就是将信息压缩存储后,在某一瞬间突然发送出去,具有随机性和短暂性.信息的每次发送时间短,频率更换频繁,因此有防截收的作用.目前先进的现代短波通信系统(如西德的CHX一200、HF一850;以色列PRC一174电台配置了TMD一326型突发通信终端;美国RF-5000;法国TR0743小型轻便式突发终端)都具有此种功能.扩频跳频技术则是将频谱展宽,让信号能量分散,使具有防探测,防截收的功能.目前短波跳额的典型值是每秒几跳到每秒几十跳,如西德的CHX一200;英国的PRC一150;美国RF一5000和美军舰载高频系统7680等都只实现了每秒几十跳.分集技术则是根据短波信道的具体情况,自适应地从空间、时间、频率、极化、角度和路由等分集技术中选用一种或多重组合技术,以提高信噪比,降低误码率,达到高质量高可靠通信的目的.⑶短波通信组网技术组网可使军用短波通信用户整体的通信效率及灵活性增加,并且是保证.不问断的必要条件.目前国外的短波通信网主要有两种类型:一种是具有主控节点的、集中控制结构的短波自动控制系统,简称集中控制系统;另一种是网结构具有灵活分布的、自适应、自组织网络,简称自组织、自适应网络.集中控制系统主要根据短波通信的特点,采用的是一般的组网技术,如自动信道检测,有线无线转接,自动链路建立,数据编码保护等,这种类型有代表性的如加拿大的RACE无线电话系统;西德RS公司的自动控制短波无线电通信系统;日本高频无线电话电路的数字传辖系统;美国海军的岸舰高频网络等.另一种,自组织、自适应网络的概念,是80年代初期为了适应现代战场抗毁要求而提出的抗毁性结构网.它能够自动地组织和自动地适应由于网络拓扑变化而引起的接续变化的网络.这种网络的生存能力及抗干扰能力都很强.美国海军研究实验室和海军研究办公室支持开发的特混舰队内部短波通信网HF—ITF就是这种可自组筝{的抗毁高频移动无线分组网.它有几十至一百个节点,工作频率2~30 MHz,链路通信距离5D~l 000 km.它采用动态的单跳连接多群结构,网络中分频段建网,能提高抗干扰能力,也有益于系统的抗毁.总之,一般的点对点通信,已远远满足不了用户的要求,必须发展自适应路由组网技术.三.短波通信发展现状短波信道的时变性,使得高效的短波通信系统必须用上信道探测快速选频技术.在国外,本世纪60~70年代产品大多属于独立的信道探测系统,如l968年美国国防部委托斯坦福研究所研制的CURTS系统(公共用户无线电传输探测系统,简称自动选频和预报系统).它被应用于自动选频和预报中,预报出发点是基于信号能量干扰噪声多径展宽、多普勒展宽和空分集天线的相关性五个信道参数的实时测量.该系统适用于战略通信干线或通信网络的使用,每隔1O分钟为用户提供一张台有通信质量等级的频率表.被美军用作战略频率管理系统.利用10 ,实际机电该系统进行短波数据通信时,在90%的时间里,误码率可保持或低于5线路中断时间减少20%~40%,在进行2400 baud数据传输试验时(与不使用该系统进行较),数据丢失率减少65%.但该系统所占频谱宽,所需发射功率大,系统时间同步精度要求高,设备复杂而庞大,造价高昂.在本世纪70年代初,美国Barry公司研制的Chirp系统,于1976年发展成为美军第一代战术频率管理系统,AN/TRQ一35(V)系统,其性能是能发送Chirp探测信号,完成2~30MHz(或2~16MHz)多参数信号估算,能显示五个级共等8个优选工作频率,抗干扰能力强,易于组网,电磁兼容性好,具有检测功能,可使短波通信的质量和可靠性(与不使用该系统的一般通信进行比较)提高1O~l000倍.它的研制成功,曾让人们惊呼.短波通信已进人了新纪元,现已装备了美海、陆、空军和海军陆战队,以及世界上20多个国家军队.美陆军还计划配备第二代频率管理系统AN/TRQ一42(V),它们都属于扫频制,需时较长,不能实时选频.属于此种类型的还有加拿大Hermes公司为其海军研制的CHEC(信道估算和呼叫)系统.它在信道估算中,主要根据信噪比作最佳频率鉴别,没有考虑多径传播的因素,因而所选频率对于传输数据信号并不一定是最佳的.另外,该系统只适用于单工方式工作的通信线路.本世纪80年代以来,不少国家加速了对短波通信的研究与开发,并陆续推出了一些性能优良的设备和系统,其共性是容高频探测与通信为一体的综合系统,例如美国洛克伟尔--科里斯国际有限公司注册商标为SELSCAN 和ALQA的系统.前者含义为选择性呼叫与巡回检测为80年代初期产品,后者指.先进的线路质量分析器(ALQA) 为80年代中期产品,具有收发信机用快速自动调谐:发<1 s,收<10 ms,并且率先采用先进线路质量分析器,具有自动信道选择,信道自动建立,选呼和信道自动切换等功能,实现了高频探测与通信的综合,但由于该系统取样时间长度为9~26 s,因此信道参数测定(信号噪声谱密度比衰落深度、衰落功率谱、频率偏离的平均值和均方根值,噪声(干扰)的时间、频率和幅度的统计特性、谐波失真)需耗费散分钟的时间.该系统的代表产品有HF一80,AN/ARC一190(V)、AN/GRC一193A,AN/GRC一213等型电台.另外,美国Harris公司1985年推出AUTOLINK 即自动高频信道选频机,典型产品有RF一71∞、RF一7166和RF一7200等系统.其特点有HF线路的全自动建立、最佳信道选择、线路质量分析LQA、可预置信道检、选择性呼叫(群呼、广呼、单点呼叫)、微处理器控制、繁忙信道探测等,其中线路质量分析提供四项功能,即信噪比测试、6~l0个站的测试、点对点质量测试和网络质量测试.属于这种探测与通信综台的系统还有美国的Sunair公司推出的SC—l0系统(具有自动实时频率管理、自动建立线路、自动LQA、选择呼叫等功能),西德Siemens公司推出的CHX一200系统,常简称智能化HF通信系统(具有32- 320个频率的自动信道选择,99个地址的选呼、数据保护、跳频和突发长度为230ms的突发传输和。
为什么短波电台可以通联那么远的距离,它的传播原理其实很简单首先小汪作为无线电爱好者中的初学者,对很多无线电的原理还在学习之中,所发文章以及视频如有错误之处,还请各位老师指正。
不过最近有很多朋友给小汪留言,问我为什么短波电台可以通讯那么远的距离,动辄几百上千甚至几千公里的通联距离,那么短波电台为什么能通联那么远的距离呢?首先我们先来聊聊传播。
很多朋友在出租车上都会看到车载的UV 段的电台,UV段的传播,我们可以把它看做成是地波,影响UV段传播的因素主要是障碍物(天线功率等其他条件均衡的情况下),比如高大的建筑物或者是山丘等,因此很多城市的无线电爱好者在较高的位置架设了中继台,这样可以通过中继使范围内的UV段电台增加通联的距离,所以有时候我们可以看到出租车里的车载台通联到几十公里之外的出租车。
小汪的Yaesu FT-857D和Z73 Plus手键那么短波又是如何传播达到那么远的通讯距离的呢?短波,或者我们称之为HF段的电波是经过电离层的多次折射而传播的,又称作天波。
这个电离层很神奇,简单的说,电波就是通过电离层多次的跳跃反射达到远距离的通讯的,电离层就像一面镜子,电波跳跃的越多,传输的距离就越远。
但是短波的传播还受到很多因素的影响,首先就是太阳黑子,一般来说,太阳黑子的高峰年传播好,低峰年传播不好。
上一个高峰年是2011年左右,那么下一个高峰会发生在2022年左右,目前2018年处在一个不高不低或者说逐步上升的这样一个阶段。
小汪的正V750天线其次就是季节和昼夜,不同的波段会受到不同的季节的影响,比如某个波段在某个季节传播非常好,而其他的波段就不是很好,另外,季节交替的时候,例如春夏交替或秋冬交替,往往是传播比较好的时候,可以通联到许多遥远的电台。
还有就是昼夜的影响,一般来说,10MHz以上波段,白天传播好,夜间传播不好,10MHz以下波段正好相反,白天传播不好,夜间传播好。
不过总的来说,影响无线电的传播因素有很多,小汪所列举的也并不一定就是绝对的,这也是无线电神奇和吸引人的地方,有时候不经意的一个呼叫,也许电波就传到了很远的世界的另一个角落,这也是无线电的魅力。
短波通信原理优化短波通讯的方法1、改善短波信号质量的三大要素由于短波传输存在固有弱点,短波信号的质量不如超短波。
不过我们可以经过一些途径改善短波信号质量,使其尽能够接近超短波。
改善短波信号质量的三大要素是:正确选用任务频率;正确选择和架设天地线;选用先进优质的电台和电源等设备。
1.1 正确选用任务频率短波频率和超短波频率的运用性质完全不同。
超短波属于视距通讯,距离短,可以固定运用频段内的任何频点;而短波频率那么遭到电离层变化、通讯距离和方向、海拔高度、天线类型等多种要素的影响和限制。
用同一套电台和天线,选用不同频率,通讯效果能够差异很大。
关于有阅历的短波任务者来说,选频并不困难,其中有清楚的规律性可循。
普通来说:日频高于夜频〔相差约一半〕;远距离频率高于近距离;夏季频率高于夏季;南方地域运用频率高于南方;等等。
另外,在东西方向停止远距离通讯时,由于受地球自转影响,最好采用异频收发才干取得良好通讯效果。
假设所用的任务频率不能顺疏通讯时,可依照以下阅历变换频率:〔1〕接近日出时,假定夜频通讯效果不好,可改用较高的频率;〔2〕接近日落时,假定日频通讯效果不好,可改用较低的频率;〔3〕在日落时,信号先逐渐增强,然后突然中缀,可改用较低频率;〔4〕任务中如信号逐渐安康,致使消逝,可提高任务频率;〔5〕遇到磁暴时,可选用比往常低一些的频率。
计算机测频应用计算机测频软件预测可用频率对短波通讯很有协助,是国外经常采用的先进技术手腕。
计算机测频系统可以依据太阳黑子活动规律等要素,结合不同地域的历史数据,预测两点之间在未来一段时期每天各时节的可用频段,具有较高参考价值。
美国、欧盟、澳大利亚政府的计算机测频系统数据比拟准确,它们经过火布在全球的监测点采集和跟踪各种环境参数的变化提供频率依据。
其中澳大利亚的ASPAS系统面向全世界提供测频效劳,装置和效劳费用不高,很有运用价值。
1.2 正确选择和架设天线地线天线和地线是很多短波用户容易无视的效果。
短波电台的无线电传输与调制方式短波电台是一种无线电通信设备,通过无线电波传输信息。
在现代通信领域,短波电台被广泛应用于无线电广播、海上通信、遥感和天文观测等领域。
而为了实现高效的信息传输,短波电台需要采用适当的调制方式。
调制方式是指将要传输的原始信号转换为适合于传输的调制信号的过程。
在短波电台中,常见的调制方式包括幅度调制(AM)、频率调制(FM)和相位调制(PM)。
首先,幅度调制(AM)是最早出现的调制方式之一。
它通过改变信号的幅度来传输信息。
在幅度调制中,原始信号(也称为调制信号)使载波信号的振幅随时间变化。
这样,原始信号中的音频信号就可以通过调制成为载波信号的幅度变化,从而传输音频信息。
幅度调制技术简单且成本低廉,适用于长距离传输。
然而,幅度调制在传输过程中容易受到噪声干扰,信号质量较差。
其次,频率调制(FM)是另一种常用的调制方式。
它通过改变信号的频率来传输信息。
在频率调制中,原始信号使载波信号的频率随时间变化。
与幅度调制相比,频率调制的信号质量较好,抗干扰能力较强,但传输距离相对较短。
频率调制技术被广泛应用于无线电广播和移动通信领域。
此外,相位调制(PM)是调制方式的另一种重要形式。
它通过改变信号的相位来传输信息。
在相位调制中,原始信号使载波信号的相位随时间变化。
相位调制具有良好的抗干扰能力,传输质量高,也被广泛应用于无线通信领域,尤其是数字通信系统中。
值得一提的是,为了提高短波电台的传输效果,可以使用一种相对较新的调制方式,即联合调制。
联合调制是将多种调制方式相结合的复合调制技术,以获得更好的传输效果。
比如,可以将频率调制和相位调制结合,形成频率相位调制(FSK),适用于数字通信系统。
联合调制技术在现代无线通信系统中得到广泛应用,为信息传输提供了更多的选择。
除了调制方式,短波电台的无线电传输也依赖于其天线、功率和调制信号的频谱分布等因素。
天线是将电台的输出信号转换为电磁波并发射出去的关键部件。
短波通信matlab短波通信是一种利用短波频段进行无线通信的技术。
短波通信具有传输距离远、穿透力强、适应环境条件差等优点,因此在军事、航空、航海、无线电广播等领域得到了广泛应用。
本文将从短波通信的原理、调制解调技术、传输特性等方面进行介绍和分析。
一、短波通信的原理短波通信利用短波频段的电磁波进行信号的传输。
短波频段通常指的是3MHz至30MHz的频段,这一频段的电磁波具有较强的穿透力,可以通过电离层的反射和折射进行远距离传播。
短波通信的原理主要包括发射、传输和接收三个环节。
发射环节:通过调制技术将音频、视频等信号转换成短波信号,并通过天线发射出去。
调制技术主要有幅度调制(AM)、频率调制(FM)和相位调制(PM)等方式。
传输环节:短波信号在传输过程中会受到电离层的影响,电离层的密度和结构会影响信号的传播路径和传播质量。
短波信号在传输过程中会发生折射、反射和散射等现象,从而使信号在地球表面和大气层之间进行反弹,实现远距离的传输。
接收环节:接收端的天线接收到经过电离层传播回来的短波信号,通过解调技术将短波信号转换成音频、视频等信号进行处理和解码,最终得到原始的信息内容。
二、短波通信的调制解调技术调制技术是短波通信中非常重要的一环,它将原始信号转换成适合短波传输的信号。
常见的调制技术主要有幅度调制(AM)和单边带调制(SSB)。
幅度调制(AM):幅度调制是将音频信号的振幅变化转换成对载波的幅度变化,从而将音频信号传输到短波载波上。
幅度调制的原理是通过改变载波的振幅来实现音频信号的传输。
单边带调制(SSB):单边带调制是在幅度调制的基础上进行改进,去除了一个侧带,从而减小了传输带宽,提高了频谱利用率。
单边带调制在短波通信中得到了广泛应用。
三、短波通信的传输特性短波通信具有一些与其他频段通信不同的传输特性。
传输距离远:短波频段的电磁波具有较强的穿透力,可以通过电离层的反射和折射进行远距离传播。
这使得短波通信在无线电广播、远距离通信等领域具有独特的优势。
短波通信原理尽管当前新型无线电通信系统不断涌现,短波这一古老和传统的通信方式仍然受到全世界普遍重视,不仅没有被淘太,还在快速发展;其原因主要有三:一短波是唯一不受网络枢钮和有源中继体制约的远程通信手段,一但发生战争或灾害,各种通信网络都可能受到破坏,卫星也可能受到攻击;无论哪种通信方式,其抗毁能力和自主通信能力与短波无可相比;二在山区、戈壁、海洋等地区,超短波覆盖不到,主要依靠短波;三与卫星通信相比,短波通信不用支付话费,运行成本低;近年来,短波通信技术在世界范围内获得了长足进步;这些技术成果理应被中国这样的短波通信大国所用;用现代化的短波设备改造和充实我国各个重要领域的无线通信网,使之更加先进和有效,满足新时代各项工作的需要,无疑是非常有意义的;这里简要介绍短波通信的一般概念,优化短波通信的经验,以及一些热门的新技术;1、短波通信的一般原理.无线电波传播无线电广播、无线电通信、卫星、雷达等都依靠无线电波的传播来实现;无线电波一般指波长由100,000米到0.75毫米的电磁波;根据电磁波传播的特性,又分为超长波、长波、中波、短波、超短波等若干波段,其中:超长波的波长为100,000米~10,000米,频率3~30千赫;长波的波长为10,000米~1,000米,频率30~300千赫;中波的波长为1,000米~100米,频率300千赫~兆赫;短波的波长为100米~10米,频率为~30兆赫;超短波的波长为10米~1毫米,频率为30~300,000兆赫注:波长在1米以下的超短波又称为微波;频率与波长的关系为:频率=光速/波长;电波在各种媒介质及其分界面上传播的过程中,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱;为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果;常见的传播方式有:地波地表面波传播沿大地与空气的分界面传播的电波叫地表面波,简称地波;地波的传播途径如图所示;其传播途径主要取决于地面的电特性;地波在传播过程中,由于能量逐渐被大地吸收,很快减弱波长越短,减弱越快,因而传播距离不远;但地波不受气候影响,可靠性高;超长波、长波、中波无线电信号,都是利用地波传播的;短波近距离通信也利用地波传播;直射波传播直射波又称为空间波,是由发射点从空间直线传播到接收点的无线电波;直射波传播距离一般限于视距范围;在传播过程中,它的强度衰减较慢,超短波和微波通信就是利用直射波传播的;在地面进行直射波通信,其接收点的场强由两路组成:一路由发射天线直达接收天线,另一路由地面反射后到达接收天线,如果天线高度和方向架设不当,容易造成相互干扰例如电视的重影;限制直射波通信距离的因素主要是地球表面弧度和山地、楼房等障碍物,因此超短波和微波天线要求尽量高架;天波传播天波是由天线向高空辐射的电磁波遇到大气电离层折射后返回地面的无线电波;电离层只对短波波段的电磁波产生反射作用,因此天波传播主要用于短波远距离通信;散射传播散射传播是由天线辐射出去的电磁波投射到低空大气层或电离层中不均匀介质时产生散射,其中一部份到达接收点;散射传播距离远,但是效率低,不易操作,使用并不广泛;电离层的作用电离层对短波通信起着主要作用,因此是我们研究的重点;电离层是指从距地面大约60公里到2000公里处于电离状态的高空大气层;上疏下密的高空大气层,在太阳紫外线、太阳日冕的软X射线和太阳表面喷出的微粒流作用下,大气气体分子或原子中的电子分裂出来,形成离子和自由电子,这个过程叫电离;产生电离的大气层称为电离层;电离层分为D、E、F1、F2四层;D层高度60~90公里,白天可反射2~9MHz的频率;E层高度85~150公里,这一层对短波的反射作用较小;F层对短波的反射作用最大,分为F1和F2两层;F1层高度150~200公里,只在日间起作用,F2层高度大于200公里,是F层的主体,日间夜间都支持短波传播;电离层的浓度对工作频率的影响很大,浓度高时反射的频率高,浓度低时反射的频率低;电离的浓度以单位体积的自由电子数即电密度来表示;电离层的高度和浓度随地区、季节、时间、太阳黑子活动等因素的变化而变化,这决定了短波通信的频率也必须随之改变;短波频率范围电离层最高可反射40MHz的频率,最低可反射的频率;根据这一特性,短波工作频段被确定为 - 30MHz;短波传播途径短波的基本传播途径有两个:一个是地波,一个是天波;如前所述,地波沿地球表面传播,其传播距离取决于地表介质特性;海面介质的电导特性对于电波传播最为有利,短波地波信号可以沿海面传播1000公里左右;陆地表面介质电导特性差,对电波衰耗大,而且不同的陆地表面介质对电波的衰耗程度不一样潮湿土壤地面衰耗小,干燥沙石地面衰耗大;短波信号沿地面最多只能传播几十公里;地波传播不需要经常改变工作频率,但要考虑障碍物的阻挡,这与天波传播是不同的;短波的主要传播途径是天波;短波信号由天线发出后,经电离层反射回地面,又由地面反射回电离层,可以反射多次,因而传播距离很远几百至上万公里,而且不受地面障碍物阻挡;但天波是很不稳定的;在天波传播过程中,路径衰耗、时间延迟、大气噪声、多径效应、电离层衰落等因素,都会造成信号的弱化和畸变,影响短波通信的效果;2、单边带的概念在无线电通信中,传送信息的载体是特定频率的载波也称为主频;那么信息又是如何放到载波上的呢这就引出了“调制”的概念;调制就是将信息的动态波形通过一定形式加到载波上发送出去,接收台收到被调制的载频信后,再还原信息;调制分为幅度调制简称“调幅”、频率调制简称“调频”、相位调制简称“调相”三种;中波、短波一般采用调幅方式,超短波一般采用调频方式;根据国际协议,短波通信必须使用单边带调幅方式SSB,只有短波广播节目可以使用双边带调幅方式AM;因此,国内外使用的短波电台都是单边带电台;单边带的定义调幅信号的频谱是由中央载频和上下两个边带组成的;将载频和其中一个边带加以抑制,剩下的一个边带就成为单边带信号;如果用一个边带再加上部份载频或全部载频,就成为兼容式调幅信号;下面用图示的方法说明单边带信号是怎样产生的;单边带的优点单边带的优点是:① 提高了频谱利用率,减少信道拥挤;② 节省发射功率约四分之三;③ 减少信道互扰;④ 抗选择性衰落能力强;一部100W单边带电台的实际通话效果,相当于过去1000W以上双边带电台;优化短波通信的方法1、改善短波信号质量的三大要素由于短波传输存在固有弱点,短波信号的质量不如超短波;不过我们可以通过一些途径改善短波信号质量,使其尽可能接近超短波;改善短波信号质量的三大要素是:正确选用工作频率;正确选择和架设天地线;选用先进优质的电台和电源等设备;正确选用工作频率短波频率和超短波频率的使用性质完全不同;超短波属于视距通信,距离短,可以固定使用频段内的任何频点;而短波频率则受到电离层变化、通信距离和方向、海拔高度、天线类型等多种因素的影响和限制;用同一套电台和天线,选用不同频率,通信效果可能差异很大;对于有经验的短波工作者来说,选频并不困难,其中有明显的规律性可循;一般来说:日频高于夜频相差约一半;远距离频率高于近距离;夏季频率高于冬季;南方地区使用频率高于北方;等等;另外,在东西方向进行远距离通信时,因为受地球自转影响,最好采用异频收发才能取得良好通信效果;如果所用的工作频率不能顺畅通信时,可按照以下经验变换频率:1接近日出时,若夜频通信效果不好,可改用较高的频率;2接近日落时,若日频通信效果不好,可改用较低的频率;3在日落时,信号先逐渐增强,而后突然中断,可改用较低频率;4工作中如信号逐渐衰弱,以致消失,可提高工作频率;5遇到磁暴时,可选用比平常低一些的频率;计算机测频利用计算机测频软件预测可用频率对短波通信很有帮助,是国外经常采用的先进技术手段;计算机测频系统能够根据太阳黑子活动规律等因素,结合不同地区的历史数据,预测两点之间在未来一段时期每天各时节的可用频段,具有较高参考价值;美国、欧盟、澳大利亚政府的计算机测频系统数据比较准确,它们通过分布在全球的监测点采集和跟踪各种环境参数的变化提供频率依据;其中澳大利亚的ASPAS系统面向全世界提供测频服务,安装和服务费用不高,很有使用价值;正确选择和架设天线地线天线和地线是很多短波用户容易忽视的问题;当通信质量不好时,很多人习惯于从电台上找原因,而实际上信号不良常常源自天线或地线;短波和超短波使用的天线是完全不同的;超短波通信因为使用频率高,波长短,天线可以做得很小,通常为直立鞭状天线;而短波通信因使用的频率较低,天线必须做得足够大才能有效工作;简单的规律是:天线的长度达到所使用频率的1/2波长时,天线的效率最高;短波天线的理论原理比较高深;短波天线的种类繁多,用途各异,究竟应该选购何种天线,怎样安装架设才能获得良好的通信效果根据我们了解和掌握的情况作如下简要介绍:1了解天线的基本工作原理短波天线分地波天线和天波天线两大类;地波天线包括鞭状天线、倒L形天线、T形天线等;这类天线发射出的电磁波是全方向的,并且主要以地波的形式向四周传播,故称全向地波天线,常用于近距离通信;地波天线的效率主要看天线的高度和地网的质量;天线越高、地网质量越好,发射效率越高,当天线高度达到1/2 波长时,发射效率最高;天波天线主要以天波形式发射电磁波,分为定向天线和全向天线两类;典型的定向天波天线有:双极天线、双极笼形天线、对数周期天线、菱形天线等,它们以一个方向或两个相反方向发射电磁波,用天线的架设高度来控制发射仰角;典型的全向天波天线有:角笼形天线、倒V形天线等;它们是以全方向发射电磁波,用天线的高度或斜度来控制发射仰角;天波天线简单的规律为:天线水平振子一臂的长度达到1/2波长时,水平波瓣主方向的效率最高;天线高度越高,发射仰角越低,通信距离越远;反之,天线高度越低,发射仰角越高,通信距离越近;天线高度与波长之比H/λ达到二分之一时,垂直波瓣主方向的效率最高;2按用途选购天线随着短波通信技术的发展,短波天线出现了很多不同用途的新品种,例如用于短波跳频的高效能宽带天线;用于为了解决天线架设场地小和多部电台共用一副天线的多馈多模天线等;选择天线基本的着眼点应该是用途; 近距离固定通信:选择地波天线或天波高仰角天线;点对点通信或方向性通信:选择天波方向性天线等;组网通信或全向通信:选择天波全向天线;车载通信或个人通信:选择小型鞭状天线;3 正确处理天线价格与质量的关系俗话讲一分钱一分货;首先同种用途的天线有不同种类,其增益有高低之分;此外同一种外形的天线,使用不同材料;不同制造工艺,其通信效果的差异是很大的;例如以特种不锈铜钢复合绞线为振子的天线,比用塑包线为振子的天线高频电磁转换效率高得多;又例如匹配器所用的磁性材料优劣,对电台与天线的匹配状态影响极大;高性能磁料能够保证全频段每个频点都能良好匹配;劣质磁料可能造成很多频点甚至整段频率匹配不好,驻波比过大;使用劣质天线,电台输出的功率可能只送出去不到三分之一甚至更少,通信效果可想而知;在投资增加不多的前提下,尽量选用高质量高增益的天线,能够保证长期稳定和优良的通信效果和延长使用寿命,是很划算的;4介绍二种性能和价格兼优的基站天线根据多年的对比实验和实际使用经验,我们认为有两种进口天线在性能上能够广泛满足我国大多数用户的通信要求,而且价格不高,性能价格比好,以下分别介绍:● 用于全方位通信的三角组合型全向全角天线我国省级行政区,从省会到边缘地区的距离多数在1200公里以内;在这个区域内组建全省或地区的通信网,中心基站选用这种天线是比较理想的;这种天线既能照顾360°全方位,又能照顾近中远各种距离,接收效果好,对改善通信盲区特别有效,此外它能兼顾垂直极化波和水平极化波,对区域内各种台站的不同种类天线的兼容性好;● 兼顾全向和定向两种用途的高增益三线式天线三线式天线是国际上近年流行的新型多用途天线,它虽然属于偶极天线类,但其性能是普通双极天线无法相比的;与普通双极天线相比它有以下优点:1.增益高,全频段内驻波比小,而且均匀辐射效率高;2.水平架设时不仅在天线宽边方向辐射强,而且在窄边方向也有较强辐射;3.架设状态平稳,抗风抗毁能力强;4.提供平行和倒V两种架设方式,分别支持2500公里内定向通信和2000公里半径内全向通信;以上两种天线的振子材质都是不锈铜钢复合绞线,电磁转换效率高而且经久耐用;其高性能磁性材料保证了全频段匹配良好;5正确架设天线和连接馈线选购好合适的天线后,还必须正确地安装架设,才能发挥出最佳效果;天线的长度和架设规范是不能改变的,但对于某些天线而言,架设的方向和高度是靠用户自己掌握的,应严格按通信的方向和距离来确定方向和高度;天线的架设位置以开扩的地面为好,没有条件的单位也可以架在两个楼房之间或楼顶;天线高度指天线发射体与地面或楼顶的相对高度;架在楼顶时,高度应以楼顶与天线发射体之间的距离计算,不是按楼顶与地面的高度计算;我们提醒用户,切忌因为架设场地不理想或怕麻烦,就随便把天线架起来完事,这样做通信效果很可能是不好的;另一个要点是馈线的选用和布设;馈线是将电台的输出功率送到天线进行发射的唯一通道,如果馈线不畅通,再好的电台和天线,通信效果也是很差的;馈线分为明馈线和射频电缆两类;目前100W~150W电台一般都使用射频电缆馈电方式;选用射频电缆时要注意两项指标:一是阻抗为50欧姆;二是对最高使用频率的衰耗值要小;一般来讲,射频电缆直径越粗,衰耗越小,传输功率越大;在实际使用中,100W级短波单边带电台,常选用SYV-50-5或SYV-50-7的射频电缆,必要时也可以选SYV-50-9的射频电缆;天线在进行安装选位和布设时,应尽可能缩短馈线的长度,普通SYV-50-5馈线每1米造成信号衰减,这意味着100W电台功率通过50米馈线送达天线时,功率剩下不到40W;因此通常要求馈线长度控制在30米以内;如果因为场地条件限制必须延长馈线,则应采用大直径低损耗电缆;另外在布设电缆,应尽量减少弯曲,以降低对射频功率的损耗,如果必需弯曲,则弯曲角度不得小于120度;6电台和天线的匹配天线、馈线、电台三者之间的匹配必须引起高度重视,否则,虽然电台、天线、馈线都选得很好,通信效果还是不好;所谓“匹配”就是要求达到无损耗连接,只有电台、馈线、天线三者保证高频输入输出阻抗一致,才能实现无损耗连接;多数短波电台的输出/输入阻抗为50欧姆,必须选用阻抗为50欧姆的射频电缆与电台匹配;天线的特性阻抗比较高,一般为600欧姆左右,只有宽带天线的特性阻抗稍低一点,大约200~300欧姆,因此,天线不能直接与射频电缆连接,中间必须加阻抗匹配器也叫单/双变换器;阻抗匹配器的输入端阻抗必须与射频电缆的阻抗一致50欧姆,输出端阻抗必须与天线的输入阻抗一致600欧姆或200/300欧姆;阻抗匹配器的最佳安装位置是与天线连为一体;自动天线调谐器也是匹配天线和电台阻抗用的;自动天调的输入端与电台连接,输出端与单极天线连接;自动天调与偶极天线连接时要根据不同产品而定;有些天调要求加单/双变换器,天调与单/双变换器之间用50欧姆射频电缆相连芯线接天调输出端,外皮接天调的地端,单/双变换器的双输出端与天线连接;多数新型天调不用加单/双变换器,用天调的输出端和接地端分别连接偶极天线的两臂,匹配效果更好,而且效率更高;7正确埋设接地体和连接地线地线是很多用户容易草率处理的问题;短波通信台站的地线是至关重要的,地线实际上是整个天馈线系统的重要组成部分;我们所说的地线,不是交流供电系统中的电源地或保安地;这里所说的地线是信号地,也称高频地;信号地一般不能接到电源地或保安地上,必须单独埋设;埋设接地体时,必须按有关标准进行,接地电阻不应大于4欧姆;电台的接地柱和接地体之间,必须用多股线铜、编织铜线或大截面优良导体连接,才能起到良好的高频接地作用;而良好的高频接地是减小发射驻波和减小接收噪声的必要前提;选用先进优质的电台和电源工作频率和天线地线搞好了,相当于铺了一条“好路”;好路上还要跑“好车”;好车就是先进优质的电台和电源等设备;1选择电台的原则和标准怎样评价电台的先进性和优质呢先进性体现在两个方面:一是电气特性和工艺结构,这方面先进与否决定了性能指标的优劣和设备的可靠性;二是使用功能,具有多种先进功能的电台不仅用途更广泛,而且也说明制造者的科技实力;电气特性涉及的内容很多,这里只简述三个方面:①频率特性;好的电台频率稳定性比差的电台高几倍、几十倍甚至几百倍;频率稳定性高的电台,不但话音清晰,信号等级高,而且是支持高速数传的必要条件;在评价频率稳定性时要注意两点:一是全频段各频点的稳定性要一致;二是要在很宽的温度范围内稳定,不能机器一发热就产生频漂;②通道特性;这一特性描述信号在通过高频、中频、低频几个通道后的畸变程度;当进行短波数传时,这一问题非常突出;使用通道特性差的电台,无论怎样改造,数传速率都上不去,原因之一就是高速数据脉冲通过不佳的通道后发生明显畸变,使其难以被识别;③干扰和抗干扰特性;这方面的性能在技术说明书上都是以dB分贝值表示的,我们统称为dB指标;电台发射方面的dB指标不好,说明你传给对方台的信号不好,而且干扰其它台;电台接收方面的dB指标不好,说明自身容易被别人干扰;二者都是不能容许的;工艺结构方面,主要看电路集成度和模块化程度;集成度高,可靠性必然高;模块化除了提高设备可靠性外,还使扩展功能和维修十分便利,是当今电台工艺的主流趋势;再来看使用功能;社会需求的发展和科技的进步,使短波通信日益向多功能化方向发展;像用于半自动优选频率的自适应功能和全自动优选频率的自优化功能,用于计算机和传真机的数据传输功能,用于保密和抗干扰的跳频功能,用于组网通信的数字选呼功能,用于卫星定位的GPS监控功能,用于连接有线网的有线无线转接功能,等等;在具有这些现代化功能的电台面前,那些只能进行简单通话的电台就显得太原始了;目前在国内有一种现象,就是很多单位致力于在一些单功能电台上添加数传、自适应等功能;这固然是由于有大量旧式电台要改造,可能还有造价方面的考虑;但可以肯定这种现象是过渡阶段;正像现在大家都用GSM手机,再也没有人使用土造的手持电话一样,未来的短波领域也势必普及先进的多功能电台;此外,先进优质电台的售价呈下降趋势,也越来越接近我国用户的经济承受能力;哪些电台先进而且优质,要具体分析,但有一点可以肯定:目前国内常见的多数日本电台,其电性能、可靠性、功能等与欧美和澳大利亚名牌产品不在一个等级上;澳大利亚柯顿公司首创的NGT自优化短波电台,正是先进电台的代表; 2电源质量与通信效果的关系很多人认为只要稳压电源的输出电压和电流的数值符合要求就可以用,这种认识不够全面;其实有些干扰可能来自电源,有些话音失真也可能是电源动态范围不足所致;数据传输对电源的要求更严格,如果电源的电磁屏蔽特性不好,输出纹波大,将直接导致数传工作不正常;功率容量和设计余量也是考核稳压电源优劣的重要依据,有些电源为了降低生产成本,加强价格竞争能力,把功率容量设计在临界状态,并尽量简化电路,选用低指标元器件等等;这类电源的技术性能和可靠性肯定是做不高的;好汽车要用好发动机,好电台要用好电源,道理是相同的;在选购电源时,一定要挑选功率容量大、输出电压纹波小、电磁屏蔽特性好、电路设计余量大的静化电源产品;2、短波通信的常见难点及解决方法近距离盲区及解决方法前节已介绍了天波和地波二种传输途径;一般来说,地波最远可达30公里;而天波从电离层第一次反射落地第一跳的最短距离约为100公里;可见30至100公里之间这一段,地波和天波都够不到,形成了短波通信的“寂静区”,也称为盲区;盲区内的通信大多是比较困难的;解决盲区通信主要有两个方法:一是加大电台功率以延长地波传播距离;二是常用的有效方法就是选用高仰角天线,也称“高射天线”或“喷泉天线”;仰角是指天线辐射波辨与地面之间的夹角;仰角越高,电波第一跳落地的距离越短,盲区越少,当仰角接近90°时,盲区基本上就不存在了;前文提到的三角组合型全向全角天线就属于这一类;2 车载台的通信困难及解决方法车载通信一直都是短波通信中的一个难题;车的体积就那么大,没办法架长天线,其辐射能力怎么也比不上固定台;因此必须从合理设计天线形态和合理选择架设位置等方面来弥补,尽可能利用车体的反射效应,尽可能增加天线的“电长度”;。
超短波电台的技术实现和解决方案超短波(Ultra-Short Wave,简称USW)电台是一种广泛应用于无线电通信领域的设备,通常用于远距离传输和接收无线信号。
本文将详细介绍超短波电台的技术实现和解决方案,包括其工作原理、主要组成部分以及应用场景。
一、超短波电台的工作原理超短波电台主要利用无线电技术将音频信号通过电波传播。
其工作原理可以简单地分为三个步骤:音频输入、射频调制与发射、接收与解调。
1. 音频输入:音频输入是指将声音转换为电信号的过程。
一般而言,超短波电台会配备麦克风或其他音频输入设备,将实际声音输入系统。
2. 射频调制与发射:在这一步骤中,音频信号将通过射频调制成可传播的电波。
超短波电台会执行一系列的编码和调制过程,将音频信息嵌入到射频信号中。
一旦射频信号调制完成,它将通过天线传输出去。
3. 接收与解调:当射频信号到达目标接收器时,它将由该接收器的天线接收。
接收器将信号解调,并恢复音频信息。
通常,解调的过程包括滤波、解调和放大。
二、超短波电台的主要组成部分在超短波电台中,有几个重要的组成部分,包括:调频器、电源、天线、扩音器等。
1. 调频器:调频器用于将音频信号转换为射频信号。
它能够将音频信号进行编码、调制和放大,输出高频的射频信号。
2. 电源:电源是为超短波电台提供所需电力的装置。
电源可以采用直流电源或交流电源,以保证超短波电台的正常工作。
3. 天线:天线用于接收和发送电台信号。
它是信号的传输工具,负责将射频信号从电台传递到目标接收器,或从目标发射器传递到电台。
4. 扩音器:扩音器是用于增强音频信号的装置。
它将音频信号从电台中放大,以提高声音的音量和质量。
三、超短波电台的应用场景超短波电台具有广泛的应用场景,包括广播电台、航空通信、海事通信、紧急救援等。
1. 广播电台:广播电台是超短波电台最常见的应用之一。
它们通过超短波频段向广大听众传播音频信息。
广播电台广泛应用于新闻、音乐、体育比赛等领域,为公众提供丰富多样的娱乐和信息。
短波通信电台在人防通信中的作用浅探【摘要】短波通信电台在人防通信中发挥着至关重要的作用。
本文从短波通信电台的基本原理、在人防通信中的应用、优势和发展趋势等方面进行了浅析。
短波通信电台以其高效的传输速度和稳定性,为人防通信提供了可靠的保障。
在突发事件中,短波通信电台更是起到了关键作用,确保了通信畅通。
短波通信电台对人防通信的重要性不可忽视。
未来,随着技术的不断创新和发展,短波通信电台在人防通信中的地位将更加重要,将继续为人们的安全和防卫工作提供有力支持。
【关键词】短波通信电台、人防通信、基本原理、应用、优势、发展趋势、突发事件、重要性、未来发展。
1. 引言1.1 短波通信电台在人防通信中的作用浅探短波通信电台在人防通信中扮演着至关重要的角色,其作用远远不止于此。
在现代社会,信息传递的速度和稳定性对人防通信有着极高的要求,而短波通信电台正是能够满足这一需求的有效工具之一。
通过短波通信电台,人们可以快速地进行通讯,及时传递信息,实现指挥调度,确保人防工作的高效运转。
与其他通信方式相比,短波通信电台具有较强的抗干扰能力和覆盖范围广的特点,尤其在山区、海岛等复杂地形环境下表现出色。
短波通信电台的通讯成本相对较低,维护简便,使用方便,对于人防通信的实际应用具有明显的优势。
短波通信电台在人防通信中的作用不可替代,其重要性与必要性日益凸显。
在未来,随着科技的不断发展和创新,短波通信电台将会在人防通信中发挥更加重要的作用,为人们的生命安全和财产安全提供更为可靠的保障。
2. 正文2.1 短波通信电台的基本原理短波通信电台的基本原理是利用短波无线电波进行通信的技术。
短波无线电波是一种频率较高、波长较短的无线电波,能够在大气层中反射和折射,从而可以进行远距离通信。
短波通信电台通过调制射频信号,将声音、文字或数据转换成电信号,并发送到接收端。
接收端接收到信号后,再通过解调器将电信号转换为原始的声音、文字或数据信息。
短波通信电台的发射机由振荡器产生射频信号,经过调制器调制后,通过天线发送出去。
科普短波通信原理和传播方式短波通信(Short-wave Comunication)是无线电通信的一种。
波长在50米~10米之间,频率范围6兆赫~30兆赫。
发射电波要经电离层的反射才能到达接收设备,通信距离较远,是远程通信的主要手段。
由于电离层的高度和密度容易受昼夜、季节、气候等因素的影响,所以短波通信的稳定性较差,噪声较大。
目前,它广泛应用于电报、电话、低速传真通信和广播等方面。
尽管当前新型无线电通信系统不断涌现,短波这一古老和传统的通信方式仍然受到全世界普遍重视,不仅没有被淘汰,还在快速发展。
短波通信原理:无线电波传播无线电广播、无线电通信、卫星、雷达等都依靠无线电波的传播来实现。
无线电波一般指波长由100,000米到0.75毫米的电磁波。
根据电磁波传播的特性,又分为超长波、长波、中波、短波、超短波等若干波段,其中:超长波的波长为100,000米~10,000米,频率3~30千赫;长波的波长为10,000米~1,000米,频率30~300千赫;中波的波长为1,000米~100米,频率300千赫~1.6兆赫;短波的波长为100米~10米,频率为1.6~30兆赫;超短波的波长为10米~1毫米,频率为30~300,000兆赫(注:波长在1米以下的超短波又称为微波)。
频率与波长的关系为:频率=光速/波长。
电波在各种媒介质及其分界面上传播的过程中,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱。
为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果。
常见的传播方式地波(地表面波)传播沿大地与空气的分界面传播的电波叫地表面波,简称地波。
其传播途径主要取决于地面的电特性。
地波在传播过程中,由于能量逐渐被大地吸收,很快减弱(波长越短,减弱越快),因而传播距离不远。
但地波不受气候影响,可靠性高。
超长波、长波、中波无线电信号,都是利用地波传播的。
一、短波通信概述 (2)二、短波通信的优势 (2)三、短波通信的一般原理 (3)3.1.无线电波传播 (3)3.2 电离层的作用 (4)3.3 短波频率范围 (4)3.4 短波传播途径 (5)四、单边带概念 (5)4.1 单边带的定义 (6)4.2 单边带的优点 (6)五、优化短波通信的方法 (6)5.1 正确选用工作频率 (6)5.2计算机测频 (7)5.3 正确选择和架设天线地线 (7)六、短波电台天线知识 (8)6.1了解天线的基本工作原理 (8)6.2正确选择电台天线 (8)6.3正确处理天线价格与质量的关系 (9)6.4常用的天线 (9)6.4.1用于全方位通信的三角组合型全向全角天线 (9)6.4.2兼顾全向和定向两种用途的高增益三线式天线 (9)七、工程施工要点 (10)7.1正确架设天线和连接馈线 (10)7.2电台和天线的匹配 (11)7.3正确埋设接地体和连接地线 (11)7.4选用先进优质的电台和电源 (12)八、短波电台的应用 (13)9.1 近距离盲区及解决方法 (14)小知识: (15)一、衡量天线性能因素 (15)二、几种常用的短波天线 (15)一、短波通信概述短波通信是利用波长为100-10米(3-30兆赫兹)的电磁波进行的无线电通信,也称高频通信,主要靠天波传播,可经电离层一次或数次反射,最远可传至上万公里,如按气候、电离层的电子密度和高度的日变化,以及通信距离等因素选择合适的频率,就可用较小功率进行远距离通信。
但是由于电离层的高度和密度容易受昼夜、季节、气候等因素的影响,所以短波通信的稳定性较差,噪声较大。
目前,它广泛应用于电报、电话、低速传真通信和广播等方面。
由于采用大气空间及电离层为传输媒介无需投资,仅需配置短波收发信机和天线、馈线系统即可组成短波通信系统。
该系统通信设备较简单,机动性大,因此,可用于电话、电报、传真和广播等业务,特别适合应急通信和抗灾通信。
短波电台通信原理 尽管当前新型无线电通信系统不断涌现,短波这一古老和传统的通信方式仍然受到全世界普遍重视,不仅没有被淘太,还在快速发展。其原因主要有三:?
一、短波是唯一不受网络枢钮和有源中继体制约的远程通信手段,一但发生战争或灾害,各种通信网络都可能受到破坏,卫星也可能受到攻击。无论哪种通信方式,其抗毁能力和自主通信能力与短波无可相比;?
二、在山区、戈壁、海洋等地区,超短波覆盖不到,主要依靠短波;? 三、与卫星通信相比,短波通信不用支付话费,运行成本低。? 近年来,短波通信技术在世界范围内获得了长足进步。这些技术成果理应被中国这样的短波通信大国所用。用现代化的短波设备改造和充实我国各个重要领域的无线通信网,使之更加先进和有效,满足新时代各项工作的需要,无疑是非常有意义的。?
这里简要介绍短波通信的一般概念,优化短波通信的经验,以及一些热门的新技术。
1、短波通信的一般原理? .无线电波传播? 无线电广播、无线电通信、卫星、雷达等都依靠无线电波的传播来实现。? 无线电波一般指波长由100,000米到毫米的电磁波。根据电磁波传播的特性,又分为超长波、长波、中波、短波、超短波等若干波段,其中:超长波的波长为100,000米~10,000米,频率3~30千赫;长波的波长为10,000米~1,000米,频率30~300千赫;中波的波长为1,000米~100米,频率300千赫~兆赫;短波的波长为100米~10米,频率为~30兆赫;超短波的波长为10米~1毫米,频率为30~300,000兆赫(注:波长在1米以下的超短波又称为微波)。频率与波长的关系为:频率=光速/波长。? 电波在各种媒介质及其分界面上传播的过程中,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱。为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果。?
常见的传播方式有:? 地波(地表面波)传播? 沿大地与空气的分界面传播的电波叫地表面波,简称地波。地波的传播途径如图 所示。其传播途径主要取决于地面的电特性。地波在传播过程中,由于能量逐渐被大地吸收,很快减弱(波长越短,减弱越快),因而传播距离不远。但地波不受气候影响,可靠性高。超长波、长波、中波无线电信号,都是利用地波传播的。短波近距离通信也利用地波传播。?
直射波传播? 直射波又称为空间波,是由发射点从空间直线传播到接收点的无线电波。直射波传播距离一般限于视距范围。在传播过程中,它的强度衰减较慢,超短波和微波通信就是利用直射波传播的。?
在地面进行直射波通信,其接收点的场强由两路组成:一路由发射天线直达接收天线,另一路由地面反射后到达接收天线,如果天线高度和方向架设不当,容易造成相互干扰(例如电视的重影)。?
限制直射波通信距离的因素主要是地球表面弧度和山地、楼房等障碍物,因此超短波和微波天线要求尽量高架。?
天波传播? 天波是由天线向高空辐射的电磁波遇到大气电离层折射后返回地面的无线电波。电离层只对短波波段的电磁波产生反射作用,因此天波传播主要用于短波远距离通信。?
散射传播? 散射传播是由天线辐射出去的电磁波投射到低空大气层或电离层中不均匀介质时产生散射,其中一部份到达接收点。散射传播距离远,但是效率低,不易操作,使用并不广泛。?
电离层的作用? 电离层对短波通信起着主要作用,因此是我们研究的重点。? 电离层是指从距地面大约60公里到2000公里处于电离状态的高空大气层。上疏下密的高空大气层,在太阳紫外线、太阳日冕的软X射线和太阳表面喷出的微粒流作用下,大气气体分子或原子中的电子分裂出来,形成离子和自由电子,这个过程叫电离。产生电离的大气层称为电离层。电离层分为D、E、F1、F2四层。D层高度60~90公里,白天可反射2~9MHz的频率。E层高度85~150公里,这一层对短波的反射作用较小。F层对短波的反射作用最大,分为F1和F2两层。F1层高度150~200公里,只在日间起作用,F2层高度大于200公里,是F层的主体,日间夜间都支持短波传播。?
电离层的浓度对工作频率的影响很大,浓度高时反射的频率高,浓度低时反射的频率低。电离的浓度以单位体积的自由电子数(即电密度)来表示。?
电离层的高度和浓度随地区、季节、时间、太阳黑子活动等因素的变化而变化,这决定了短波通信的频率也必须随之改变。?
短波频率范围? 电离层最高可反射40MHz的频率,最低可反射的频率。根据这一特性,短波工作频段被确定为 - 30MHz。?
短波传播途径? 短波的基本传播途径有两个:一个是地波,一个是天波。? 如前所述,地波沿地球表面传播,其传播距离取决于地表介质特性。海面介质的电导特性对于电波传播最为有利,短波地波信号可以沿海面传播1000公里左右;陆地表面介质电导特性差,对电波衰耗大,而且不同的陆地表面介质对电波的衰耗程度不一样(潮湿土壤地面衰耗小,干燥沙石地面衰耗大)。短波信号沿地面最多只能传播几十公里。地波传播不需要经常改变工作频率,但要考虑障碍物的阻挡,这与天波传播是不同的。?
短波的主要传播途径是天波。短波信号由天线发出后,经电离层反射回地面,又由地面反射回电离层,可以反射多次,因而传播距离很远(几百至上万公里),而且不受地面障碍物阻挡。但天波是很不稳定的。在天波传播过程中,路径衰耗、时间延迟、大气噪声、多径效应、电离层衰落等因素,都会造成信号的弱化和畸变,影响短波通信的效果。?
2、单边带的概念? 在无线电通信中,传送信息的载体是特定频率的载波(也称为主频)。那么信息又是如何放到载波上的呢?这就引出了“调制”的概念。调制就是将信息的动态波形通过一定形式加到载波上发送出去,接收台收到被调制的载频信后,再还原信息。调制分为幅度调制(简称“调幅”)、频率调制(简称“调频”)、相位调制(简称“调相”)三种。中波、短波一般采用调幅方式,超短波一般采用调频方式。?
根据国际协议,短波通信必须使用单边带调幅方式(SSB),只有短波广播节目可以使用双边带调幅方式(AM)。因此,国内外使用的短波电台都是单边带电台。?
单边带的定义? 调幅信号的频谱是由中央载频和上下两个边带组成的。将载频和其中一个边带加以抑制,剩下的一个边带就成为单边带信号。如果用一个边带再加上部份载频或全部载频,就成为兼容式调幅信号。下面用图示的方法说明单边带信号是怎样产生的。?
单边带的优点? 单边带的优点是:? ① 提高了频谱利用率,减少信道拥挤;? ② 节省发射功率约四分之三;? ③ 减少信道互扰;? ④ 抗选择性衰落能力强。? 一部100W单边带电台的实际通话效果,相当于过去1000W以上双边带电台。 优化短波通信的方法? 1、改善短波信号质量的三大要素? 由于短波传输存在固有弱点,短波信号的质量不如超短波。不过我们可以通过一些途径改善短波信号质量,使其尽可能接近超短波。改善短波信号质量的三大要素是:正确选用工作频率;正确选择和架设天地线;选用先进优质的电台和电源等设备。?
正确选用工作频率? 短波频率和超短波频率的使用性质完全不同。超短波属于视距通信,距离短,可以固定使用频段内的任何频点;而短波频率则受到电离层变化、通信距离和方向、海拔高度、天线类型等多种因素的影响和限制。用同一套电台和天线,选用不同频率,通信效果可能差异很大。?
对于有经验的短波工作者来说,选频并不困难,其中有明显的规律性可循。一般来说:日频高于夜频(相差约一半);远距离频率高于近距离;夏季频率高于冬季;南方地区使用频率高于北方;等等。另外,在东西方向进行远距离通信时,因为受地球自转影响,最好采用异频收发才能取得良好通信效果。如果所用的工作频率不能顺畅通信时,可按照以下经验变换频率:?
(1)接近日出时,若夜频通信效果不好,可改用较高的频率;? (2)接近日落时,若日频通信效果不好,可改用较低的频率;? (3)在日落时,信号先逐渐增强,而后突然中断,可改用较低频率;? (4)工作中如信号逐渐衰弱,以致消失,可提高工作频率;? (5)遇到磁暴时,可选用比平常低一些的频率。? 计算机测频? 利用计算机测频软件预测可用频率对短波通信很有帮助,是国外经常采用的先进技术手段。计算机测频系统能够根据太阳黑子活动规律等因素,结合不同地区的历史数据,预测两点之间在未来一段时期每天各时节的可用频段,具有较高参考价值。?
美国、欧盟、澳大利亚政府的计算机测频系统数据比较准确,它们通过分布在全球的监测点采集和跟踪各种环境参数的变化提供频率依据。其中澳大利亚的ASPAS系统面向全世界提供测频服务,安装和服务费用不高,很有使用价值。?
正确选择和架设天线地线? 天线和地线是很多短波用户容易忽视的问题。当通信质量不好时,很多人习惯于从电台上找原因,而实际上信号不良常常源自天线或地线。?
短波和超短波使用的天线是完全不同的。超短波通信因为使用频率高,波长短,天线可以做得很小,通常为直立鞭状天线。而短波通信因使用的频率较低,天线必须做得足够大才能有效工作。简单的规律是:天线的长度达到所使用频率的1/2波长时,天线的效率最高。?
短波天线的理论原理比较高深。短波天线的种类繁多,用途各异,究竟应该选购何种天线,怎样安装架设才能获得良好的通信效果?根据我们了解和掌握的情况作如下简要介绍:?
(1)了解天线的基本工作原理? 短波天线分地波天线和天波天线两大类。? 地波天线包括鞭状天线、倒L形天线、T形天线等。这类天线发射出的电磁波是全方向的,并且主要以地波的形式向四周传播,故称全向地波天线,常用于近距离通信。地波天线的效率主要看天线的高度和地网的质量。天线越高、地网质量越好,发射效率越高,当天线高度达到1/2 波长时,发射效率最高。?
天波天线主要以天波形式发射电磁波,分为定向天线和全向天线两类。典型的定向天波天线有:双极天线、双极笼形天线、对数周期天线、菱形天线等,它们以一个方向或两个相反方向发射电磁波,用天线的架设高度来控制发射仰角。典型的全向天波天线有: